Refine Your Search

Topic

Author

Affiliation

Search Results

2024-04-24

2024-04-24

2024-04-24

2023 AeroTech®

2024-04-24
Join industry innovators, thought-leaders, and high-tech professionals worldwide to celebrate aerospace achievements
Technical Paper

A 3D-Simulation with Detailed Chemical Kinetics of Combustion and Quenching in an HCCI Engine

2008-06-23
2008-01-1655
A 3D-CFD model with detailed chemical kinetics was developed to investigate the combustion characteristics of HCCI engines, especially those fueled with hydrogen and n-heptane. The effects of changes in some of the key important variables that included compression ratio and chamber surface temperature on the combustion processes were investigated. Particular attention was given, while using a finer 3-D mesh, to the development of combustion within the chamber crevices between the piston top-land and cylinder wall. It is shown that changes in the combustion chamber wall surface temperature values influence greatly the autoignition timing and location of its first occurrence within the chamber. With high chamber wall temperatures, autoignition takes place first at regions near the cylinder wall while with low surface temperatures; autoignition takes place closer to the central region of the mixture charge.
Technical Paper

A Bench Technique for Evaluating High Temperature Oxidation and Corrosion Tendencies of Automotive Crankcase Lubricants

1968-02-01
680538
A technique for evaluating high temperature oxidation and corrosion tendencies of automotive crankcase lubricants is described. The technique utilizes a versatile bench apparatus which, with a minimum of modification, can be used for either evaluating thermal oxidation stability of gear lubricants or oxidation-corrosion tendencies of automotive crankcase lubricants. The apparatus is relatively compact and requires a minimal lubricant sample. Design of the apparatus permits close control of all operating parameters and provides satisfactory test data repeatability. Retainable copper-lead test bearings are used as the indicator in predicting a pass or fail of fully formulated crankcase lubricants as in the case of the CRC L-38-559 (Federal Test Method 3405) technique. Engine and bench test data are compared to illustrate the capabilities of this new bench technique.
Journal Article

A Carbon Intensity Analysis of Hydrogen Fuel Cell Pathways

2021-03-02
2021-01-0047
A hydrogen economy is an increasingly popular solution to lower global carbon dioxide emissions. Previous research has been focused on the economic conditions necessary for hydrogen to be cost competitive, which tends to neglect the effectiveness of greenhouse gas mitigation for the very solutions proposed. The holistic carbon footprint assessment of hydrogen production, distribution, and utilization methods, otherwise known as “well-to-wheels” carbon intensity, is critical to ensure the new hydrogen strategies proposed are effective in reducing global carbon emissions. When looking at these total carbon intensities, however, there is no single clear consensus regarding the pathway forward. When comparing the two fundamental technologies of steam methane reforming and electrolysis, there are different scenarios where either technology has a “greener” outcome.
Technical Paper

A Comparison Between the Combustion of Isooctane, Methanol, and Methane in Pulse Flame Combustors with Closed Loop A/F Control

1992-02-01
920799
CO/H2 (ratios i.e. water gas shift equilibria) in exhaust gases produced from the combustion of pure isooctane, methanol, and methane in a pulse flame combustor were measured. Measured CO/H2 ratios were directionally consistent with C/H ratios of the respective fuels. The average CO/H2 ratios in combusted isooctane, methanol, and methane were found to be 3.8, 1.25, and 2.0, respectively. The effect of these differences on feedback A/F control with a HEGO (heated exhaust gas oxygen) sensor were also examined. Feedback control of isooctane combustion produced operation very near to stoichiometry. On the other hand, the combustion of methanol under feedback control resulted in steady state lean operation while feedback control of methane combustion produced rich operation. For all three fuels, operation shifted in the lean direction as combustion efficiency was degraded.
Technical Paper

A Comprehensive Chemical Kinetic Investigation of the Combustion Processes of Lean Mixtures of Methane and Air

1999-10-25
1999-01-3483
The combustion processes of of lean mixtures of methane in air is examined by employing a detailed chemical kinetic scheme consisting of 178 elementary reaction steps with 41 species. The changes with time in the concentrations of the major relevant reactive species are determined from the preignition reactions to the time near equilibrium conditions. The results of such an approach to the combustion process are considered over a wide range of initial temperatures (1000 K - 1600 K) and equivalence ratios (0.2 - 1.2) while the pressure was kept at atmospheric. Calculated results obtained while using this model tend to be in good agreement with the corresponding experimental values of ignition delay. The ignition delay of methane-air mixture correlated by the following empirical expression in which constants A and B are function of the equivalence ratio while Ti is the initial mixture temperature in °K.
Technical Paper

A Computational Investigation of the Effect of Exhaust Gas Recirculation on the Performance of a Dual Fuel Engine

2000-06-19
2000-01-2040
It is well known the dual fuel operation at lower loads suffers from lower thermal efficiency and higher unburned percentages of fuel. The present work includes a computational investigation to predict the effects of Exhaust gas recirculation (EGR) on the operation of an indirect-injection dual fuel (Ricardo-E6) engine by using a detailed chemical kinetic scheme and a quasi-two zone analytical model. The comprehensive chemical kinetic scheme for methane oxidation consisting of 178 elementary reaction steps with 41 species. A quasi-two zone analytical model is based on the effective energy releases of the pilot diesel fuel while using the detailed chemical reaction kinetic scheme for the oxidation of methane. Through the results, it was shown that, the active species such as H, O and OH produced in the high temperature combustion process and found in the exhaust gases are play a significant role in the preignition reactions.
Technical Paper

A Detailed Two-Dimensional Numerical Study of Spark Ignition Including Ionization

2002-03-04
2002-01-1110
In this work, the spark-ignition (SI) of a methane/air mixture contained in a constant-volume chamber is investigated by numerical simulations. A cylinder-shaped vessel filled with a methane/air mixture containing two electrodes is used as simulation model. The impact of an electrical discharge at the electrodes on the surrounding gas is simulated, with detailed treatment of the ignition process involvig chemical kinetics, transport phenomena in the gas-phase and electrodynamical modeling of the interaction between spark and fuel/air mixture. For the calculations, a 2D-code to simulate the early stages of flame development, shortly after the breakdown discharge, has been developed. Computational results are shown for ignition of a methane air-mixture.
Technical Paper

A Field Test Study of Camshaft Wear in a 2.3L OHC Engine and Its Correlation to the Sequence V-D Test

1983-10-31
831758
A field test was conducted to evaluate the valve train wear performance of new technology crankcase lubricants in 1980 vehicles powered by 2.3L overhead camshaft engines. Three SF/CD 15W-40 oils and two low phosphorus SF/CC 10W-30 passenger car oils were evaluated in commuter service with extended oil drain intervals for 48,000 to 80,000 km. interim wear measurements of the camshaft lobes and camshaft followers were performed throughout the test. All five of the new technology lubricants tested demonstrated good control of valve train wear in this service. These oils also passed the V-D test, thus, the test supports the use of SF wear limits in the V-D test for defining passenger oil quality levels. Wear profiles indicate that camshaft wear rates were significantly higher during break-in and were not particularly sensitive to oil chemistry during break-in.
Technical Paper

A Gas Chromatograph-Based System for Measuring the Methane Fraction of Diesel Engine Hydrocarbon Emissions

1987-02-01
870340
Investigations have concluded that methane does not appear to be photochemically reactive in the atmospheric system and does not participate in smog formation. Since methane is “nonreactive,” and may in the future be excluded from the total unburned hydrocarbon emissions, an instrument was designed and developed (termed the “methane analytical system”) enabling methane emissions to be quantified separately from total unburned hydrocarbon emissions. The instrument employed gas chromatographic principles whereby a molecular sieve column operating isothermally separated methane from the nonmethane hydrocarbons. Direct on-line sampling occurred via constant volume sample loops. The effluent was monitored with a flame ionization detector. The instrument was fully calibrated (i.e., extremely linear response over a large concentration range) for use with Diesel engines as part of an ongoing alternative fuels research program.
X