Refine Your Search

Topic

Search Results

Technical Paper

A Numerical Study of the Effect of Longitudinal Vortex Generators on Heat Transfer Enhancement and Pressure Drop in a Rectangular Channel

2018-04-03
2018-01-0782
Longitudinal vortex generation is a common technique for enhancing heat transfer performance. It can be achieved by employing small flow manipulators, known as vortex generators (VGs), which are placed on the heat-transfer surface. The vortex generators can generate longitudinal vortices, which strongly disturb the flow structure, and have a significant influence on the velocity and temperature distributions, causing improved thermal transport. In this work, numerical simulations are conducted for a horizontal rectangular channel with and without a pair of longitudinal vortex generators. The vortex generators are fitted vertically on the bottom surface of the channel. The Computational Fluid Dynamics (CFD) analysis aims to acquire a better understanding of the flow structure and heat transfer mechanisms induced by longitudinal vortex generation. The simulation is performed using ANSYS Fluent, and three flow inlet velocities are considered: 1.38 m/s, 1.18 m/s, 0.98 m/s.
Technical Paper

A Study of the Dynamics of the Rolling Element and its Effect on Outer Race Creep

2016-04-05
2016-01-0011
Bearings are a major component in any rotating system. With continually increasing speeds, bearing failure modes take new unconventional forms that often are not understood. In high speed applications, rolling element forces and gyroscopic moments can be significantly high compared to the applied forces acting on a bearing. Such moments create a “driving” torque causing outer race to creep. In this paper a mathematical model for the dynamics of a rolling element in a high speed bearing is derived. Preload values counterbalancing the torque driving the outer race to rotate can be predicted from this model. An attempt to experimentally measure this torque using a specially designed apparatus with integrated strain gauge torque sensor is also described. Both model and experimental measurements are aimed at understanding, and therefore preventing bearing failures due to outer race (creep) rotations.
Technical Paper

Aerodynamic Shape Optimization for a 3-D Multi-Element Airfoil

2014-04-01
2014-01-0296
This paper discusses the uses of shape morphing/optimization in order to improve the lift to drag ratio for a typical 3D multi-element airfoil. A mesh morpher algorithm is used in conjunction with a direct search optimization algorithm in order to optimize the aerodynamics performance of a typical high-lift device. Navier-Stokes equations are solved for turbulent, steady-state, incompressible flow by using k-epsilon model and SIMPLE algorithm using the commercial code ANSYS Fluent. Detailed studies are done on take-off/landing flight conditions; the results show that the optimization is successful in improving the aerodynamic performance.
Journal Article

Analysis of Failure Modes of Bearing Outer Race Rotation

2015-04-14
2015-01-0146
As the need for super high speed components (pumps, motors, etc) continue to grow rapidly, so does the need to make measurements at speeds higher than ever before. Bearings are a major component in any rotating system. With continually increasing speeds, bearing failure modes take new unconventional forms that often are not understood. Such measurements are impossible if bearings fail to perform. This paper will address the dynamic modes a bearing passes through and the potential failure modes associated with each. A review of the state of the art of current failure modes will be given, and then a hypothesis on some new failure modes associated with particular speeds will be discussion. The paper will also describe an apparatus that was designed especially to study these phenomena. Range of speed studied is 0- 60,000 rpm. Preliminary measurements indicated that this range breaks into three different zones: low (0-15,000 rpm), moderate (15,000-25,000 rpm) and high (25,000- 60,000 rpm).
Journal Article

Analyzing Field Failures of Engine Valve Springs in Presence of Non Metallic Inclusions by Applying Statistical and Fracture Mechanics Models

2009-04-20
2009-01-0528
The reliability of engine valve springs is a very important issue from the point of view of warranty. This paper presents a combined experimental and statistical analysis for predicting the fatigue limit of high tensile engine valve spring material in the presence of non-metallic inclusions. Experimentally, Fatigue tests will be performed on valve springs of high strength material at different stress amplitudes. A model developed by Murakami and Endo, which is based on the fracture mechanics approach, Extreme value statistics (GUMBEL Distribution) and Weibull Distribution will be utilized for predicting the fatigue limit and the maximum inclusion size from field failures. The two approaches, experimental and theoretical, will assist in developing the S-N curve for high tensile valve spring material in the presence of non-metallic inclusions.
Journal Article

Developing a Transfer Function for Vehicle Ride Performance

2008-04-14
2008-01-1280
The purpose of this paper is to develop the transfer function for the ride and handling performance for military tracked vehicle. This transfer function will be used in placed of the expensive physical hardware or simulation model for further study for robust design and optimization studies. Response Surface Methodology (RSM) approximation technique was used to develop the transfer functions. The RSM comprises of a group of statistical techniques for empirical model building and exploitation. RSM uses Design of Experiment (DOE) and multiple linear regression techniques for fitting of a response surface model that relates the output response to the design variables. The general form of the transfer function is a second order polynomial with unknown parameters to be identified. These unknown parameter were determined using the Central Composite Design (CCD) design of experiments.
Technical Paper

Effectively Approaching and Designing a Suspension with Active Damping

2002-12-02
2002-01-3285
This paper discusses how to effectively design and set-up an ideal spring/damper combination in a low-mass open wheeled racecar to properly control vehicle handling and gain optimum performance of the system. The system that will be discussed is outfitted with a non-parallel, unequal length SLA suspension that was designed and raced at the 2001 Formula SAE competition. The focus of this paper will be more on how to choose an ideal suspension set-up for a low-mass open wheeled racecar, while considering the various variables that can affect the system as a whole. To properly design a suspension, a passive system will be used, and then the performance gains of a semi-active system will be introduced and discussed.
Technical Paper

Effects of Inlet Curved Spacer Arrancement on Centrifugal Pump Impellers

2017-03-28
2017-01-1607
This paper presents an experimental investigation of flow field instabilities in a centrifugal pump impeller at low flow rates. The measurements of pump hydraulic performance and flow field in the impeller passages were made with a hydraulic test rig. Analysis of Q-ΔP-η data and flow structures in the impeller passages were performed. In the present work, the effect of various flowrates on centrifugal pump impeller performance was analyzed based on pump measured parameters. The impeller’s geometry was modified, with positioning the curved spacer at the impeller suction side. This research investigates the effect of each inlet curved spacer model on pump performance improvement. The hydraulic performance and cavitation performance of the pump have been tested experimentally. The flow field inside a centrifugal pump is known to be fully turbulent, three dimensional and unsteady with recirculation flows and separation at its inlet and exit.
Technical Paper

Enhanced Process to Improve Supplier’s Quality and Reduce Warranty

2017-03-28
2017-01-1604
The objective of this research is to develop a component based enhanced production process after End of Line (EOL) testing. This process will add more quality validation evaluations, but will not require any disassembling of the parts or damage to them. It will help the suppliers to avoid scrap and rework parts as well as General Motors (GM) to reduce warranty and recalls. An Enhanced Production Process was implemented in March, 2016 at a supplier in Mexico. The Enhanced Audit Station implementation is to ensure that the supplier is satisfying the Production Part Approval Process (PPAP) requirements. The most important four components are: Touch Appearance Lighting and Color (TALC), Appearance Approval Report (AAR), Dimensional Checks, and Function Testing. Through statistics, a pilot study was conducted to correlate the selected variables to reduce warranty.
Technical Paper

Experimental Investigation on the Influence of Pressure Wheel Design on Heat Dissipation for a Laser Robotic End of Arm Tooling

2018-04-03
2018-01-1235
The initiative of this paper is focused on improving the heat dissipation from the pressure wheel of a laser welding assembly in order to achieve a longer period of use. The work examines the effects of different geometrical designs on the thermal performance of pressure wheel assembly during a period of cooling time. Three disc designs were manufactured for testing: Design 1 – a plain wheel, Design 2 – a pierced wheel, and Design 3 – a wheel with ventilating vanes. All of the wheels were made of carbon steel. The transient thermal reaction were compared. The experimental results indicate that the ventilated wheel cools down faster with the convection in the ventilated channels, while the solid plain wheel continues to possess higher temperatures. A comparison among the three different designs indicates that the Design 3 has the best cooling performance.
Technical Paper

Impact of Reduced Rotating Mass to Throttle Response in a CBR600F4i Engine

2005-09-07
2005-01-3448
This paper examines the benefits of reducing the rotating mass in a Honda CBR600F4i engine to increase throttle response. Two engines, differing only in the amount of rotating and reciprocating mass, were built for testing. The engines were tested on a FSAE chase dynamometer to determine their individual throttle response, defined as the rate of increase of vehicle speed. As anticipated, the engine containing a lower amount of rotating and reciprocating mass produced a 21.5% faster throttle response.
Technical Paper

Improving Centrifugal Pump Performance under Low Flow Rates by Adding Designed Cylindrical Disks at the Impeller Inlet

2020-04-14
2020-01-1165
Enhancing the performance of centrifugal pumps requires a thorough understanding of the internal flow. Flow simulation inside the pump can help understand the rotatory motion induced by the impellers, as well as the flow instabilities. The flow inside a centrifugal pump is three dimensional, disturbed and accompanied by tributary flow structures. When a centrifugal pump operates under low flow rates, a secondary flow known as recirculation starts to begin. The separation of flow occurs which creates vortices and decreases local pressure which induces cavitation. This phenomenon of recirculation will rise the Net Positive Suction Head Required (NPSHR). This work aims to improve the pump efficiency under low flow rates by adding multiple cylindrical disks at the pump inlet section to suppress the flow recirculation. In this study, a numerical simulation is carried out to investigate the influence on the pump internal flow by adding multi cylindrical disks.
Technical Paper

Improving Engine Performance Through Intake Design

2013-04-08
2013-01-1404
The power and torque output of an engine (for a Formula SAE vehicle) can be dramatically improved through good intake design. For example, performance can be improved by reducing pressure losses in the intake system, or by improving the restrictor's design to increase airflow at lower pressure drops. A plenum design with equal air distribution to all cylinders can also be helpful. In this study, four different intake designs were tested on a dynamometer and the power outcomes were compared. Based on theory and lab testing and intake system was designed to optimize throttle response as well as low-end torque; a steady flow of air passes through the throttle body and the restrictor and then into the plenum. Dynamometer testing confirmed an overall increase in torque and horsepower compared to earlier designs.
Technical Paper

Investigation of the Acoustic Surface Power on a Cooling Fan Using the Mesh Morpher Optimizer

2019-04-02
2019-01-0833
A cooling fan is an essential device of the engine cooling system which is used to remove the heat generated inside the engine from the system. An essential element for successful fan designs is to evaluate the pressure over the fan blade since it can generate annoying noices, which have a negative impact on the fan’s performance and on the environment. Reducing the acoustic surface power will assist in building improved designs that comply with standards and regulations in achieving a more quiet environment. The usage of computational fluid dynamics (CFD), with support of mesh morphing, can provide simulation study for optimizing the shape of a fan blade to reduce the aeroacoustic effects. The investigation process will assist in examining and analyzing the acoustic performance of the prototype, impact of different parameters, and make a solid judgement about the model performance for improvement and optimization.
Technical Paper

LS-DYNA Simulation of the Ballistic and Structural Performance of Transparent Armor Systems with Angled Composite Design and Air Gap Structure

2019-04-02
2019-01-0711
The behavior of different layer designs of a transparent armor (TA) under large strains been investigated. Impacts of light-armor piercing projectile (7.62x51AP) as influencers were tested and analyzed for predicting the TA response when the layers design angles are adjusted. The experimentation allows visualization of damage behavior and the projectile penetration. The visualization techniques are essential models for understanding the mechanisms of interaction between projectile and targeted material design. Ballistic tests results, high-speed photographs and flash-radiographs from experiments with transparent armor were used to establish LS-DYNA simulation module. Transient non-linear dynamic finite-element has been analyzed using LS-DYNA to simulate and validate the experimentation. The penetrative capability of the projectile was assessed in terms of both the ballistic limit velocity against various layer design angles of the TA and air gaps.
Technical Paper

Numerical Analysis of the Effect of an Idler Disk on Centrifugal Pump Performance

2021-04-06
2021-01-0687
Designing a centrifugal pump impeller comes with challenges due to multiple parameters that affect the pump efficiency. A high velocity gradient exists in the flow between the impeller shroud and sidewall of the pump casing due to one surface stationary and the other moving at a high velocity. The internal rotating flow in the impeller shroud-sidewall gap is a major problem that leads to a decrease in pump performance. This study presents a design modification of the gap between the impeller shroud and the pump casing sidewall using an idler disk located in between, which rotates freely during pump operation. In this paper, a numerical analysis was performed to investigate the idler disk's effect on the pump performance for different volumetric flow rate values and idler disk geometries. ANSYS-2019-R1 was used (FLUENT solver) to carry out the computational fluid dynamics (CFD) analysis for evaluating the performance of the baseline and modified designs in a centrifugal pump.
Journal Article

Numerical Study of the Aerodynamic Characteristics of a Multi-Element Airfoil NACA 23012

2013-04-08
2013-01-1410
This work aims to numerically investigate the aerodynamic characteristics of a multi-element airfoil NACA 23012. The investigation was conducted through Computational Fluid Dynamics (CFD), using ANSYS FLUENT software. The Navier-Stokes equations were solved for turbulent, incompressible flow using k-epsilon model and SIMPLE algorithm. The study was carried out for both take-off / landing conditions and the results were compared to experimental data of the NACA 23012 from wind tunnel tests. The experimental and computational results for drag and lift coefficients match effectively up to pre-stall attack angles. The pressure coefficients, velocity distribution, and wall Y+ data were presented for different angles of attack (0 deg, 4 deg, and 8 deg). The CFD analysis could help acquire a closer and detailed understanding of airfoil performance, which is usually not easy through normal experimentation.
Technical Paper

Optimization of Modified Car Body Using Mesh Morphing Techniques in CFD

2016-04-05
2016-01-0009
Today's strict fuel economy requirement produces the need for the cars to have really optimized shapes among other characteristics as optimized cooling packages, reduced weight, to name a few. With the advances in automotive technology, tight global oil resources, lightweight automotive design process becomes a problem deserving important consideration. It is not however always clear how to modify the shape of the exterior of a car in order to minimize its aerodynamic resistance. Air motion is complex and operates differently at different weather conditions. Air motion around a vehicle has been studied quite exhaustively, but due to immense complex nature of air flow, which differs with different velocity, the nature of air, direction of flow et cetera, there is no complete study of aerodynamic analysis for a car. Something always can be done to further optimize the air flow around a car body.
Technical Paper

Optimizing the Rear Fascia Cutline Based On Investigating Deviation Sources of the Body Panel Fit and Finish

2017-03-28
2017-01-1600
A vehicle’s exterior fit and finish, in general, is the first system to attract customers. Automotive exterior engineers were motivated in the past few years to increase their focus on how to optimize the vehicle’s exterior panels split lines quality and how to minimize variation in fit and finish addressing customer and market required quality standards. The design engineering’s focus is to control the deviation from nominal build objective and minimize it. The fitting process follows an optimization model with the exterior panel’s location and orientation factors as independent variables. This research focuses on addressing the source of variation “contributed factors” that will impact the quality of the fit and finish. These critical factors could be resulted from the design process, product process, or an assembly process. An empirical analysis will be used to minimize the fit and finish deviation.
Technical Paper

Reducing the Acoustic Surface Power of a Cooling Fan Using the Mesh Morpher Optimizer

2017-03-28
2017-01-1610
Cooling fans have many applications in industrial and electronic fields that remove heat away from the system. The process of designing a new cooling fan with optimal performance and reduced acoustic sources can be fairly lengthy and expensive. The use of CFD with support of mesh morphing, along with the development of optimization techniques, can improve the acoustic’s performance of the fan model. This paper presents a new promising method which will support the design process of a new cooling fan with improved performance and less acoustic surface power generation. The CFD analysis is focused on reducing the acoustic surface power of a given cooling fan’s blade using the surface dipole acoustic power as the objective function, which leads to an optimized prototype design for a better performance. The Mesh Morpher Optimizer (MMO) in ANSYS Fluent is used in combination with a Simplex model of the broadband acoustic modeling.
X