Refine Your Search

Search Results

Viewing 1 to 11 of 11
Journal Article

0W-16 Fuel Economy Gasoline Engine Oil Compatible with Low Speed Pre-Ignition Performance

2017-10-08
2017-01-2346
It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
Technical Paper

Development of Firing Fuel Economy Engine Dyno Test Procedure for JASO Ultra Low Viscosity Engine Oil Standard (JASO GLV-1)

2019-10-19
2019-01-2296
Fuel economy measurement test is one of important engine tests to establish fuel economy engine oil performance standard to support CO2 emission reduction efforts in the automotive industry. On the other hand, it is difficult to develop an engine test without appropriate engine hardware that is designed to utilize low viscosity engine oils. A new firing fuel economy test was developed based on 2ZR-FXE engine designed for hybrid powertrain. The new test procedure aimed to provide the tool to evaluate new low viscosity grades such as 0W-8 and 0W-12 that were adapted in SAE J300 in 2015.
Technical Paper

Development of New Automatic Transmission Fluid for Fuel Economy

2003-10-27
2003-01-3258
It is important to reduce the viscosity of automatic transmission fluid (ATF) in order to improve fuel economy. However, in general, low viscosity fluid can cause metal fatigue, wear, and seizure. It is necessary to increase the viscosity of the fluid at higher temperatures to maintain the durability of the automatic transmission (AT). The key point is the selection of the base oil and the viscosity index improver (VII) with both a high viscosity index (VI) and excellent shear stability. On the basis of this concept, a new generation high performance ATF named WS was developed. WS can achieve the highest level of fuel economy, while maintaining the durability of the AT.
Technical Paper

Development of New Manual Transmission Gear Oil for Fuel Economy

2005-05-11
2005-01-2182
We developed a new Manual Transmission Gear Oil (MTF) named LV for improved fuel economy and CO2 reduction. MTF LV is a low viscosity fluid to reduce stir losses at lower temperatures. In general, low viscosity fluids can cause metal fatigue, wear and seizure. The MTF LV was designed to overcome these problems by maintaining the oil film thickness after it is deteriorated and improving the wear characteristics with additives. As a result, the MTF LV provides equal or better durability than the current MTF. In addition, it also has good performance at low temperatures, better shift feeling characteristics, and improved oxidation stability.
Technical Paper

Development of Ultra Low Viscosity 0W-8 Engine Oil

2020-04-14
2020-01-1425
Further fuel economy improvement of the internal combustion engine is indispensable for CO2 reduction in order to cope with serious global environmental problems. Although lowering the viscosity of engine oil is an effective way to improve fuel economy, it may reduce the wear resistance. Therefore, it is important to achieve both improved fuel economy and reliability. We have developed new 0W- 8 engine oil of ultra-low viscosity and achieved an improvement in fuel economy by 0.8% compared to the commercial 0W-16 engine oil. For this new oil, we reduced the friction coefficient under boundary lubrication regime by applying an oil film former and calcium borate detergent. The film former increased the oil film thickness without increasing the oil viscosity. The calcium borate detergent enhanced the friction reduction effect of molybdenum dithiocarbamate (MoDTC).
Technical Paper

Friction Reduction Technology for Low Viscosity Engine Oil Compatible with LSPI Prevention Performance

2016-10-17
2016-01-2276
Increasing numbers of vehicles equipped with downsized, turbocharged engines have been introduced seeking for better fuel economy. LSPI (low speed pre-ignition), which can damage engine hardware, is a potential risk of the engines. We reported that engine oil formulation affects frequency of LSPI events, and formulating magnesium detergents into oil is a promising option to prevent LSPI events. From the viewpoint of achieving better fuel economy by engine oil, lowering viscosity is being required. However, it causes reduced oil film thickness and will expand boundary lubrication condition regions in some engine parts. Hence, a technology to reduce friction under boundary lubrication becomes important.
Technical Paper

Fuel Economy Improvement by Engine Oil with Ultra-High Viscosity Index

2019-12-19
2019-01-2203
With the electrification of automobiles, such as hybridization, engines on these vehicles operate more frequently at low oil temperatures, while engines are more specifically run at low engine speed and high load condition for driving vehicles. Hence, engine oils are required to reduce their viscosity at low temperature for friction reduction to improve fuel economy and maintain high temperature viscosity enough to protect engine parts for robustness at the same time. This leads to the improvement of viscosity index, the "ultra-high viscosity index (UHVI)" concept. The novel engine oil technology with a new high performance polymer was investigated. One of experimental oils showed the 100°C viscosity equivalent to SAE 0W-16 grade and the better fuel economy than that of SAE 0W-8 oil by an engine motoring friction test.
Journal Article

Introduction of Fuel Economy Engine Oil Performance Target with New SAE Viscosity Grade

2016-04-05
2016-01-0896
Fuel economy improvement has been one of the most important challenges for the automotive industry, and the oil and additive industries. The automotive, oil, and additive industries including related organizations such as SAE, ASTM, and testing laboratories have made significant efforts to develop not only engine oil technologies but also engine oil standards over decades. The API S category and ILSAC engine oil standard are well known and widely used engine oil specifications [1] [2]. The development of an engine oil standard has important roles to ensure the quality of engine oils in the market and encourage industries to improve the engine oil performance periodically. However, the progress of technology advancement can go faster than the revision of engine oil standard. An introduction of new viscosity grades, SAE 0W-16 and 5W-16 is one good example. The 16 grade was added into the SAE J300 standard that defines viscosity grades for engine oils in April 2013 [3].
Technical Paper

New Approach to JASO Standardization of New Fired Fuel Economy Engine Dyno Test for the New JASO Gasoline Engine Oil Standard for Low Viscosity Grades (JASO GLV-1)

2019-12-19
2019-01-2297
A fired fuel economy engine test procedure developed by Toyota was proposed to be a new JASO test procedure. Under the JASO Task Force, the fired fuel economy engine test working group was formed. Four test laboratories from oil and additive industries in Japan participated in the JASO Round Robin matrix to evaluate the repeatability and the reproducibility with four candidate reference oils. These candidate reference oils include two viscosity grades and two additive technologies that represent fuel economy engine oil technologies in the Japanese market. The project was successfully completed and the procedure was proposed to be a part of the new JASO GLV-1 engine oil standard.
Journal Article

Research on Ultra-High Viscosity Index Engine Oil: Part 1 - “Flat Viscosity” Concept and Contribution to Carbon Neutrality

2022-03-29
2022-01-0525
In recent years, the realization of carbon neutrality has become an activity to be tackled worldwide, and automobile manufacturers are promoting electrification of power train by HEV, PHEV, BEV and FCEV. Although interest in BEV is currently growing, vehicles equipped with internal combustion engines (ICE) including HEV and PHEV will continue to be used in areas where conversion to BEV is not easy due to lack of sufficient infrastructures. For such vehicles, low-viscosity engine oil will be one of the most important means to contribute to further reduction of CO2 emissions. Since HEV requires less work from the engine, the engine oil temperature is lower than that of conventional engine vehicles. Therefore, the reduction of viscous resistance in the mid-to-low temperature range below 80°C is expected to contribute more to fuel economy. On the other hand, the viscosity must be kept above a certain level to ensure the performance of hydraulic devices in the high oil temperature range.
Technical Paper

The Development of JASO GLV-1 Next Generation Low Viscosity Automotive Gasoline Engine Oils Specification

2020-04-14
2020-01-1426
It is well understood that using lower viscosity engine oils can greatly improve fuel economy [1, 2, 3, 4]. However, it has been impossible to evaluate ultra-low viscosity engine oils (SAE 0W-12 and below) utilizing existing fuel economy test methods. As such, there is no specification for ultra-low viscosity gasoline engine oils [5]. We therefore developed firing and motored fuel economy test methods for ultra-low viscosity oils using engines from Japanese automakers [6, 7, 8]. This was done under the auspices of the JASO Next Generation Engine Oil Task Force (“TF” below), which consists mainly of Japanese automakers and entities working in the petroleum industry. Moreover, the TF used these test methods to develop the JASO GLV-1 specification for next-generation ultra-low viscosity automotive gasoline engine oils such as SAE 0W-8 and 0W-12. In developing the JASO GLV-1 specification, Japanese fuel economy tests and the ILSAC engine tests for evaluating engine reliability were used.
X