Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Automatic Code Generator for Automotive Configurable I/O System

2000-03-06
2000-01-0554
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnostic systems are forcing the market to increase complexity. This complexity must not be a reason for slowing down the introduction of new systems. For efficiency, car manufacturers and system suppliers want to focus on their core competencies and leave the micro-controller complexity to silicon vendors. Competition forces system suppliers to jump to the most “function/cost” effective solution. For this reason it is very dangerous to move in the direction of specific solutions which require a large amount of effort to modify. Therefore the market goes in the direction of standards with clear interfaces. The approach presented overcomes these obstacles by introducing a Configurable I/O System (CIOS) layer. The CIOS encompasses basic software driver objects for engine management systems encapsulating the standard sensors and actuators.
Technical Paper

Automotive Sensors & Sensor Interfaces

2004-03-08
2004-01-0210
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems push the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration pass to evolution and even revolution of automotive Sensors and Sensor interfaces. The document will explore different architectures and partitioning. Sensor technologies such as magnetic field sensors based on the hall effect as well as bulk and surface silicon micro machined sensors will be mapped to automotive applications by examples. Functions such as self-test, self-calibration and self-repair will be developed.
Technical Paper

Digital Knock Signal Conditioning using Fast ADC and DSP

2004-03-08
2004-01-0517
The increasing legal requirements for safety, emission reduction, fuel economy and onboard diagnosis systems is pushing the market for more innovative solutions with rapidly increasing complexity. Hence, the embedded systems that will have to control the automobiles have been developed at such an extent that they are now equivalent in scale and complexity to the most sophisticated avionics systems. The former analogue filter design is now replaced by digital signal processing. This paper will demonstrate the key elements to provide a powerful, scalable and configurable solution that offers a migration route to evolve and even revolutionize automotive electronics. To illustrate this migration toward digital processing the knock function has been developed. A simple RC filter is used as external anti-aliasing. To get the maximum flexibility the signal is very early converted and processed digitally. The micro-controller has been developed using a three-layered solution.
Technical Paper

Key Factors in Improving Microcontroller Performance and Features

2006-10-16
2006-21-0006
The increasingly stringent requirements in relation to safety, fuel economy, emission reduction, and onboard diagnostics are pushing the automotive industry toward more innovative solutions and a rapid increase in microcontroller performance. This paper will list the key factors necessary to increase overall data throughput and provide the right features to satisfy the coming drivetrain requirements. The paper will address different aspects such as: microcontroller architecture, cores, memories, silicon technologies, assembly / packaging, and development tools. It will also present techniques to improve modularity, scalability and configurability that will offer a migration path to permit the evolution and even revolution of drivetrain electronics. Since quality and reliability requirements are among the most stringent of any application fields, the paper will outline the path to reach zero-defect products.
Technical Paper

Powertrain Challenges Impact on Semi-conductor Solutions

2005-10-23
2005-26-308
The objective of the paper is to provide to the attendees a status and trends of the silicon technologies to support the challenges of powertrain electronics. Improved fuel efficiency and clean combustion engine combined with high requirements for fun to drive require performance increase of a factor 10 in the next 5 years. The target is to design the right and cost effective semiconductor solution to sense, control and actuate the engine. The challenge is especially high for small cars. Infineon offers sensors, microcontrollers and power semiconductors for Powertrain platforms and therefore owns the right technologies to manufacture those devices.
Technical Paper

Seamless Solutions for Powertrain Systems

2002-03-04
2002-01-1303
Fuel efficiency and clean combustion engine versus high engine performance - which will increase up to factor 10 in the next 5 years - with less engine displacement are driving more complex engine control systems in today's and future vehicles. The challenge is not only to design a perfect engine, but also to incorporate the right semiconductors. Beside this demand on high sophisticated electronics the demand on cost reduction - especially for small cars - is one driving factor for a smart partitioning. Infineon offers sensors, microcontrollers and power semiconductors for today's engine management platforms and therefore owns the right technologies to manufacture those devices. This opens up the possibility to integrate more functionality in less devices as in today's partitioning or to define electronics to simplify complex control strategies and to optimize the performance of each device.
Journal Article

The Challenges of Devising Next Generation Automotive Benchmarks

2008-04-14
2008-01-0382
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers with incredible levels of peripheral integration. As a result, performance can no longer be measured in MIPS (Millions of Instructions Per Second). A microcontroller's effectiveness is based on coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, the designer needs benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment.
Technical Paper

The Challenges of Next Generation Automotive Benchmarks

2007-04-16
2007-01-0512
More than ever, microcontroller performance in cars has a direct impact on the driving experience, on compliance with improved safety, ever-stricter emissions regulations, and on fuel economy. The simple microcontrollers formerly used in automobiles are now being replaced by powerful number-crunchers whose performance can no longer be measured in MIPS. Instead, their effectiveness is based on a coherent partitioning between analog and digital, hardware and software, tools and methodology. To make an informed choice among the available devices, what the designer needs are benchmarks that are specific to automotive applications, and which provide a realistic representation of how the device will perform in the automotive environment. This presentation will explore the role of new benchmarks in the development of complex automotive applications.
X