Criteria

Text:
Display:

Results

Viewing 1 to 30 of 6814
Event
2015-06-22
The focus of the Structural Analysis session is to share experiences on analyzing, testing, and developing solutions to structural noise and vibration problems from powertrain sources. Analytical modeling, experimental testing and predictive correlation are just a few of the tools used in this endeavor.
Event
2015-06-22
This session covers static and dynamic issues in the body and chassis that contribute to noise and vibration problems in vehicles. Included in this session are modal studies, measurement and analysis methods, transfer path analysis, design guidelines, and recommended practices for noise and vibration control of the body and chassis.
Event
2015-06-22
This session focuses on the development and application of analytical methods for characterizing the dynamic behavior of structural systems. Analysis methods for all structural components, subsystems and complete systems found in automotive vehicles will be considered, except for powertrain and driveline which are covered in Powertrain Structural Analysis session. Examples include (but are not limited to) body structure, chassis structure, seats and interior structures.
Event
2014-10-14
In response to global demands for environmental conservation, the automotive industry is placing greater focus on the development of fuel-efficient technologies to help reduce global CO2 emissions. With the aim of simultaneously improving fuel economy and driveability, TOYOTA has developed a new continuously variable transmission (CVT) vehicles in North America equipped with a 1.8-liter engine [1]. This new CVT features various technologies for improving fuel economy, including: the world's first coaxial 2-discharge port oil pump system, wider ratio coverage, a flex start system, low-viscosity CVT fluid, and a higher final gear ratio. This paper outlines the configuration, characteristics, performance, and new technologies of this CVT
Article
2014-09-30
European researchers examine simulation-based solutions for the manufacture of large-scale, liquid-resin-infusion composite substructures for aircraft and possibly ground vehicles.
Article
2014-09-30
The industry outlook for 2021 underscores engineering efficiency and flexible, modular architectures, according to industry forecasters IHS Automotive.
Technical Paper
2014-09-30
Zhigang Wei, Shengbin Lin, Limin Luo, Litang Gao
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings. The linear and two nonlinear probabilistic damage accumulation models are briefly described first.
Technical Paper
2014-09-30
John Anderson
Abstract This paper describes the development and testing of a Dynamic Vibration Absorber to reduce frame beaming vibration in a highway tractor. Frame beaming occurs when the first vertical bending mode of the frame is excited by road or wheel-end inputs. It is primarily a problem for driver comfort. Up until now, few options were available to resolve this problem. The paper will review the phenomenon, design factors affecting a vehicle's sensitivity to frame beaming, and the principles of Dynamic Vibration Absorbers (AKA Tuned Mass Dampers). Finally, the paper will describe simulation and testing that led to the development of an effective vibration absorber as a field fix.
Technical Paper
2014-09-30
Iman Hazrati Ashtiani, Mehrnoosh Abedi
Abstract Road train vehicles have been applied as one of the common and efficient ways for transportation of goods, specifically hazardous liquid cargos, in different nations. These vehicles have a wide variety of lengths and towing systems such as the fifth wheel or the dolly draw-bar. Based upon specific regulations, they could be authorized to move on specific roads. In order to avoid hazard and danger in case of accidents, safety performance of a B-train vehicle as a specific type of road train vehicles is investigated in this paper. A Multi-Body Dynamic (MBD) model, which consists of a prime mover and two trailers coupled by fifth wheels, are simulated in the initial phase of the study. The developed dynamic model is capable of simulating required tests as well as the SAE lane change, along with a constant radius turn for the purpose of roll and yaw stability analysis and safety evaluation. The effects of variation of the fluid fill level are considered in this research. The trammel pendulum concept is adopted for simulation of fluid movements, known as sloshing, in two articulated tankers of the model.
Technical Paper
2014-09-30
Marc Auger, Larry Plourde, Melissa Trumbore, Terry Manuel
Abstract Design of body structures for commercial vehicles differs significantly from automotive due to government, design and usage requirements. Specifically, heavy truck doors are not required to meet side impact requirements due to their height off the ground as compared to automobiles. However, heavy truck doors are subjected to higher loads, longer life, and cannot experience permanent deformation from overload events. Aluminum has been used intensively in commercial vehicle doors and cab structures for over 50 years by several different manufacturers in North America. It has been only in the last few years that aluminum has appeared in automotive door structures other than in high-end luxury vehicles. Commercial vehicle customers are expecting the same features found in premium automobiles resulting in opportunities to learn from each other's designs. In order to optimize the strength and weight of a commercial vehicle door, a new aluminum intensive structure was developed. The new structure featured a unique architecture that was the first in the industry to use a multi-cavity aluminum extrusion joined to stamped sheet reinforcements in order to provide a direct load path between the hinges and the latch.
Technical Paper
2014-09-30
Marc Ratzel, Warren Dias
Abstract This paper discusses the behavior of a flexible flap at the rear end of a generic car model under aerodynamic loads. A strong bidirectional coupling between the flap's deflection and the flow field exists which requires this system to be simulated in a coupled fluid-structure manner. A coupled transient aerodynamic and structural simulation is performed for a generic car model with a flexible/deformable flap at the rear end. An automatic workflow is established which generates new flap designs, derived from an initial flap design by applying a mesh deformation technology, and performs the coupled fluid-structure interaction analysis. For each shape variation, the flap's maximum displacement is monitored and used to classify the individual flap designs. This process allows for design of experiment (DOE) studies in an automated manner. Several shape variations of the flap and their impacts on the maximum deflection are investigated. Design changes causing a reduction in the maximum deflection are identified and used in an optimization loop to determine a flap design with minimum displacement.
WIP Standard
2014-09-30
This SAE Aerospace Standard will cover airframe plain spherical bearings ustilizing a Copper Nickel Tin ball and a Corrosion Resistant Steel outer race for use between -65F and+350F.
WIP Standard
2014-09-30
This SAE Aerospace Information Report (AIR) examines the need for and the application of a power train usage metric that can be used to more accurately determine the TBO for helicopter transmissions. It provides a formula for the translation of the recorded torque history into mechanical usage. It provides examples of this process and recommends a way forward. This document of the SAE HM-1 IVHM Committee is not intended as a legal document and does not provide detailed implementation steps, but does address general implementation concerns and potential benefits.
WIP Standard
2014-09-30
The intent is to ballot this drawing package and then stabilize it.
WIP Standard
2014-09-30
This SAE Aerospace Standard will cover airframe plain spherical bearings ustilizing a Copper Nickel Tin ball and a Corrosion Resistant Steel outer race for use between -65F and+350F.
Standard
2014-09-30
Manufacturers/designers of all aircraft equipped with a pallet/container capability have provided a means of linking the ground loaders/elevators with the aircraft sill for the smoother transfer of pallets and containers into or out of the aircraft holds. Use of the aircraft attachment points may be used as a means of averting damage to the aircraft door frames and other important parts. Latch-on guarantees fore and aft and vertical alignment of the loader bed with the aircraft doorway, when used in conjunction with the appropriate ground equipment. This SAE Aerospace Information Report (AIR) has been prepared by SAE Subcommittee AGE-2A to present a review of the current range of aircraft attachment points on wide body aircraft and those narrow body aircraft with a ULD cargo capability. Airline operators, who utilized these facilities, have been faced with a growing number of adaptor bars necessary to suit each type of aircraft and door position. There is also a stowage problem on the elevator compounded by the increasing number of bars necessary to suit each aircraft.
Viewing 1 to 30 of 6814

Filter

  • Range:
    to:
  • Year: