Criteria

Text:
Display:

Results

Viewing 1 to 30 of 7667
2018-04-13 ...
  • April 13, 2018 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
Training / Education Classroom Seminars
Lighting Emitting Diode (LED), a new generation semiconductor light source often referred to as Solid-State Lighting (SSL), has been broadly adopted in illumination, display, visualization, and other areas due to its higher efficacy and longer life. LEDs, first introduced for automotive interior applications such as indicators, expanded to exterior applications including center high mounted stop lamps and other automotive signal lighting devices. Today, LED technologies are being used for night vision, occupancy detection, and many other automotive application areas.
2018-04-12 ...
  • April 12, 2018 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
Training / Education Classroom Seminars
It has not been commonly known that automotive exterior lights are safety devices and must comply with governmental regulations. Since the 1930s, the SAE Lighting Standards Committee has been actively working with the automotive industry OEMs, lamp makers, tier-two suppliers, and human factor experts to develop automotive lighting standards. These standards have been widely used or referenced by the U.S. federal or state governments in establishing and enforcing the lighting regulations.
2018-04-09 ...
  • April 9-10, 2018 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
Training / Education Classroom Seminars
Since the invention of the automobile, lighting has been an important subsystem on all ground vehicles. Automotive lighting is vital to passenger safety, comfort and vehicle styling. The technology used in automotive lighting has rapidly expanded to make the lighting more value added, safer and pleasing to customers. This seminar provides broad information about automotive lighting systems with emphasis on lighting functions, effectiveness, and technologies. The intent is to assist attendees to gain sufficient knowledge about automotive lighting and its importance in overall vehicle design and development.
2017-10-08
Technical Paper
2017-01-2425
Ramit Verma, Ramdas R Ugale
Abstract On two wheelers, magneto/alternator generates either single/three phase AC power and Regulator Rectifier Unit (RRU) does regulated rectification to charge the battery. In order to face the requirements of 2-wheeler engine with respect to upcoming stringent regulations like electronic fuel injection (EFI), anti-lock braking system (ABS), automatic headlamp on (AHO) in emerging markets like India; vehicles demand more electrical power from batteries. This demands higher power from alternator and consequently from RRU. Requirement of higher output power presents challenges on regulator rectifier unit in terms of size, power dissipation management and reliability. In this paper, improved performance of MOSFET based RRU is discussed in comparison to Silicon Controlled Rectifier (SCR) based RRU. The motivation/benefits of MOSFET based design is described along with the thermal behavior and temperature coefficient performance of RRU with test results.
2017-09-21
Article
WABCO Holdings signed a long-term cooperation agreement in late August with Nexteer Automotive to collaborate on the development and supply of active steering systems for medium- and heavy-duty commercial vehicles using Nexteer's advanced steering assistance technology.
2017-09-21
WIP Standard
AIR8012
The purpose of the document is to provide the guidelines of the technological approach for developing a PHM system for EMAs with particular reference to their possible use as primary flight control actuators. It provides a basic description of the physics of the most common degradation processes,a reliability assessment and a discussion on the signals, with the associated data processing, required to build up an effective health monitoring system.
2017-09-19
WIP Standard
J706
This SAE Standard applies only to new winches which are primarily designed for intermittent pulls and lifts and whose configuration and condition are the same as when they were shipped by the manufacturer. They are not intended to be used in any manner for the movement of personnel. They may be driven by any power source recommended by the manufacturer and will be capable of being powered in either direction. They will be equipped with an automatic safety brake system to control a load when lowering under power and positively hold a load when power is not being delivered to the winch. A hydraulic flow control valve or similar device may be used in the brake system to control a load when lowering under power. A clutch to release the drum for Òfree-spoolingÓ may be provided and will be designed not to disengage itself under load. A drag brake may be provided to control Òfree-spooling,Ó but will not be relied on to control or hold a load.
2017-09-19
Journal Article
2017-01-2156
Philippe Coni, Jean Luc BARDON, Xavier servantie
Abstract A new concept of Head Up Display is presented, using the windshield as a transparent screen. This breakthrough technology does not need the use of complex combiner, bulky optics and overhead projection unit. The novel system uses several holographic optical elements to perform a 3D stereoscopic display, with the ability to present floating graphical objects in a large field of view. Augmented Reality display will be possible, increasing considerably the User Experience and situational awareness, without the need of wearing a bulky and complex Head Mounted Display.
2017-09-19
Journal Article
2017-01-2154
Alan Hiken
Abstract A review of critical technologies and manufacturing advances that have enabled the evolution of the composite fuselage is described. The author’s perspective on several development, military, and production programs that have influenced and affected the current state of commercial fuselage production is presented. The enabling technologies and current approaches being used for wide body aircraft fuselage fabrication and the potential reasons why are addressed. Some questions about the future of composite fuselage are posed based on the lessons learned from today and yesterday.
2017-09-19
Technical Paper
2017-01-2149
Cameron S. Gillespie
Abstract As carbon fiber reinforced plastics (CFRP) become more integrated into the design of large single piece aircraft structures, aircraft manufacturers are demanding higher speed and efficiency in Automated Fiber Placement (AFP) deposition systems. To facilitate the manufacturing of large surface area and low contour parts (wing skins, in this case) at a high production rate, Electroimpact has developed a new AFP head consisting of 20 1.5 inch wide pre-impregnated carbon tows. The new head design has been named the ‘OH20’, short for ‘One and a Half Inch, 20 Tows’. This AFP head format creates a deposition swath over 30 inches wide when all 20 tows are active. A total of four of these AFP heads have been integrated with a quick change robotic tool changer on two high speed, high acceleration, and high accuracy moving beam gantries.
2017-09-19
Journal Article
2017-01-2142
Brandon Mahoney, Jamie Marshall, Thomas Black, Dennis Moxley
The supersession of metallic alloys with lightweight, high-strength composites is popular in the aircraft industry. However, aviation electronic enclosures for large format batteries and high power conversion electronics are still primarily made of aluminum alloys. These aluminum enclosures have attractive properties regrading structural integrity for the heavy internal parts, electromagnetic interference (EMI) suppression, electrical bonding for the internal cells, and/or electronics and failure containment. This paper details a lightweight carbon fiber composite chassis developed at Meggitt Sensing Systems (MSS) Securaplane, with a copper metallic mesh co-cured onto the internal surfaces resulting in a 50% reduction in weight when compared to its aluminum counterpart. In addition to significant weight reduction, it provides equal or improved performance with respect to EMI, structural and flammability performance.
2017-09-19
Technical Paper
2017-01-2166
Hendrik Susemihl, Christoph Brillinger, Sven Philipp Stürmer, Stephan Hansen, Christian Boehlmann, Simon Kothe, Jörg Wollnack, Wolfgang Hintze
Abstract The demand for higher production rates in aircraft industry requests more flexible manufacturing solutions. A bottleneck in production is the machining of large components by vast portal machines. Time-consuming referencing processes result in non-satisfying cost-effectiveness of these high-invest-machines. Mobile robot-based solutions are able to operate simultaneously which increases the productivity significantly. However, due to the limited workspace of robots, machining tasks have to be divided and long trajectories are separated in single overlapping segments. Thus high-accuracy referencing strategies are required to achieve desired production tolerances. In this publication different advanced optical reference strategies will be discussed taking the inhomogeneous behavior of a mobile robotic machining system into account.
2017-09-19
Technical Paper
2017-01-2028
Steven Nolan, Patrick Norman, Graeme Burt, Catherine Jones
Abstract Turbo-electric distributed propulsion (TeDP) for aircraft allows for the complete redesign of the airframe so that greater overall fuel burn and emissions benefits can be achieved. Whilst conventional electrical power systems may be used for smaller aircraft, large aircraft (~300 pax) are likely to require the use of superconducting electrical power systems to enable the required whole system power density and efficiency levels to be achieved. The TeDP concept requires an effective electrical fault management and protection system. However, the fault response of a superconducting TeDP power system and its components has not been well studied to date, limiting the effective capture of associated protection requirements. For example, with superconducting systems it is possible that a hotspot is formed on one of the components, such as a cable. This can result in one subsection, rather than all, of a cable quenching.
2017-09-19
Journal Article
2017-01-2024
Natasha L. Schatzman, Narayanan Komerath, Ethan A. Romander
Abstract The blade crossing event of a coaxial counter-rotating rotor is a potential source of noise and impulsive blade loads. Blade crossings occur many times during each rotor revolution. In previous research by the authors, this phenomenon was analyzed by simulating two airfoils passing each other at specified speeds and vertical separation distances, using the compressible Navier-Stokes solver OVERFLOW. The simulations explored mutual aerodynamic interactions associated with thickness, circulation, and compressibility effects. Results revealed the complex nature of the aerodynamic impulses generated by upper/lower airfoil interactions. In this paper, the coaxial rotor system is simulated using two trains of airfoils, vertically offset, and traveling in opposite directions. The simulation represents multiple blade crossings in a rotor revolution by specifying horizontal distances between each airfoil in the train based on the circumferential distance between blade tips.
2017-09-19
Technical Paper
2017-01-2074
Thorsten Dillhoefer, Fatih Erdinc
Ever increasing process applications inspire us, as suppliers of aircraft, structural-assembly, and equipment to design innovative and modular, manufacturing cells in compliance with modern specifications. The result is the new flexible C-Frame Panel Assembly Cell (CPAC) Bulkhead riveting System. This paper describes how benchmarks for flexible automated drilling and fastening are being achieved with the CPAC.
2017-09-19
Technical Paper
2017-01-2058
Francesco Noziglia, Paolo Rigato, Enrico Cestino, Giacomo Frulla, Alfredo Arias-Montano
Abstract Innovative aircraft design studies have noted that uncertainty effects could become significant and greatly emphasized during the conceptual design phases due to the scarcity of information about the new aero-structure being designed. The introduction of these effects in design methodologies are strongly recommended in order to perform a consistent evaluation of structural integrity. The benefit to run a Robust Optimization is the opportunity to take into account uncertainties inside the optimization process obtaining a set of robust solutions. A major drawback of performing Robust Multi-Objective Optimization is the computational time required. The proposed research focus on the reduction of the computational time using mathematic and computational techniques. In the paper, a generalized approach to operate a Robust Multi-Objective Optimization (RMOO) for Aerospace structure using MSC software Patran/Nastran to evaluate the Objectives Function, is proposed.
2017-09-19
Technical Paper
2017-01-2094
Tyler Everhart
Abstract Electroimpact, in collaboration with Boeing, has developed an advanced robotic assembly cell, dubbed “The Quadbots.” Using Electroimpact’s patented Accurate Robot technology and multi-function end effector (MFEE), each robot can drill, countersink, inspect hole quality, apply sealant, and insert fasteners into the part. The cell consists of 4 identical machines simultaneously working on a single section of the Boeing 787 fuselage, two on the left, and two on the right. These machines employ “collision avoidance” a new feature in their software to help them work more synchronously. The collision avoidance software uses positional feedback from external safety rated encoders mounted to the motors on the robot. From this feedback, safe spaces, in the form of virtual boundaries can be created. Such that a robot will stop and wait if the adjacent robot is in, or going to move into its programmed work envelope.
2017-09-19
Technical Paper
2017-01-2080
James Merluzzi, Isaac Bahr
Abstract Manually changing stringer-side tooling on an automatic fastening machine is time consuming and can be susceptible to human error. Stringer-side tools can also be physically difficult to manage because of their weight, negatively impacting the experience and safety of the machine operator. A solution to these problems has recently been developed by Electroimpact for use with its new Fuselage Skin Splice Fastening Machine. The Automatic Tool Changer makes use of a mechanically passive gripper system capable of securely holding and maneuvering twelve tools weighing 40 pounds each inside of a space-saving enclosure. The Automatic Tool Changer is mounted directly to the stringer side fastening head, meaning the machine is capable of changing tools relatively quickly while maintaining its position on the aircraft panel with no machine operator involvement.
2017-09-19
Technical Paper
2017-01-2078
Eric Barton, Rick Wolf
The focus of this technical paper is a unique automatic fastening system configuration for loading, positioning & unloading pre-tacked door assemblies within a static C-Frame Drivmatic fastening machine using an off-the-shelf, high accuracy Fanuc robot. In 2011, PMC was awarded a significant contract for supplying commercial OEM aircraft doors and recognized automation was the most feasible approach for fastening each door assembly. At the time of contract award, PMC was an established aero structure supplier with significant automation capability for machining high tolerance parts & assemblies and manual fastening resources to support many different OEM programs however PMC did not have automatic fastening experience or capability. In support of this new Tier-2 contract, PMC reached out to Gemcor to propose a collaborative robot solution for automatically fastening 5 different door assemblies that were historically fastened using a semi-automatic configuration.
2017-09-19
Technical Paper
2017-01-2082
Nirosh Jayaweera, Asitha Kulasekera, Posindu Maduranga, Thilina Kasun, Prabodh Seekkuarachchi, Janaka Sampath
Abstract Many components used in the aerospace industry are complex-shaped, without symmetric axes and parallel surfaces. Fabricating and repairing these components often require fixturing system to support manufacturing processes such as drilling, surface finishing, inspections and assembly. Currently available fixturing systems can be divided into dedicated and flexible fixtures. Among these, the flexible fixtures are suitable for rapidly changing fabricating processes and handling several complex-shaped components using same fixturing system. Background research suggested that the pin type fixturing system is the predominant design used in such applications to fix complex-shaped components. In pin type fixturing systems, force is applied to a single point of contact. This increases the pressure applied to the work piece and possibility of damaging these components. Further, conventional pins use rigid designs, which cannot adapt to the shape of the work piece.
Viewing 1 to 30 of 7667

Filter

  • Range:
    to:
  • Year: