Criteria

Text:
Display:

Results

Viewing 1 to 30 of 7048
2015-06-25
Event
The focus of the Structural Analysis session is to share experiences on analyzing, testing, and developing solutions to structural noise and vibration problems from powertrain sources. Analytical modeling, experimental testing and predictive correlation are just a few of the tools used in this endeavor.
2015-06-25
Event
The Structure Borne NVH Workshop will root you in the fundamentals of Source-Path-Receiver Principles. A refined theoretical foundation covers the basics of low-frequency NVH, below 100 Hz, and mid-frequency, up to 500 Hz with guidelines for performance achievement. The New Tech section will overview the motivations and approaches for stochastic simulation, and its implications to NVH performance and efforts for test/CAE validation.
2015-06-24
Event
This session covers static and dynamic issues in the body and chassis that contribute to noise and vibration problems in vehicles. Included in this session are modal studies, measurement and analysis methods, transfer path analysis, design guidelines, and recommended practices for noise and vibration control of the body and chassis.
2015-06-24
Event
This session covers static and dynamic issues in the body and chassis that contribute to noise and vibration problems in vehicles. Included in this session are modal studies, measurement and analysis methods, transfer path analysis, design guidelines, and recommended practices for noise and vibration control of the body and chassis.
2015-06-23
Event
This session focuses on the development and application of analytical methods for characterizing the dynamic behavior of structural systems. Analysis methods for all structural components, subsystems and complete systems found in automotive vehicles will be considered, except for powertrain and driveline which are covered in Powertrain Structural Analysis session. Examples include (but are not limited to) body structure, chassis structure, seats and interior structures.
2015-06-15
Technical Paper
2015-01-2079
Colin Hatch, Jason Moller, Eleftherios Kalochristianakis, Ian Roberts
Abstract The introduction of ice-phobic coatings promises to allow passive ice protection systems to be developed particularly for rotating systems such as propellers. The centrifugal force field combined with reduced adhesive strength can produce a self-shed capability limiting the amount of ice build-up. The size and shed time of ice shed from a propeller is predicted using a process that determines ice shape, ice growth rate and both internal and ice-structure interface stresses. A simple failure model is used to predict the onset of local failure and to propagate damage in the ice until local ice shedding is obtained. Recommendations are made on developing the model further.
2015-06-15
Technical Paper
2015-01-2262
Tom Knechten, Marius-Cristian Morariu, PJG van der Linden
Structural and vibro-acoustic transfer functions still form an essential part of NVH data in vehicle development programs. Excitation in the three DOFs at all body interface connection locations to target responses gives information on local dynamics stiffness and the body sensitivity for that specific path in an efficient manner. However, vehicles become more compact for fuel efficiency and production costs and to meet the market demand for urban vehicles. Alternative driveline concepts increase the electronic content and new mount locations. To achieve the optimum on road noise NVH, handling performance while conserving interior space and trunk volume requires a complex suspension layout. On top of that, customers put weight on safety and comfort systems which result to a higher packaging density. These trends imply ever limiting accessibility of the interface connections on the body structure.
2015-06-15
Technical Paper
2015-01-2242
Ling Zheng, Zhanpeng Fang
The design optimization of interior noise in vehicle is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is established and the response of sound pressure in frequency domain is predicted by using finite element method. The minimization of sound pressure inside cabins depends on body structure and the thickness for each panel. The panel participation analysis is carried out to find out the key panels as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is proposed and utilized to optimize the vibro-acoustic properties of body structure instead of complex structural-acoustic coupling finite element model. The accuracy of the proposed RSM is evaluated and discussed. Structural-acoustic problem is approximated by a series of quadratic polynomial using RSM. Geometric optimization problem of panels is described and solved to minimize the interior noise in vehicle.
2015-06-15
Technical Paper
2015-01-2121
Yong Chen, Liang Fu
Abstract In helicopter, the icing rotor blades will decrease the effectiveness of the helicopter and endanger the lives of the pilots. The asymmetrical ice break-up and shedding could also lead to severe vibrations of the rotor blade. Ice break-up from the main rotor may strike the fuselage and tail rotor, even worse, find its way into the engine, which may cause serious aircraft accidents. An understanding of the mechanisms responsible for ice shedding process is necessary in order to optimize the helicopter rotor blade design and de-icing system to avoid hazardous ice shedding. In this paper, the ice shedding model is improved by introducing a bilinear cohesive zone model (CZM) to simulate the initiation and propagation of ice/blade interface crack. A maximum stress criterion is used to describe the failure occurred in the ice.
2015-06-15
Technical Paper
2015-01-2163
Caio Fuzaro Rafael, Diogo Mendes Pio, Guilherme A. Lima da Silva
Abstract The present paper presents a validation of momentum boundary-layer integral solution and finite-volume Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) results for skin friction around airfoils NACA 8H12 and MMB-V2 as well as heat transfer around an isothermal cylinder with rough surface. The objective is to propose a two-equation integral model and compare its predictions to results from a robust CFD tool, to experimental data and to results from a one-equation integral solution. The latter is the mathematical model used by classic 2D icing codes. All proposed model predictions are compared to CFD results for verification and, whenever possible, to experimental data for validation. The code-to-code verification brings reliability to both the proposed code and the CFD tool when there is no test data available.
2015-06-15
Technical Paper
2015-01-2257
Ki-Chang Kim, Sang-Woo Lee, Seok-Gil Hong, Jay Kim, Gil-Jun Lee, Jae Min Choi, Yong-Jin Kim
Recently, in automobile industry, squeak and rattle (S&R) in body structure and trim parts has become a very significant issue in Initial Quality Study (IQS). In this study, a new CAE process developed by the authors to reduce S&R noises in the door system is reported. Friction-induced vibration and noise generation mechanism of a door system are studied numerically. The effect of degradation of plastics used in door trims is studied by using a model obtained from experiments. Effects of changes of material properties such as Young's modulus and loss factor, due to the material degradation as well as statistical variations are predicted using, several cases of door systems. As a new concept, the rattle and squeak index is proposed, which can be used to guide design of the body structure and trim parts. The predicted of S&R in the door system, from the proposed CAE process were compared to those obtained from the experiment.
2015-06-15
Technical Paper
2015-01-2267
Youngha Kim, Choonhyu Kim, Jaewoong Lee, Sunggi Kim
This paper describes structure borne noise reduction process that was using a combination of experimental and analytical methods. First, Major noise paths was identified using experimental Transfer Path Analysis (TPA). Next, FEA-Experimental modeling and forced response simulation were conducted using the Hybrid FEA-Experimental FRF method. Hybrid FEA-Experimental FRF-Based Substructuring (FBS) model was used along with Operational Deflection Shape (ODS) and Modal Analysis. The Hybrid FEA-Experimental model consisted of an experimental FRF representation of the body and a finite element model of sub-frame. The finite element of sub-frame is created by using Altair HyperMesh from CATIA images and dynamic analysis is carried out by using MSC Nastran. The natural frequency and frequency response function of finite element sub-frame model are compared with them of real sub-frame for the validity of applying Hybrid FBS method.
2015-06-15
Technical Paper
2015-01-2228
Drivelines used in modern pickup trucks commonly employ universal joints. This type of joint is responsible for second driveshaft order vibrations in the vehicle. Large displacements of the joint connecting the driveline and the rear axle have a detrimental effect on vehicle NVH. As leaf springs are critical energy absorbing elements that connect to the powertrain, they are used to restrain large axle windup angles. One of the most common types of leaf springs in use today is the multi-stage parabolic leaf spring. A simple SAE 3-link approximation is adequate for preliminary studies but it has been found to be inadequate to study axle windup. A vast body of literature exists on modeling leaf springs using nonlinear FEA and multibody simulations. However, these methods require significant amount of component level detail and measured data. As such, these techniques are not applicable for quick sensitivity studies at design conception stage.
2015-06-15
Technical Paper
2015-01-2102
Guilin Lei, Wei Dong, Jianjun Zhu, Mei Zheng
Abstract The numerical simulation of ice melting process on an iced helicopter rotor blade is presented. The ice melting model uses an enthalpy-porosity formulation, and treats the liquid-solid mushy zone as a porous zone with porosity equal to the liquid fraction. The ice shape on the blade section is obtained by the icing code with a dynamic mesh module. Both of the temperature change and the ice-melting process on the rotor blade section surface are analyzed. The phenomenon of ice melting is analyzed through the change of temperature and liquid fraction on the abrasion/ice interface. The liquid fraction change as with time on the abrasion/ice surface is observed, which describes the ice-melting process well. The numerical results show that the ice melting process can be simulated effectively by the melting model. The de-icing process can be monitored by observing the change of the liquid fraction of the area around the abrasion/ice interface.
2015-06-15
Technical Paper
2015-01-2103
Christian Bartels, Julien Cliquet, Carlos Bautista
Abstract In order to comply with applicable certification regulations, airframers have to demonstrate safe operation of their aircraft in icing conditions. Part of this demonstration is often a numerical prediction of the potential ice accretion on unprotected surfaces. The software ONICE2D, originally developed at the Office National d'Études et de Recherche Aérospatial (ONERA), is used at Airbus for predicting ice accretions on wing-like geometries. The original version of the software uses a flow solution of the 2D full-potential equation on a structured C-grid as basis for an ice accretion prediction. Because of known limitations of this approach, an interface was added between ONICE2D and TAU [6], a hybrid flow solver for the Navier-Stokes equations. The paper first details the approach selected to implement the interface to the hybrid flow solver TAU.
2015-06-15
Technical Paper
2015-01-2208
David Stotera, Scott Bombard
Both vehicle roof systems and vehicle door systems typically have viscoelastic material between the beams and the outer panel. These materials have the propensity to affect the vibration decay time and the vibration level of the panel with their damping and stiffening properties. Decay time relates to how pleasant a vehicle door sounds upon closing, and vibration level relates to how loud a roof boom noise may be perceived to be by vehicle occupants. If a surrogate panel could be used to evaluate decay time and vibration level, then a design of experiments could be used to compare the effects of different factors on the system. The factors were varied in laboratory tests, and the results were calculated using design of experiments software. In this paper the results of a study of the varying factors tested with respect to their effects on decay time and vibration level are presented, as well as the effect the results had on potential optimization of the systems.
Viewing 1 to 30 of 7048

Filter

  • Range:
    to:
  • Year: