Criteria

Text:
Display:

Results

Viewing 1 to 30 of 7275
2017-04-04
Event
BE & D cover several important areas that are related to vehicle body, including its components such as instrument panel, steering column and wheel, seats, hood, decklid, transmission cross-member, hard mounted chassis, CRFM, etc. Topics included are: Novel concepts, Analysis, Design, Testing, Predictions of strength, stiffness, and fatigue life, welding methods, vehicle body quality, durability, reliability, safety, ride & handling, NVH, aerodynamics, mass reduction, as well as fuel economy.
2017-04-04
Event
These papers highlight the interaction of driver vision - which is itself characterized by complexity, flexibility, and high levels of performance—with ever more sophisticated vision technologies to support driver vision. In particular, LED technology continued to advance in the past year, leading to broader lighting applications. Topics covered include lighting design strategy, lighting thermal management, driver fields of view, and characteristics of camera/display systems.
2017-04-04
Event
Visual perception continues to be a critical aspect of overall driver performance. This session offers presentations highlighting new developments designed to provide better support for driver rearward vision, better understanding of how to measure light and its effects on drivers’ eyes, and better understanding of how drivers accomplish the visually difficult task of negotiating intersections.
2017-04-04
Event
Automotive glazing, while remaining a somewhat stable part of vehicle design, is contributing to passenger comfort in new ways, and is subject to an ever-expanding web of regulation around the world.
2017-04-04
Event
Presentations of this session will address application and research on coatings for exterior body and plastics (including polycarbonate) as well as vehicle interiors and underbody/underhood. Focus will be on the 3-10 year timeframe.
2017-04-04
Event
Multibody system modeling and simulation, rigid and flexible body modeling, loads predictions for vehicle body, frame/sub-frame, exhaust system, driveline, and powertrain, modeling of vehicle dynamics simulation and durability loads simulation, process considering vehicle dynamics and durability loads, data processing and analysis, loads sensitivity analyses for model parameters, design load minimization, prediction of loads effects, robust design methods, driver modeling, and system modeling.
2016-11-08
Technical Paper
2016-32-0029
Shohei Suzuki
In the development of motocrosser, the parts which compose the vehicle body especially in the frame receive the heavy loads when it lands on the ground, and high stress generate. Therefore, some problems such as deformation, crack emanating, brocken damage, etc occur occasionally. It took times and costs to take measures for these problems. To solve these problems and to reduce the development term and costs, we developed the method of Jump Landing Simulation. This Jump Landing Simulation enables to measure the vehicle position, which is moving momentarily, easily with high accuracy by introducing "Image Position Measureing Method.". Also, it succeeded to predict the occuring stress with high accuracy.
2016-10-04
Event
Topics Include: Product Design and Manufacturing Integration Integrated Production Systems Software Simulation Virtual Manufacturing Direct Digital Manufacturing Analysis and Modeling Tools RFID Structural Health Monitoring/Management Advanced Metrology
2016-10-04
Event
Topics Include: Product Design and Manufacturing Integration Integrated Production Systems Software Simulation Virtual Manufacturing Direct Digital Manufacturing Analysis and Modeling Tools RFID Structural Health Monitoring/Management Advanced Metrology
2016-09-27
Technical Paper
2016-01-8123
Lei Peng, Zhuo Wang, Jiantao Gu
Abstract Body structure design needs to meet multi-attributes requirements such as global bend stiffness/modal, torsion stiffness/modal, Noise and velocity transfer functions (NTF/VTF), and others. Computer-aided engineering (CAE) is a significant way to enhance the accuracy of design results. However, it also brings computation burden for optimization. In order to improve the performance and reduce the weight of automobile body structure, this paper presents a novel process of body CAE multi-attributes optimization. Four significant phases are described: 1) Sensitivity analysis for each body CAE performance, 2) MDO process, 3) Non-sensitive gauges reducing, and 4) Slightly optimization. Considering the mixed variables in the MDO process including continuous geometry shapes and discrete gauges, the developed continuous relaxation method was employed to deal with such situation.
2016-09-27
Technical Paper
2016-01-8138
Pranav Shinde, K Ravi, Nandhini Nehru, Sushant Pawar, Balaji Balakrishnan, Vinit Nair
Abstract Body in white (BIW) forms a major structure in any automobile. It is responsible for safety and structural rigidity of the vehicle. Also, this frame supports the power plant, auxiliary equipments and all body parts of the vehicle. When it comes to judging the performance of the vehicle, BIW is analyzed not only for its strength and shape but also the weight. Light weight BIW structures have grown rapidly in order to fulfill the requirements of the best vehicle performance in dynamic conditions. Since then lot of efforts have been put into computer-aided engineering (CAE), materials research, advanced manufacturing processes and joining methods. Each of them play a critical role in BIW functionality. Constructional designing, development of light materials with improved strength and special manufacturing practices for BIW are few research areas with scope of improvement. This paper attempts to review various factors studied for BIW weight reduction.
2016-09-27
Technical Paper
2016-01-8155
Devaraj Dasarathan, Jonathan Jilesen, David Croteau, Ray Ayala
Abstract Side window clarity and its effect on side mirror visibility plays a major role in driver comfort. Driving in inclement weather conditions such as rain can be stressful, and having optimal visibility under these conditions is ideal. However, extreme conditions can overwhelm exterior water management devices, resulting in rivulets of water flowing over the a-pillar and onto the vehicle’s side glass. Once on the side glass, these rivulets and the pooling of water they feed, can significantly impair the driver’s ability to see the side mirror and to see outwardly when in situations such as changing lanes. Designing exterior water management features of a vehicle is a challenging exercise, as traditionally, physical testing methods first require a full-scale vehicle for evaluations to be possible. Additionally, common water management devices such as grooves and channels often have undesirable aesthetic, drag, and wind noise implications.
2016-09-27
Technical Paper
2016-01-8050
Chihua Lu, Wenxin Yang, Hao Zheng, Jingqiang Liang, Guang Fu
Abstract In this paper, we propose a method of dynamics simulation and analysis based on superelement modeling to increase the efficiency of dynamics simulation for vehicle body structure. Using this method, a certain multi-purpose vehicle (MPV) body structure was divided into several subsystems, and the modal parameters and frequency response functions of which were obtained through superelement condensation, residual structure solution, and superelement data restoration. The study shows that compared to the traditional modeling method, the computational time for vehicle body modal analysis can be reduced by 6.9% without reducing accuracy; for the purpose of structural optimization, the computational time can be reduced by 87.7% for frequency response analyses of optimizations; consistency between simulation and testing can be achieved on peak frequency points and general trends for the vibration frequency responses of interior front row floors under accelerating conditions.
2016-09-27
Technical Paper
2016-01-8049
Keith Friedman, Khanh Bui, John Hutchinson, Matthew Stephens, Francisco Gonzalez
Abstract Frame rail design advances for the heavy truck industry provide numerous opportunities for enhanced protection of fuel storage systems. One aspect of the advanced frame technology now available is the ability to vary the frame rail separation along the length of the truck, as well as the depth of the frame. In this study, the effect of incorporating the fuel storage system within advanced technology tapered frame rails was evaluated using virtual testing under impact conditions. The impact performance was evaluated under a range of horizontal impacts conditions. The performance observed was quantified and then compared with previous testing of baseline diesel tank systems. Fuel storage system impact performance metrics over the range of crash conditions considered were quantified using virtual testing methods. The results obtained from the application of the impact performance evaluation methodology were then described.
Viewing 1 to 30 of 7275

Filter

  • Range:
    to:
  • Year: