Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2397
Event
2015-06-22
The focus of the Structural Analysis session is to share experiences on analyzing, testing, and developing solutions to structural noise and vibration problems from powertrain sources. Analytical modeling, experimental testing and predictive correlation are just a few of the tools used in this endeavor.
Event
2015-06-22
This session covers static and dynamic issues in the body and chassis that contribute to noise and vibration problems in vehicles. Included in this session are modal studies, measurement and analysis methods, transfer path analysis, design guidelines, and recommended practices for noise and vibration control of the body and chassis.
Event
2015-06-22
This session focuses on the development and application of analytical methods for characterizing the dynamic behavior of structural systems. Analysis methods for all structural components, subsystems and complete systems found in automotive vehicles will be considered, except for powertrain and driveline which are covered in Powertrain Structural Analysis session. Examples include (but are not limited to) body structure, chassis structure, seats and interior structures.
Standard
2014-08-21
Scope is unavailable.
Standard
2014-08-21
Scope is unavailable.
Standard
2014-08-21
Scope is uanvailable.
Standard
2014-08-20
Scope is unavailable.
Magazine
2014-07-01
Global Viewpoints The latest strategies are investigated for vehicle development by automakers and major suppliers. Sports cars embrace array of green technology IMSA Tudor United SportsCar Championship promotes a variety of green technologies to link racing to the road. More gears, more challenges Many strategies, as well as key software and hardware aspects related to controllers, networks, sensors, and actuators, must be considered to keep automatic transmissions shifting smoothly as more gears are added to improve fuel economy. Advancing structural composites Industry experts address the opportunities and challenges involved with moving toward composite-intensive vehicles, including Nissan's effort to produce a high-volume, fully recyclable composite liftgate with low metal content.
Technical Paper
2014-06-30
Gregor Tanner, David J. Chappell, Dominik Löchel, Niels Søndergaard
Abstract Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range. The response of small-scale features and coupling coefficients between sub-components are obtained through local FEM models integrated in the global DFM treatment.
Technical Paper
2014-06-30
Rainer Stelzer, Theophane Courtois, Ki-Sang Chae, Daewon SEO, Seok-Gil Hong
Abstract The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment. After providing a brief review of the established approaches for TL simulation at LF, the article will present a new FE methodology for TL simulation and introduce the advantages of “in-situ” TL simulations by means of fluid-structure FE calculation.
Standard
2014-06-26
This SAE Recommended Practice defines, for vehicle manufacturers and collision information and equipment providers, the types of vehicle dimensional data needed by the collision repair industry and aftermarket equipment modifiers to properly perform high-quality repairs to damaged vehicles. Both bodyframe and unitized vehicles, including passenger cars and light trucks, are addressed.
WIP Standard
2014-06-17
1.1 Purpose The three parts of SAE J1453 cover material, dimensional, and performance requirements of steel O-ring face seal (ORFS) connectors for tubing and the O-ring face seal interface and nut portion of hose stem assemblies for nominal tube diameters of 6 mm through 38 mm and for nominal hose diameters 6.3 mm through 38 mm. SAE J1453-2 covers the requirements for “metric based” O-ring face seal connectors to metric stud ends along with the associated adapters, bulkhead and union connectors. Metric hex wrenching flats are used throughout this standard. 1.2 Field of Application These connectors are intended for general application and hydraulic systems on industrial equipment and commercial products, where elastomeric seals are acceptable to overcome leakage and variations in assembly procedures. These connectors are capable of providing leak proof full flow connections in hydraulic systems operating from 95 kPa vacuum to the working pressures shown in Table 3. Since many factors influence the pressure at which a hydraulic system does or does not perform satisfactorily, these values should not be construed as guaranteed minimums.
WIP Standard
2014-06-16
This recommended practice is a source of information for body and trim engineers and represents existing technology in the field of on-highway vehicle seating systems. It provides a more uniform system of nomenclature, definitions of functional requirements, and testing methods of various material components of motor vehicle seating systems.
Video
2014-05-19
This video summarizes Chapter 10 of the book, “Theory and Applications of Aerodynamics for Ground Vehicles”, by Dr. T. Yomi Obidi, published by SAE International. Concepts demonstrated include the effects of the control surfaces on vehicle performance and drag in sunroofs and convertibles.
Video
2014-05-16
This video summarizes Chapter 6 of the book, “Theory and Applications of Aerodynamics for Ground Vehicles”, by Dr. T. Yomi Obidi, published by SAE International. Concepts demonstrated include aerodynamic considerations in building each of the three vehicle sections, drag reduction methods at section interface, and aerodynamic benefits of composite build.
Technical Paper
2014-05-07
Torbjörn Narström
Abstract The use of modern quenched and tempered steels in dumper bodies to reduce weight to increase the payload and reduce the fuel consumption is briefly discussed. Modern quenched and tempered steels in combination with adopted design concept will further increase weight savings of the dumper body. Use of these materials may lead to 4 times longer wear life than ordinary steels. One of the main load cases for a dumper body is impact of an object, i.e. boulders and rocks, into the body. A well-proven test setup is used to develop a model to predict failure and depth of the dent after the impact. A material model with damage mechanic was utilized to predict fracture. The developed model was used to study the effect of the geometry of the impacting object, thickness of the plate and unconstrained plate field. The model was also implemented in larger model and compared with a full scale test of dumper body. It was found that the most sensitive parameter is the geometry of the falling object.
Technical Paper
2014-05-07
Timo Björk, Ilkka Valkonen, Jukka Kömi, Hannu Indren
Abstract The development of weldable high-strength and wear-resistant steels have made modern structures such as booms and mobile equipment possible. These sorts of novel and effective designs could not be constructed with traditional mild steel. Unfortunately, the use of these novel steels requires proper design, and there is no practical design code for these novel steels. This paper addresses stability issues, which are important considerations for designs with high-strength steels, and the properties of the heat-affected zone, which may require special attention. Fatigue design is also discussed in this paper, and the importance of the weld quality is highlighted, along with discussions on which details in the weld are the most important. By comparing the test results with the classical load limit solution, it is determined that full plastic capacity is reached and that the samples display good strain properties. Additionally, the reliability of the classical formulas is shown by comparing them to a recently proposed, novel formula.
Technical Paper
2014-04-01
Mehdi Safaei, Shahram Azadi, Arash Keshavarz, Meghdad Zahedi
Abstract The main end of this research is the optimization of engine sub-frame parameters in a passenger car to reduce the transmitted vibration to vehicle cabin through DOE method. First, the full vehicle model of passenger car including all its sub-systems such as engine, suspension and steering system is modeled in ADAMS/CAR and its accuracy is validated by exerting swept sine and step input. After that, the schematic geometry of sub-frame is modeled in CAD software and transferred to ADAMS/CAR. Hence, the efficiency of the sub-frame in terms of reducing the induced vibration to vehicle cabin is examined through the various road inputs e.g. swept sine, step and random road input type (B). The results will illustrate that the sub-frame has significant effect in reduction of transmitted vibration to occupants. In order to optimize the sub-frame parameters, the sensitivity analysis is performed to derive effective parameters of sub-frame using DOE method. In this regard, the parameters which have dominant effect on transmitted vibration (the stiffness of sub-frame bushing in vertical direction) are optimized via RSM (Response Surface Method) method.
Technical Paper
2014-04-01
Gaurav Gupta, Rituraj Gautam, Chetan Prakash Jain
Abstract Interior sound quality is one of the significant factors contributing to the comfort level of the occupants of a passenger car. One of the major reasons for the deterioration of interior sound quality is the booming noise. Booming noise is a low frequency (20Hz∼300Hz) structure borne noise which occurs mainly due to the powertrain excitations or road excitations. Several methods have been developed over time to identify and troubleshoot the causes of booming noise [1]. In this paper an attempt has been made to understand the booming noise by analyzing structural (panels) and acoustic (cavity) modes. Both the structural modes and the acoustic modes of the vehicle cabin were measured experimentally on a B-segment hatchback vehicle using a novel approach and the coupled modes were identified. Panels contributing to booming noise were identified and countermeasures were taken to modify these panels to achieve decoupling of structural and cavity modes which results in the reduction of cabin noise levels.
Technical Paper
2014-04-01
Masashi Terada, Takashi Kondo, Yukihiro Kunitake, Kunitomo Miyahara
Abstract In automobile development, steering vibrations caused by engine excitation force and suspension vibration input from the road surface are a problem. The conventional method of reducing vibrations and thereby securing marketability has been to dispose a dynamic damper inside the steering wheel. The resonance frequency of a steering system varies for each vehicle developed (as a result of the vehicle size, the arrangement of the stiff members of the vehicle body, and the like). As a result, the individual values of dynamic dampers that are used with vehicles must be adjusted for each developed vehicle type. To address this problem, we have developed a new structure in which, rather than using a conventional dynamic damper, we disposed a floating bush on the Supplemental Restraint System (SRS) module attachment section and used the SRS module itself as the weight for the dynamic damper. In this structure, the dynamic damper weight is approximately eight times greater than the conventional weight, the vibration reduction effect is enhanced, and the effective frequency range is widened.
Technical Paper
2014-04-01
Hyungtae Kim, Sehwun Oh, Ki-Chang Kim, Ju Young Lee, Jungseok Cheong, Junmoo Her
Abstract It is common knowledge that body structure is an important factor of road noise performance. Thus, a high stiffness of body system is required, and determining their optimized stiffness and structure is necessary. Therefore, a method for improving body stiffness and validating the relationship between stiffness and road noise through CAE and experimental trials was tested. Furthermore, a guideline for optimizing body structure for road noise performance was suggested.
Technical Paper
2014-04-01
Ravi Kiran Cheni, Chetan Prakash Jain, Revathy Muthiah, Srikanth Gomatam
Abstract Automotive OEMs quest for vehicle body light weighting, increase in Fuel efficiency along with significant cut in the emissions pose significant challenges. Apart from the effect on vehicle handling, the reduction of vehicle weight also results in additional general requirements for acoustic measures as it is an important aspect that contributes to the comfort and the sound quality image of the vehicle, thus posing a unique challenge to body designers and NVH experts. Due to these conflicting objectives, accurate identification along with knowledge of the transfer paths of vibrations and noise in the vehicle is needed to facilitate measures for booming noise dampening and vehicle structure vibration amplitude. This paper focuses on the application of a unique design and development of vehicle body structure anti-vibration dynamic damper (DD), unique in its aspect in controlling booming noise generated at a specific RPM range. Design methodology follows the concept of Mass-damper system on vehicle body or engine structure where panel with multi-degree of freedom vibrating at medium level frequency is transferred to damper which is vibrating at same resonant frequency in 180° opposite phase.
Technical Paper
2014-04-01
Anthony Barkman, Kelvin Tan, Arin McIntosh, Peter Hylton, Wendy Otoupal-Hylton
This paper discusses a project intended as a design study for a team of college students preparing for careers in motorsports. The project's objective was to conduct a design study on the possible redesign of the suspension for a dirt-track sprint car. The car examined was typical of those which race on one-quarter to one-half mile dirt oval tracks across the United States. The mission of this concept study was to develop a different configuration from the traditional torsion bar spring system, for the front end. The design included moving the dampers inboard with the addition of a rocker to relate the movement through the front suspension system. For the rear end, components were designed to allow the radius rod to be adjustable from the cockpit, thus providing the driver with adjustability to changing track conditions. The project goal was to design functional front end and rear end changes that could provide a positive impact on handling as well as keeping the system easy to replace in a short period of time.
Technical Paper
2014-04-01
Yan Jiang, Jingyan Liu, Qiming Chi, Fang Lu, Bo Li, Amanda Learned, Rui Song, Heinz Friz
Abstract The recent facelift of the Chinese version of the VW Bora incorporated several changes of the styling of the upper body. In particular, front facia, A-Pillar and rear end were subject to design changes. As major effects on the aerodynamics performance were not expected, extensive wind tunnel testing for the upper body design changes was not included in the development plan except for final performance evaluation. Nevertheless, an aerodynamic study of the effects of the design changes was undertaken using a CFD based process. At the same time, the facelift offered the opportunity for reducing the aerodynamic drag by improving the underbody flow. The design of the engine undercover and the wheel spoilers were considered in this effort. For this purpose the CFD based aerodynamic study was extended to include respective design features. The whole study was carried out using a response surface method as a mathematical model to characterize and understand the effects of the design changes and their interactions.
Technical Paper
2014-04-01
Adrian P. Gaylard, John Pitman, Jonathan Jilesen, Adriano Gagliardi, Bradley Duncan, John Wanderer, Alex Konstantinov
Contamination of vehicle rear surfaces is a significant issue for customers. Along with being unsightly, it can degrade the performance of rear camera systems and lighting, prematurely wear rear screens and wipers, and transfer soil to customers moving goods through the rear tailgate. Countermeasures, such as rear camera wash or automated deployment add expense and complexity for OEMs. This paper presents a rear surface contamination model for a fully detailed SUV based on the use of a highly-resolved time-accurate aerodynamic simulation realised through the use of a commercial Lattice-Boltzmann solver, combined with Lagrangian Particle Tracking to simulate droplet advection and surface water dynamics via a thin film model. Droplet break-up due to aerodynamic shear is included, along with splash and stripping from the surface film. The effect of two-way momentum coupling is included in a sub-set of simulations. The simulations are qualitatively validated in terms of surface contamination distribution against full scale (climatic) wind tunnel experiments using a UV fluorescent dye in water introduced onto dynamometer rollers.
Technical Paper
2014-04-01
Yingchao Zhang, Wei Ding, Yu Zhang
Abstract Automobile industry is facing the great challenge of energy conservation and emission reduction. It's necessary to do some researches on some surface components of a car body to find out which of them may affect aerodynamic drag remarkably. This will help an aerodynamic engineer modify an initial car model more clearly. We also hope to reduce the cost during the process, including time and resources. In this paper, with the purpose of developing an aerodynamic shape optimization process and realizing its automation, a MIRA reference car model was studied and three commercial softwares were integrated-Altair HyperStudy, HyperMesh and CD-adapco STAR-CCM+. The optimization strategy in this paper was: firstly, a DOE (design of experiment) matrix, which contained four design factors and thirty levels was created. The baseline model was morphed according to the DOE matrix. Then the morphed model's aerodynamic drag coefficient (Cd) and lift coefficient (Cl) were calculated via CFD software.
Technical Paper
2014-04-01
L.A.Raghu Mutnuri, Sivapalan Senthooran, Robert Powell, Zen Sugiyama, David Freed
Abstract A computational approach to evaluate rear-view mirror performance on wind noise in cars is presented in this paper. As a comfort metric at high speeds, wind noise needs to be addressed, for it dominates interior noise at mid-high frequencies. The impetus on rear-view mirror design arises from its crucial role in the flow field and the resulting pressure fluctuations on the greenhouse panels. The motivation to adopt a computational approach arises from the need to evaluate mirror designs early in vehicle design process and thus in conjunction with different vehicle shapes. The current study uses a Lattice Boltzmann method (LBM) based computational fluid dynamics(CFD) solver to predict the transient flow field and a statistical energy analysis(SEA) solver to predict interior noise contribution from the greenhouse panels. The accuracy of this computational procedure has been validated and published in the past. Realistic car geometry is chosen and the transient flow field around the vehicle resulting from mounting two different rear-view mirror designs is analyzed.
Technical Paper
2014-04-01
Mark E. Gleason, Todd Lounsberry, Khaled Sbeih, Sreekanth Surapaneni
Abstract Recently, the Two-Measurement correction method that yields a wake distortion adjustment for open jet wind tunnels has shown promise of being able to adjust for many of the effects of non-ideal static pressure gradients on bluff automotive bodies. Utilization of this adjustment has shown that a consistent drag results when the vehicle is subjected to the various gradients generated in open jet wind tunnels. What has been lacking is whether this consistent result is independent of the other tunnel interference effects. The studies presented here are intended to fill that gap and add more realistic model and wind tunnel conditions to the evaluations of the performance of the two-measurement technique. The subject CFD studies are designed to greatly reduce all wind tunnel interference effects except for the variation of the non-linear static pressure gradients. A zero gradient condition is generated by simulating a solid wall test section with a blockage ratio of 0.1%. The non-linear gradients are simulated using a semi-open jet test section with a very large 40 square meter nozzle exit and a variable length test section.
Viewing 1 to 30 of 2397

Filter

  • Range:
    to:
  • Year: