Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2406
2015-06-22
Event
The focus of the Structural Analysis session is to share experiences on analyzing, testing, and developing solutions to structural noise and vibration problems from powertrain sources. Analytical modeling, experimental testing and predictive correlation are just a few of the tools used in this endeavor.
2015-06-22
Event
This session covers static and dynamic issues in the body and chassis that contribute to noise and vibration problems in vehicles. Included in this session are modal studies, measurement and analysis methods, transfer path analysis, design guidelines, and recommended practices for noise and vibration control of the body and chassis.
2015-06-22
Event
This session focuses on the development and application of analytical methods for characterizing the dynamic behavior of structural systems. Analysis methods for all structural components, subsystems and complete systems found in automotive vehicles will be considered, except for powertrain and driveline which are covered in Powertrain Structural Analysis session. Examples include (but are not limited to) body structure, chassis structure, seats and interior structures.
2014-11-11
Technical Paper
2014-32-0021
Kazuhiro Ito, Yoshitaka Tezuka, Atsushi Hoshino, Keita Sakurada
Abstract In this study, we developed a simulation method for rough road running condition to reproduce the behaviors of a vehicle body and to precisely estimate the input loads to the frame. We designed the simulation method focusing on a front fork model and a rider model optimized for this type of analysis. In the suspension model development, we conducted detailed measurement of the suspension characteristics on a test bench. Based on the yielded results, the friction force, as well as the spring reaction force and the damping force, was reproduced in the suspension model. The friction of the suspension varies depending on the magnitude of the reaction force associated with bending and this effect was also implemented in the model. Regarding the rider model, the actual behavior of a rider was investigated through the recorded motion video data and used to define the necessary degrees of freedom. Based on this investigation, the degree of freedom of three, i.e. vertical, longitudinal and forward leaning motions, was adopted to the rider model.
2014-10-16
Video
Chrysler engineers need to make the next Jeep Wrangler, due in 2017, much lighter for better fuel economy. In this week's SAE Eye on Engineering, Automotive Engineering Senior Editor Lindsay Brooke looks at Jeep's history with aluminum and unibody construction.
2014-09-30
Technical Paper
2014-01-2411
Marc Auger, Larry Plourde, Melissa Trumbore, Terry Manuel
Abstract Design of body structures for commercial vehicles differs significantly from automotive due to government, design and usage requirements. Specifically, heavy truck doors are not required to meet side impact requirements due to their height off the ground as compared to automobiles. However, heavy truck doors are subjected to higher loads, longer life, and cannot experience permanent deformation from overload events. Aluminum has been used intensively in commercial vehicle doors and cab structures for over 50 years by several different manufacturers in North America. It has been only in the last few years that aluminum has appeared in automotive door structures other than in high-end luxury vehicles. Commercial vehicle customers are expecting the same features found in premium automobiles resulting in opportunities to learn from each other's designs. In order to optimize the strength and weight of a commercial vehicle door, a new aluminum intensive structure was developed. The new structure featured a unique architecture that was the first in the industry to use a multi-cavity aluminum extrusion joined to stamped sheet reinforcements in order to provide a direct load path between the hinges and the latch.
2014-09-30
Technical Paper
2014-01-2446
Marc Ratzel, Warren Dias
Abstract This paper discusses the behavior of a flexible flap at the rear end of a generic car model under aerodynamic loads. A strong bidirectional coupling between the flap's deflection and the flow field exists which requires this system to be simulated in a coupled fluid-structure manner. A coupled transient aerodynamic and structural simulation is performed for a generic car model with a flexible/deformable flap at the rear end. An automatic workflow is established which generates new flap designs, derived from an initial flap design by applying a mesh deformation technology, and performs the coupled fluid-structure interaction analysis. For each shape variation, the flap's maximum displacement is monitored and used to classify the individual flap designs. This process allows for design of experiment (DOE) studies in an automated manner. Several shape variations of the flap and their impacts on the maximum deflection are investigated. Design changes causing a reduction in the maximum deflection are identified and used in an optimization loop to determine a flap design with minimum displacement.
2014-09-30
Technical Paper
2014-01-2319
Iman Hazrati Ashtiani, Mehrnoosh Abedi
Abstract Road train vehicles have been applied as one of the common and efficient ways for transportation of goods, specifically hazardous liquid cargos, in different nations. These vehicles have a wide variety of lengths and towing systems such as the fifth wheel or the dolly draw-bar. Based upon specific regulations, they could be authorized to move on specific roads. In order to avoid hazard and danger in case of accidents, safety performance of a B-train vehicle as a specific type of road train vehicles is investigated in this paper. A Multi-Body Dynamic (MBD) model, which consists of a prime mover and two trailers coupled by fifth wheels, are simulated in the initial phase of the study. The developed dynamic model is capable of simulating required tests as well as the SAE lane change, along with a constant radius turn for the purpose of roll and yaw stability analysis and safety evaluation. The effects of variation of the fluid fill level are considered in this research. The trammel pendulum concept is adopted for simulation of fluid movements, known as sloshing, in two articulated tankers of the model.
2014-09-30
Technical Paper
2014-01-2308
Zhigang Wei, Shengbin Lin, Limin Luo, Litang Gao
Road vibrations cause fatigue failures in vehicle components and systems. Therefore, reliable and accurate damage and life assessment is crucial to the durability and reliability performances of vehicles, especially at early design stages. However, durability and reliability assessment is difficult not only because of the unknown underlying damage mechanisms, such as crack initiation and crack growth, but also due to the large uncertainties introduced by many factors during operation. How to effectively and accurately assess the damage status and quantitatively measure the uncertainties in a damage evolution process is an important but still unsolved task in engineering probabilistic analysis. In this paper, a new procedure is developed to assess the durability and reliability performance, and characterize the uncertainties of damage evolution of components under constant amplitude loadings. The linear and two nonlinear probabilistic damage accumulation models are briefly described first.
2014-09-30
Technical Paper
2014-01-2315
John Anderson
Abstract This paper describes the development and testing of a Dynamic Vibration Absorber to reduce frame beaming vibration in a highway tractor. Frame beaming occurs when the first vertical bending mode of the frame is excited by road or wheel-end inputs. It is primarily a problem for driver comfort. Up until now, few options were available to resolve this problem. The paper will review the phenomenon, design factors affecting a vehicle's sensitivity to frame beaming, and the principles of Dynamic Vibration Absorbers (AKA Tuned Mass Dampers). Finally, the paper will describe simulation and testing that led to the development of an effective vibration absorber as a field fix.
2014-09-30
Standard
AIR1673B
Manufacturers/designers of all aircraft equipped with a pallet/container capability have provided a means of linking the ground loaders/elevators with the aircraft sill for the smoother transfer of pallets and containers into or out of the aircraft holds. Use of the aircraft attachment points may be used as a means of averting damage to the aircraft door frames and other important parts. Latch-on guarantees fore and aft and vertical alignment of the loader bed with the aircraft doorway, when used in conjunction with the appropriate ground equipment. This SAE Aerospace Information Report (AIR) has been prepared by SAE Subcommittee AGE-2A to present a review of the current range of aircraft attachment points on wide body aircraft and those narrow body aircraft with a ULD cargo capability. Airline operators, who utilized these facilities, have been faced with a growing number of adaptor bars necessary to suit each type of aircraft and door position. There is also a stowage problem on the elevator compounded by the increasing number of bars necessary to suit each aircraft.
2014-09-16
Magazine
All the right connections With 2013 sales of $6.8 billion, Dana is a leading tier one supplier. Ian Adcock catches up with its chief technical and quality officer George Constand. Jaguar's lightweight challenger Ian Adcock uncovers the secrets that make the XE saloon, Jaguar's most important car yet. Boxing clever How composite crashboxes save weight and cost
2014-08-21
Standard
AS5240B
Scope is uanvailable.
2014-08-21
Standard
AS5239B
Scope is unavailable.
2014-08-21
Standard
AS5241B
Scope is unavailable.
2014-08-20
Standard
AS5242B
Scope is unavailable.
2014-07-01
Magazine
Global Viewpoints The latest strategies are investigated for vehicle development by automakers and major suppliers. Sports cars embrace array of green technology IMSA Tudor United SportsCar Championship promotes a variety of green technologies to link racing to the road. More gears, more challenges Many strategies, as well as key software and hardware aspects related to controllers, networks, sensors, and actuators, must be considered to keep automatic transmissions shifting smoothly as more gears are added to improve fuel economy. Advancing structural composites Industry experts address the opportunities and challenges involved with moving toward composite-intensive vehicles, including Nissan's effort to produce a high-volume, fully recyclable composite liftgate with low metal content.
2014-06-30
Technical Paper
2014-01-2079
Gregor Tanner, David J. Chappell, Dominik Löchel, Niels Søndergaard
Abstract Modelling the vibro-acoustic properties of mechanical built-up structures is a challenging task, especially in the mid to high frequency regime, even with the computational resources available today. Standard modelling tools for complex vehicle parts include finite and boundary element methods (FEM and BEM), as well as Multi-Body Simulations (MBS). These methods are, however, robust only in the low frequency regime. In particular, FEM is not scalable to higher frequencies due to the prohibitive increase in model size. We have recently developed a new method called Discrete Flow Mapping (DFM), which extends existing high frequency methods, such as Statistical Energy Analysis or the so-called Dynamical Energy Analysis (DEA), to work on meshed structures. It provides for the first time detailed spatial information about the vibrational energy of a whole built-up structure of arbitrary complexity in this frequency range. The response of small-scale features and coupling coefficients between sub-components are obtained through local FEM models integrated in the global DFM treatment.
2014-06-30
Technical Paper
2014-01-2081
Rainer Stelzer, Theophane Courtois, Ki-Sang Chae, Daewon SEO, Seok-Gil Hong
Abstract The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment. After providing a brief review of the established approaches for TL simulation at LF, the article will present a new FE methodology for TL simulation and introduce the advantages of “in-situ” TL simulations by means of fluid-structure FE calculation.
2014-06-26
Standard
J1828_201406
This SAE Recommended Practice defines, for vehicle manufacturers and collision information and equipment providers, the types of vehicle dimensional data needed by the collision repair industry and aftermarket equipment modifiers to properly perform high-quality repairs to damaged vehicles. Both bodyframe and unitized vehicles, including passenger cars and light trucks, are addressed.
2014-06-17
WIP Standard
J1453/2
1.1 Purpose The three parts of SAE J1453 cover material, dimensional, and performance requirements of steel O-ring face seal (ORFS) connectors for tubing and the O-ring face seal interface and nut portion of hose stem assemblies for nominal tube diameters of 6 mm through 38 mm and for nominal hose diameters 6.3 mm through 38 mm. SAE J1453-2 covers the requirements for “metric based” O-ring face seal connectors to metric stud ends along with the associated adapters, bulkhead and union connectors. Metric hex wrenching flats are used throughout this standard. 1.2 Field of Application These connectors are intended for general application and hydraulic systems on industrial equipment and commercial products, where elastomeric seals are acceptable to overcome leakage and variations in assembly procedures. These connectors are capable of providing leak proof full flow connections in hydraulic systems operating from 95 kPa vacuum to the working pressures shown in Table 3. Since many factors influence the pressure at which a hydraulic system does or does not perform satisfactorily, these values should not be construed as guaranteed minimums.
2014-06-16
WIP Standard
J782
This recommended practice is a source of information for body and trim engineers and represents existing technology in the field of on-highway vehicle seating systems. It provides a more uniform system of nomenclature, definitions of functional requirements, and testing methods of various material components of motor vehicle seating systems.
2014-05-19
Video
This video summarizes Chapter 10 of the book, “Theory and Applications of Aerodynamics for Ground Vehicles”, by Dr. T. Yomi Obidi, published by SAE International. Concepts demonstrated include the effects of the control surfaces on vehicle performance and drag in sunroofs and convertibles.
2014-05-16
Video
This video summarizes Chapter 6 of the book, “Theory and Applications of Aerodynamics for Ground Vehicles”, by Dr. T. Yomi Obidi, published by SAE International. Concepts demonstrated include aerodynamic considerations in building each of the three vehicle sections, drag reduction methods at section interface, and aerodynamic benefits of composite build.
2014-05-07
Technical Paper
2014-36-0008
Torbjörn Narström
Abstract The use of modern quenched and tempered steels in dumper bodies to reduce weight to increase the payload and reduce the fuel consumption is briefly discussed. Modern quenched and tempered steels in combination with adopted design concept will further increase weight savings of the dumper body. Use of these materials may lead to 4 times longer wear life than ordinary steels. One of the main load cases for a dumper body is impact of an object, i.e. boulders and rocks, into the body. A well-proven test setup is used to develop a model to predict failure and depth of the dent after the impact. A material model with damage mechanic was utilized to predict fracture. The developed model was used to study the effect of the geometry of the impacting object, thickness of the plate and unconstrained plate field. The model was also implemented in larger model and compared with a full scale test of dumper body. It was found that the most sensitive parameter is the geometry of the falling object.
2014-05-07
Technical Paper
2014-36-0031
Timo Björk, Ilkka Valkonen, Jukka Kömi, Hannu Indren
Abstract The development of weldable high-strength and wear-resistant steels have made modern structures such as booms and mobile equipment possible. These sorts of novel and effective designs could not be constructed with traditional mild steel. Unfortunately, the use of these novel steels requires proper design, and there is no practical design code for these novel steels. This paper addresses stability issues, which are important considerations for designs with high-strength steels, and the properties of the heat-affected zone, which may require special attention. Fatigue design is also discussed in this paper, and the importance of the weld quality is highlighted, along with discussions on which details in the weld are the most important. By comparing the test results with the classical load limit solution, it is determined that full plastic capacity is reached and that the samples display good strain properties. Additionally, the reliability of the classical formulas is shown by comparing them to a recently proposed, novel formula.
Viewing 1 to 30 of 2406

Filter

  • Range:
    to:
  • Year: