Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2712
2017-09-19
WIP Standard
J706
This SAE Standard applies only to new winches which are primarily designed for intermittent pulls and lifts and whose configuration and condition are the same as when they were shipped by the manufacturer. They are not intended to be used in any manner for the movement of personnel. They may be driven by any power source recommended by the manufacturer and will be capable of being powered in either direction. They will be equipped with an automatic safety brake system to control a load when lowering under power and positively hold a load when power is not being delivered to the winch. A hydraulic flow control valve or similar device may be used in the brake system to control a load when lowering under power. A clutch to release the drum for Òfree-spoolingÓ may be provided and will be designed not to disengage itself under load. A drag brake may be provided to control Òfree-spooling,Ó but will not be relied on to control or hold a load.
2017-09-19
Technical Paper
2017-01-2074
Thorsten Dillhoefer, Fatih Erdinc
Ever increasing process applications inspire us, as suppliers of aircraft, structural-assembly, and equipment to design innovative and modular, manufacturing cells in compliance with modern specifications. The result is the new flexible C-Frame Panel Assembly Cell (CPAC) Bulkhead riveting System. This paper describes how benchmarks for flexible automated drilling and fastening are being achieved with the CPAC.
2017-09-19
Technical Paper
2017-01-2078
Eric Barton, Rick Wolf
The focus of this technical paper is a unique automatic fastening system configuration for loading, positioning & unloading pre-tacked door assemblies within a static C-Frame Drivmatic fastening machine using an off-the-shelf, high accuracy Fanuc robot. In 2011, PMC was awarded a significant contract for supplying commercial OEM aircraft doors and recognized automation was the most feasible approach for fastening each door assembly. At the time of contract award, PMC was an established aero structure supplier with significant automation capability for machining high tolerance parts & assemblies and manual fastening resources to support many different OEM programs however PMC did not have automatic fastening experience or capability. In support of this new Tier-2 contract, PMC reached out to Gemcor to propose a collaborative robot solution for automatically fastening 5 different door assemblies that were historically fastened using a semi-automatic configuration.
2017-09-06
Video
Automakers are looking to harness the sun's energy to power electrical components in new vehicles. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at Audi's plan to integrate solar cells into the roofs of their electric vehicles. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
2017-08-25
Technical Paper
2017-01-5007
Jinlun Wang, Zhengwei Ma
Abstract Flanging U-shaped piece is the typical auto-body part, such as tailor-welded front rail inner panel, whereas, large springback amount is a critical challenge in sheet metal forming process, which size and shape accuracy affect the quality of the following assembly process. Firstly, a new form of variable blank holder force (BHF) was proposed in this paper, the springback problem was analyzed by numerical method based on the constant BHF of 90 t, and the contours of Von-Mises stress and springback amount were calculated by the dieless method. Secondly, variable BHF with changes in position and punch stroke was designed and used to control springback. Finally, orthogonal experimental and range analysis method were used to optimize the variable BHF parameters. In addition, the springback angles of sidewall and flange under 16 different combinations were calculated.
2017-08-25
Technical Paper
2017-01-5005
Subhash Hanmant Bhosale, Ashish Kumar Sahu, Suhas Kangde, Abhijit Londhe
Abstract In today’s cost competitive environment, automotive companies are moving towards lightweight materials for reducing carbon footprint, increasing fuel economy and cost benefits. Fiber reinforced plastics (FRP) is one of the most attractive option considering its high strength to weight ratio. The advantage of continuous FRP composites is tailorability according to different performance requirements. This paper will focus on finite element analysis and optimization of automotive hood structure made up of continuous carbon fiber reinforced composite with epoxy resin based matrix. Composite hood structure is analyzed using detailed orthotropic composite laminate models and an appropriate composite material failure theory. Strength of FRPs is maneuvered by orientations of the fiber plies. Considering this, stack-up sequence optimization is performed considering bending, torsional stiffness and fundamental modes in dynamic analysis.
CURRENT
2017-08-09
Standard
J701_201708
The information in this SAE Information Report is the result of studies by the Automobile Manufacturers Association, American Trucking Association, and Truck Trailer Manufacturers Association, to achieve interchangeability of equipment which will comply with the legal dimensional limitations for the majority of states and yet permit increased loading space within these dimensions. This in no way supersedes other information in the SAE Handbook on this subject. Some cases will require more care in application allowing splash shield clearance at trailer support interference points and positioning fifth wheel to allow trailer swing clearance on an 11% grade. All dimensions are given in inches. Table 1 and Figures 1 and 2 show basic requirements for interchangeability of truck tractor and semitrailer equipment. Figure 3 shows the interchangeability of the doubles converter dolly.
2017-08-01
Journal Article
2017-01-9682
Mohsen Rahmani, Kamran Behdinan
Abstract Widely used in automotive industry, lightweight metallic structures are a key contributor to fuel efficiency and reduced emissions of vehicles. Lightweight structures are traditionally designed through employing the material distribution techniques sequentially. This approach often leads to non-optimal designs due to constricting the design space in each step of the design procedure. The current study presents a novel Multidisciplinary Design Optimization (MDO) framework developed to address this issue. Topology, topography, and gauge optimization techniques are employed in the development of design modules and Particle Swarm Optimization (PSO) algorithm is linked to the MDO framework to ensure efficient searching in large design spaces often encountered in automotive applications. The developed framework is then further tailored to the design of an automotive Cross-Car Beam (CCB) assembly.
CURRENT
2017-07-12
Standard
J2253_201707
This SAE Standard is intended to serve as a guide for the collection of physical, mechanical, and thermal properties of fiber-reinforced polymer composite materials for automotive structural applications. This document attempts to utilize test methods applicable to the widest range of structural materials and processes without compromising the integrity of the data being sought. A summary of the material characterization is shown in Section 15.
2017-06-28
Journal Article
2017-01-9182
Sheng Li, Cunfu Chen, Xingjun Hu, Jiexun Cao
Abstract The magnitude of door closing force is important in vehicle NVH characters, and in most case, it is not fully studied by computer aided engineering (CAE) in an early developing stage. The research took a heavy-duty truck as the study object and used Computational Fluid Dynamic (CFD) method with dynamic mesh to analyze the flow field of the cabin during door closing process. The change trend of pressure with time was obtained, and the influence of different factors was studied. The experiments were conducted to verify the results. Results show that the velocity of closing door and the size of relief holes have a significant influence on cabin interior pressure, and greater velocity leads to larger the pressure in cabin. The initial angle of the door affects interior pressure less comparing with the velocity of closing door. The interior pressure could be reduced effectively with the method of decreasing the velocity of closing door and increasing the size of relief holes.
2017-06-27
Journal Article
2017-01-9179
Mike Liebers, Dzmitry Tretsiak, Sebastian Klement, Bernard Bäker, Peter Wiemann
Abstract A vital contribution for the development of an environmental friendly society is improved energy efficiency in public transport systems. Increased electrification of these systems is essential to achieve the high objectives stated. Since the operating range of an electrical vehicle is heavily influenced of the available energy, which primarily is used for propulsion and thermal passenger comfort, all heat losses in the vehicle systems must be minimized. Especially for urban buses, the unwanted heat losses through open doors while passengers are boarding, have to be controlled. These energy fluxes are due to the large temperature gradients generated between in- and outdoor conditions and to install air-walls in the door opening areas have turned out to be a promising technical solution. Based on air-wall technologies used for climate control in buildings, this paper presents an experimental investigation on the reduction of heat losses in the door opening of urban buses.
CURRENT
2017-06-21
Standard
AS4664D
SCOPE IS UNAVAILABLE.
CURRENT
2017-06-21
Standard
AS1008J
SCOPE IS UNAVAILABLE.
CURRENT
2017-06-21
Standard
AS1007K
SCOPE IS UNAVAILABLE.
2017-06-07
Video
The body of the vehicle you?re driving may be held together with more glue than welds. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at joining dissimilar materials with industrial adhesives. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show.
2017-06-05
Technical Paper
2017-01-1760
Weimin Thor, J. Stuart Bolton
Abstract Due the increasing concern with the acoustic environment within automotive vehicles, there is an interest in measuring the acoustical properties of automotive door seals. These systems play an important role in blocking external noise sources, such as aerodynamic noise and tire noise, from entering the passenger compartment. Thus, it is important to be able to conveniently measure their acoustic performance. Previous methods of measuring the ability of seals to block sound required the use of either a reverberation chamber, or a wind tunnel with a special purpose chamber attached to it. That is, these methods required the use of large and expensive facilities. A simpler and more economical desktop procedure is thus needed to allow easy and fast acoustic measurement of automotive door seals.
2017-06-05
Technical Paper
2017-01-1842
Akin Oktav, Cetin Yilmaz, Gunay Anlas
Abstract To prevent trunk lid slam noise, reactive openings are used in the trunk cavities of passenger vehicles. In sedans, the trunk cavity and the cabin cavity are coupled acoustically through the discontinuities on the parcel shelf and/or the rear seat. In such a case, these openings behave as necks of a Helmholtz resonator, which in turn change the acoustic response of the system. In this study, the Helmholtz resonator effect of the trunk cavity is discussed analytically through a simplified cavity model. A case study, where the acoustic response of a sedan is analyzed through a computational model considering the resonator effect is also given. Sound pressure levels show that instant pressure drops and damping effects observed in the acoustic response can be explained with the resonator effect. Results obtained from the computational model of the sedan are verified with the track test measurements.
2017-06-05
Journal Article
2017-01-1876
Weiyun Liu, David W. Herrin, Emanuele Bianchini
Abstract Microperforated panel absorbers are best considered as the combination of the perforate and the backing cavity. They are sometimes likened to Helmholtz resonators. This analogy is true in the sense that they are most effective at the resonant frequencies of the panel-cavity combination when the particle velocity is high in the perforations. However, unlike traditional Helmholtz resonators, microperforated absorbers are broader band and the attenuation mechanism is dissipative rather than reactive. It is well known that the cavity depth governs the frequency bands of high absorption. The work presented here focuses on the development, modeling and testing of novel configurations of backing constructions and materials. These configurations are aimed at both dialing in the absorption properties at specific frequencies of interest and creating broadband sound absorbers. In this work, several backing cavity strategies are considered and evaluated.
2017-06-05
Technical Paper
2017-01-1886
Siwen Zhang, Jian Pang, Jun Zhang, Zhuangzhuang Ma, Xiaoxuan Zhang, Congguang Liu, Lihui Deng
Abstract A subjective evaluation method for the air-borne sound insulation of vehicle body in reverberation room is developed and the correlation between the subjective preference and objective noise reduction level (NRL) is investigated in this paper. The stationary vehicle's interior noise is recorded by using a digital artificial head under a given white noise excitation in the reverberation room, which demonstrates more credible than those in traditional road test methods. The recorded noises of six different vehicles are replayed and evaluated subjectively by 22 appraisers in a sound quality room. The paired comparison scoring method is employed and the check and statistic methods for the subjective scores are introduced. The subjective preference is introduced and calculated by the statistics and normalization of the effective scores, which can indicate an overall preference ranking of all the six vehicles numerically.
2017-06-05
Journal Article
2017-01-1813
James M. Jonza, Thomas Herdtle, Jeffrey Kalish, Ronald Gerdes, Taewook Yoo, Georg Eichhorn
Abstract The aerospace industry has employed sandwich composite panels (stiff skins and lightweight cores) for over fifty years. It is a very efficient structure for rigidity per unit weight. For the automobile industry, we have developed novel thermoplastic composite panels that may be heated and shaped by compression molding or thermoforming with cycle times commensurate with automotive manufacturing line build rates. These panels are also readily recycled at the end of their service life. As vehicles become lighter to meet carbon dioxide emission targets, it becomes more challenging to maintain the same level of quietness in the vehicle interior. Panels with interconnected honeycomb cells and perforations in one skin have been developed to absorb specific noise frequencies. The absorption results from a combination and interaction of Helmholtz and quarter wave resonators.
2017-06-05
Technical Paper
2017-01-1852
Satyajeet P. Deshpande, Pranab Saha, Kerry Cone
Abstract Most of NVH related issues start from the vibration of structures where often the vibration near resonance frequencies radiates the energy in terms of sound. This phenomenon is more problematic at lower frequencies by structureborne excitation from powertrain or related components. This paper discusses a laboratory based case study where different visco-elastic materials were evaluated on a bench study and then carried on to a system level evaluation. A body panel with a glazing system was used to study both airborne and structureborne noise radiation. System level studies were carried out using experimental modal analysis to shift and tune the mode shapes of the structure using visco-elastic materials with appropriate damping properties to increase the sound transmission loss. This paper discusses the findings of the study where the mode shapes of the panel were shifted and resulted in an increase in sound transmission loss.
2017-06-05
Technical Paper
2017-01-1751
Nicolas Schaefer, Bart Bergen, Tomas Keppens, Wim Desmet
Abstract The continuous pursuit for lighter, more affordable and more silent cars, has pushed OEMs into optimizing the design of car components. The different panels surrounding the car interior cavity such as firewall, door or floor panels are of key importance to the NV performance. The design of the sound packages for high-frequency airborne input is well established. However, the design for the mid-frequency range is more difficult, because of the complex inputs involved, the lack of representative performance metrics and its high computational cost. In order to make early decisions for package design, performance maps based on the different design parameters are desired for mid-frequencies. This paper presents a framework to retrieve the response surface, from a numerical design space of finite-element frequency sweeps. This response surface describes the performance of a sound package against the different design variables.
2017-06-05
Technical Paper
2017-01-1859
Filip Franek, Jungu Kang, Jeon Uk, Sunguk Choi
Abstract Structure-born vibrations are often required to be localized in a complex structure, but in such dispersive medium, the vibration wave propagates with speed dependent on frequency. This property of solid materials causes an adverse effect for localization of vibrational events. The cause behind such phenomenon is that the propagating wave envelope changes its phase delay and amplitude in time and space as it travels in dispersive medium. This problem was previously approached by filtering a signal to focus on frequencies of the wave propagating with a similar speed, with improved accuracy of cross-correlation results. However, application of this technique has not been researched for localization of vibrational sources. In this work we take advantage of filtering prior to cross-correlation calculation while using multiple sensors to indicate an approximate location of vibration sources.
2017-06-05
Journal Article
2017-01-1806
Laurent Gagliardini
Abstract The input mobility is a crucial structural parameter regarding vibro-acoustic design of industrial objects. Whatever the frequency range, the vibrational power input into a structure -and consequently the average structural-acoustic response- is governed by the input mobility. When packaging structure-borne noise sources, the knowledge of the input mobility at the source connection points is mandatory for noise control. The input mobility is classically computed at the required points as a specific Frequency Response Function (FRF). During an industrial design process, the choice of connection points requires an a priori knowledge of the input mobility at every possible location of the studied structure-borne source, i.e. a mapping of the input mobility. The classical FRF computation at every Degree Of Freedom (DOF) of the considered structure would lead to consider millions of load cases which is beyond current computational limits.
2017-06-05
Technical Paper
2017-01-1812
Steven Sorenson, Gordon Ebbitt, Scott Smith, Todd Remtema
Abstract In an effort to reduce mass, future automotive bodies will feature lower gage steel or lighter weight materials such as aluminum. An unfortunate side effect of lighter weight bodies is a reduction in sound transmission loss (TL). For barrier based systems, as the total system mass (including the sheet metal, decoupler, and barrier) goes down the transmission loss is reduced. If the reduced surface density from the sheet metal is added to the barrier, however, performance can be restored (though, of course, this eliminates the mass savings). In fact, if all of the saved mass from the sheet metal is added to the barrier, the TL performance may be improved over the original system. This is because the optimum performance for a barrier based system is achieved when the sheet metal and the barrier have equal surface densities. That is not the case for standard steel constructions where the surface density of the sheet metal is higher than the barrier.
2017-06-05
Journal Article
2017-01-1830
Thomas Haase, Henning Bühmann, Martin Radestock, Hans Peter Monner
Abstract Due to the strengthened CO2 and NOx regulations, future vehicles have to be lightweight and efficient. But, lightweight structures are prone to vibrations and radiate sound efficiently. Therefore, many active control approaches are studied to lower noise radiation besides the passive methods. One active approach for reducing sound radiation from structures is the active structural acoustic control (ASAC). Since the early 90’s, several theoretical studies regarding ASAC systems were presented, but only very little experimental investigations can be found for this alternative to passive damping solutions. The theoretical simulations show promising results of ASAC systems compared to active vibration control approaches. So, for that reason in this paper an experiment is conducted to investigate the performance of an ASAC system in the frequency range up to 600 Hz.
2017-06-05
Technical Paper
2017-01-1855
Ramakanta Routaray
Abstract The basic function of a motorcycle frame is somewhat similar to that of the skeleton in the human body, i.e. to hold together the different parts in one rigid structure. One of the major benefits (for a motorcycle enthusiast) of using an advanced frame design lies in the sporty handling characteristics of the bike. A well designed frame can add to the joy of riding a motorcycle as the bike would feel more stable, effortless, and confident around corners, in straight lines and while braking. A well approved modeling [2] techniques or adequate guide line principles have to be followed while designing the body and chassis in order to achieve the vibration within control. This paper depicts a methodological right approach (guide lines) while designing the body and chassis of a two wheeler in order to control noise and vibration of the body and chassis.
2017-06-05
Technical Paper
2017-01-1849
Laurent Gagliardini, Romain Leneveu, Aurélien Cloix, Alexandre Durr
Abstract The door response to audio excitation contributes to the overall performance of the audio system on several items. First, acting as a cabinet, it influences the loudspeaker response. Second, due to the door trim inner panel radiation, the radiated power is disturbed. A third effect is the regular occurrence of squeak and rattle, that will not be considered at this stage. Design issues regarding these attributes are numerous, from the loudspeaker design to door structure and trim definition. Modeling then appears as an unavoidable tool to handle the acoustic response of the loudspeaker in its actual surrounding.
2017-06-05
Technical Paper
2017-01-1784
Guillaume Baudet
Abstract Wind noise in automobile is becoming more and more important as customer requirements increase. On the other hand great progress has been made on engine and road noises. Thus, for many vehicles, wind noise is the major acoustic source during road and motorway driving. As for other noises, automobile manufacturers must be able for a new car project to specify, calculate and measure each step of the acoustic cascading: Source Transfers, both solid and air borne In the case of automotive wind noise, the excitation source is the dynamic pressure on the vehicle’s panels. This part of the cascading is the one influenced by the exterior design. Even if many others components (panels, seals, cabin trims) have a big influence, the exterior design is a major issue for the wind noise. The wind noise level in the cabin can sometimes change significantly with only a small modification of the exterior design.
2017-06-05
Journal Article
2017-01-1825
Takenori Miyamoto, Hiroshi Yokoyama, Akiyoshi Iida
Abstract Intense aeroacoustic feedback noises may radiate from flow around an airfoil, rearview mirror with small gaps and so on. Reductions of these noises are important issues in the development of industrial application. The intense noise from a bonnet of the automobile is one of the typical problems of acoustic feedback noise. In order to reduce this noise, plasma actuator (PA) was utilized to control flow and acoustic fields. The aim of this investigation is to clarify the effects of flow control by the PA on noise reduction and the noise reduction mechanism. Wind tunnel experiments were conducted with a half scale bonnet model and a low noise wind tunnel. Simultaneous measurements of flow and noise fields were conducted to understand the generation mechanism of the bonnet noise. Coherent output power (COP) of the velocity fluctuations with reference to far-field sound pressure was measured to visualize noise source distribution.
Viewing 1 to 30 of 2712

Filter

  • Range:
    to:
  • Year: