Viewing 1 to 30 of 4091
2016-09-29 ...
  • September 29, 2016 (8:30 a.m. - 4:30 p.m.) - Scottsdale, Arizona
Training / Education Classroom Seminars
The choice of brake friction materials varies per application, but each must have the appropriate coefficient of friction and be able to disperse large amounts of heat without adversely effecting braking performance. This seminar will provide an introduction to brake lining raw materials and formulation, manufacturing, quality control and testing. The course covers the critical elements that must be reviewed before arriving at a lining selection decision. Different classes of friction material and their use will be defined.
2016-05-23 ...
  • May 23-25, 2016 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
  • November 14-16, 2016 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
Training / Education Classroom Seminars
While a variety of new engineering methods are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to deliver desired braking, handling, and other dynamic response characteristics. In order to better prepare today’s engineer for this task, this course offers twelve modules devoted to key the fundamental principles associated with longitudinal and lateral vehicle dynamics.
2016-04-27 ...
  • April 27-29, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 2-4, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Hydraulic brake systems, one of the most important safety features on many road vehicles today, must meet manufacturer and customer requirements in addition to Federal Motor Vehicle Safety Standards. This course will analyze automotive braking from a system's perspective, emphasizing legal requirements as well as performance expectations such as pedal feel, stopping distance, fade and thermal management. Calculations necessary to predict brake balance and key system sizing variables that contribute to performance will be discussed.
2016-04-18 ...
  • April 18-19, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 13-14, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Once reserved for high-end luxury vehicles, electronic brake control systems are now required standard equipment on even the most inexpensive cars and trucks. Today, nearly every new vehicle benefits from the optimized braking, enhanced acceleration, or improved stability that these systems provide. This comprehensive seminar introduces participants to the system-level design considerations, vehicle interface requirements, and inevitable performance compromises that must be addressed when implementing these technologies. The seminar begins by defining the tire-road interface and analyzing fundamental vehicle dynamics.
Focusing on vehicle ride comfort, such as studies on ride evaluation and suspension tuning, occupant biomechanics and seating dynamics, semi-active and active suspension systems and vehicle elastomeric component modeling and tuning. Specific topics include, but not limited to, vehicle ride motion smoothness and control balancing, structural shake, impact harshness and after shake, brake judder/pulsation, smooth road shake/shimmy/nibble, power hop, launch shudder, freeway hop and any other phenomena affecting ride comfort.
2016-04-11 ...
  • April 11, 2016 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • September 29, 2016 (8:30 a.m. - 4:30 p.m.) - Scottsdale, Arizona
Training / Education Classroom Seminars
Brake Noise, Vibration, and Harshness (NVH) is recognized as one of the major problems currently faced by the automotive manufacturers and their suppliers, with customers warranty claims of more than $100 million per year for each manufacturer. With increasing consumer braking performance expectations, automotive OEM’s and suppliers need the ability to predict potential problems and identify solutions during the design phase before millions of dollars have been spent in design, prototyping, and manufacturing tooling.
2016-03-21 ...
  • March 21, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 30, 2016 (8:30 a.m. - 4:30 p.m.) - Scottsdale, Arizona
Training / Education Classroom Seminars
Brake noise is one of the highest ranked complaints of car owners. Grunts, groans, squeaks, and squeals are common descriptions of the annoying problem which brake engineers spend many hours trying to resolve. Consumer expectations and the high cost of warranty repairs are pushing the optimization of brake NVH performance. This course will provide you with an overview of the various damping mechanisms and tools for analyzing and reducing brake noise. A significant component of this course is the inclusion of case studies which will demonstrate how brake noise squeal issues have been successfully resolved.
2016-03-15 ...
  • March 15-18, 2016 (3 Sessions) - Live Online
  • September 27-30, 2016 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Designing a brake system requires the ability to balance a multitude of parameters against the required tradeoffs of system weight, system cost, and system performance. Understanding the basic fundamentals of how each brake component attribute contributes to the overall Force vs Deceleration behavior of the vehicle is critical to the design and release of a safe, legal and optimized system for today’s vehicles. Brake balance also is a contributing factor to other chassis control and safety systems, such as regenerative braking, ABS, and electronic brake distribution (EBD).
2015-12-02 ...
  • December 2-4, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 7-9, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Increased public pressure to improve commercial truck safety and new stopping distance regulations have intensified the need to better understand the factors influencing heavy vehicle braking performance. To assist individuals and their organizations in preparing for these new truck braking standards, this seminar focuses attendees on understanding medium-duty hydraulic brake systems and heavy-duty air brake systems and how both systems' performance can be predicted, maintained and optimized.
WIP Standard
This document aims to establish best practices in equipment setup and measurement of brake rotor disk thickness variation (DTV) on vehicle.
WIP Standard
This SAE Recommended Practice describes a marking system to distinguish long-stroke from standard stroke for service, parking, and combination air-brake actuators, roto-chambers, and components. Said actuators are used for applying cam and disc-type foundation brakes by slack adjuster means.
This SAE Technical Information Report provides a compendium of terms, definitions, abbreviations, and acronyms to enable common terminology for use in engineering reports, diagnostic tools and publications related to active safety systems. This information report is a survey of active safety systems and related terms. The definitions offered are descriptions of functionality rather than technical specifications. Included are warning and momentary intervention systems, which do not automate any part of the dynamic driving task on a sustained basis like those defined in SAE J3016 Automated Driving Systems.
This SAE Recommended Practice (RP) establishes uniform powered vehicle level test procedure for Forward Collision Avoidance and Mitigation (FCAM) systems (also identified as Automatic Emergency Braking (AEB) systems) used in highway commercial vehicles and coaches greater than 4535 Kg (10,000 lb.) GVWR. This RP does not apply to trailers, dollies, etc. and does not intend to exclude any particular system or sensor technology. These FCAM systems utilize various methodologies to identify, track and communicate data to the operator and vehicle systems to warn, intervene and/or mitigate in the longitudinal control of the vehicle.
This SAE Standard covers minimum requirements for two types of metallic tubing and pipe as used in automotive air brake systems. It includes material and performance specifications, corrosion precautions, and installation recommendations. Copper tubing is designated Type 1, and galvanized steel pipe Type 2.
Viewing 1 to 30 of 4091


  • Range:
  • Year: