Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2362
2015-09-14 ...
  • September 14-17, 2015 (8:30 a.m. - 4:30 p.m.) - Greenville, South Carolina
Training / Education Classroom Seminars
                                                                 Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy truck dynamics.
2015-08-17 ...
  • August 17, 2015 (8:30 a.m. - 4:30 p.m.) - Rosemont, Illinois
Training / Education Classroom Seminars
This seminar provides an introduction to several critical aspects of heavy truck dynamics. The comprehensive presentation and discussion will begin with the mechanics and dynamics of heavy truck tires, followed by steering dynamics, and finally moves participants into suspension kinematics and dynamics. Starting at the ground and moving up, this seminar explores the important dynamic aspects of each subsystem and how each is related to the overall truck dynamics.
2015-06-25
Event
This session includes papers in the areas of static, dynamic, and fatigue characterization of elastomers, bushings, mounts and shock absorbers used in the mobility industry. Particular emphasis is given to new and innovative analysis and testing methodologies to quantify the non-linear properties of these systems in addition to the effects of temperature, frequency, and aging. Papers dealing with specific applications and case studies of existing methodologies are also welcome.
2015-06-15
Technical Paper
2015-01-2355
Luke Fredette, Jason Dreyer
Hydraulic bushings with amplitude sensitive and spectrally varying properties are commonly used in automotive suspension. However, scientific investigation of their dynamic properties has been mostly limited to linear system based theory, which cannot capture the significant amplitude dependence exhibited by the devices. This paper extends prior literature by introducing a nonlinear fluid compliance term for reduced-order bushing models. Quasi-linear models developed from step sine tests on an elastomeric test machine can predict amplitude dependence trends, but offer limited insight into the physics of the system. A bench experiment focusing on the compliance parameter isolated from other system properties yields additional understanding and a more precise characterization. Computational analysis of the bench experiment offers general agreement with both bench experiment and step sine test results.
2015-06-15
Technical Paper
2015-01-2351
Hongyu Shu, Shuang Luo, Li Wang
Recently auto shock absorbers have caused automobile users in China a lot of complaints that they have abnormal noise. In order to measure the noise of auto shock absorbers, a test bench which detect piston-rod vibration response of shock absorber excited by oscillating crankshaft mechanism, and measuring analyzer named as SANTS-Ⅰ,which included specialized signal process and analysis software have been developed. A lot of tests of auto shock absorbers of the abnormal noise have been carried out with the test bench and the piston-rod vibration response data have been collected. It has been showed that there are violent peaks with high frequency in the sine curve of piston-rod oscillating with relative low frequency, signal processed by SANTS-Ⅰmeasuring analyzer.
2015-06-15
Technical Paper
2015-01-2353
Jan Bunthoff, Frank Gauterin, Christoph Boehm PhD
In an automotive suspension, the shock absorber plays a significant role to enable the vehicle performances, especially in ride&handling and NVH. Understanding its physical characteristics is of great importance, as it has a main influence on the overall vehicle performance. Within this research project simulation models for different passive monotube shock absorber systems have been created in a 1-D system simulation software. The simulation models are designed and parameterized physically. To validate the simulation models measurements on different hydropuls-shaker with specially designed control signals to investigate the behaviour during high frequency excitation, have been done. A detailed discussion of the several models and results of a simulation to measurement comparison is given. After detailed investigation the shock absorber simulation models are now adaptable to the multi body simulation.
2015-06-15
Technical Paper
2015-01-2364
Xianpai Zeng, Jared Liette, Scott Noll
The vibration isolation effectiveness of powertrain mount configurations is examined for electric vehicle application by focusing on the deteriorating effect introduced by internal mount resonances. Unlike internal combustion engines where mounts are typically designed only for static support and low frequency dynamics, electric motors have higher excitation frequencies in a range where mount resonances often occur. The problem is first analytically formulated by considering a simple 2-dimensional powertrain system. It is shown that by modifying the mount shape, the mount resonance(s) can be shifted while maintaining the same static rate. Further, vibration isolation is improved over a narrow frequency range by using non-identical mounts that split mount resonance peaks. Then a computational model for a realistic drive unit (containing electric motor, power invertor, and differential case) is considered.
2015-06-15
Technical Paper
2015-01-2354
Xiao-Ang Liu, Zhaoping Lv, Wenbin Shangguan
Since the balances of 3-cylinder engine is worse than 4- or 6- cylinder engine, design of powertrain mounting system for engine with three cylinders is much more significant to engine vibration isolation. Inline 3-cylinder engine vibrations are caused by imbalance forces from reciprocate inertial forces of pistons, the rotation inertia forces from the crank and connecting road and the gas combustion forces. The excitation of a 3-cylinder engine is heavier than 3-cylinder engine, so the new design method of mounting system for isolation engine vibration should be developed. The purpose of this paper is to analyze the balance method for 3-cylinder engine, and the optimization method for its mounting system. Firstly the calculation method for obtaining the forces and moments applied to the engine block is presented.
2015-05-18 ...
  • May 18-20, 2015 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
  • November 16-18, 2015 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
Training / Education Classroom Seminars
While a variety of new engineering tools are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to ensure desired braking, handling, and other dynamic response characteristics. In order to better prepare today's engineer for this task, this course offers twelve modules devoted to the key fundamental principles associated with longitudinal and lateral vehicle dynamics.
2015-04-23
Event
The purpose of this session is to provide a forum for presentations on steering and suspension related topics as it applies to ground vehicles. Papers for this session should address new approaches as well as advances in application of steering, suspension related technologies.
2015-04-23
Event
The purpose of this session is to provide a forum for presentations on steering and suspension related topics as it applies to ground vehicles. Papers for this session should address new approaches as well as advances in application of steering, suspension related technologies.
2015-04-22 ...
  • April 22-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 4-6, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. Just as the chassis and suspension system provides an ideal framework for the automobile, this popular SAE seminar provides an informative framework for those involved in the design of these important systems.
2015-04-14
Technical Paper
2015-01-1345
Srinivas Kurna, Arpit Mathur, Sandeep Sharma
In commercial vehicle, Leaf Spring design is an important milestone during product design and development. Leaf springs are the most popular designs having multiple leaves in contact with each other and show hysteresis behavior when loaded and unloaded. Commonly used methods for evaluation of leaf spring strength like endurance trials on field and Rig testing are time consuming and costly. On the other hand, virtual testing methods for strength and stiffness evaluation give useful information early in the design cycle and save considerable time and cost. They give flexibility to evaluate multiple design options and accommodate any design change early in development cycle. A study has been done in VECV to correlate rig result with FEA simulation result of Multi-stage Suspension Leaf Spring, entirely through Finite Element Analysis route. Virtual leaf spring with U-Clamps and Suspension brackets with revolute joints are modeled in FEA which is similar to rig test bed setup.
2015-04-14
Technical Paper
2015-01-1497
Hideaki Shibue, Devesh Srivastava
Torsion beam suspensions are lightweight and low-cost, and they are therefore frequently used for the rear of small front-wheel drive vehicles. The configuration of the suspension is simple and it comparatively consists of fewer components. However, it is difficult to predict their characteristics and satisfy the target of the performance in the early stages of development in particular, because it should realize the various performance elements demanded of a suspension in a single part. A great deal of research has been conducted on the cross-sectional shape of the beam section, but up to the present there has been almost no discussion of the effect of property of the trailing arms on suspension characteristics. This paper discusses tests conducted to study the effect of the rigidity of the trailing arms, and considers the mechanism of that effect.
2015-04-14
Technical Paper
2015-01-1499
Tadatsugu Takada, Kazuki Tomioka
Honda developed the right and left independent toe-angle control system (first-generation P-AWS) in the Acura RLX in 2013 and announced it as the first in the world. As indicated in a previous paper, “Independent Left and Right Rear Toe Control System,” with this system Honda has realized an excellent balance between the fun of handling that is at the driver’s will (INOMAMA) and driving performance with a sense of stability. This first-generation P-AWS is designed to be optimal to the vehicle specifications (suspension axial force, steering gear ratio, etc.) of the Acura RLX. Honda is due to widely adapt P-AWS to other models from now on. Following this, we developed the next-generation P-AWS system (second-generation P-AWS) in order to reconcile system performance and low cost wherever possible, in order to be adaptable for all ACURA models.
2015-04-14
Technical Paper
2015-01-1495
Qiushi Wang, Shenjin Zhu, Yuping He
Articulated heavy vehicles (AHVs) exhibit poor directional performance that is attributed to the high accident rate of these vehicles. Many control strategies have been proposed to increase the safety of AHVs. Optimal controllers based on the Linear Quadratic Regulator (LQR) technique have been explored to enhance the lateral stability of AHVs; these controllers are designed under the assumption that the vehicle model parameters and operating conditions are given and they remain as constants. However, in reality, the vehicle system parameters and operating conditions may vary. For example, the payload of trailer may vary within a huge range. To address the vehicle model parametric variation issue, this paper proposes a model reference adaptive controller for active trailer steering of AHVs. The adaptive controller is designed based on a tractor-semitrailer model with three degrees of freedom; to ensure the convergence of the controller, Lyapunov theory is applied.
2015-04-14
Technical Paper
2015-01-0616
Aref M.A. Soliman
Abstract In this paper, passive and various types of intelligent vehicle suspension systems are compared in terms of their relative ride performance capabilities and power requirements. These systems are active, two and three setting switchable dampers suspension systems. The control gains of the intelligent systems are obtained using optimal control theory and gain scheduling strategy (GS) is used for the system behaviour. In the first strategy (GS) used, gains are selected based on suspension working space. While, the other strategy (GS), gains are selected based on body acceleration. These strategies are used to maintain suspension working space and dynamic tyre deflection levels within design limits and to minimise body acceleration level. The mean power consumed in rolling resistance and the mean power dissipation within the suspensions is evaluated.
2015-04-14
Technical Paper
2015-01-0620
Manoj Mahala, Anindya Deb, Clifford Chou
Abstract Idealized mathematical models, also known as lumped parameter models (LPMs), are widely used in analyzing vehicles for ride comfort and driving attributes. However, the limitations of some of these LPMs are sometimes not apparent and a rigorous comparative study of common LPMs is necessary in ascertaining their suitability for various dynamic situations. In the present study, the mathematical descriptions of three common LPMs, viz. quarter, half and full car models, are systematically presented and solved for the appropriate response parameters such as body acceleration, body displacement, and, pitch and roll angles using representative passive suspension system properties. By carrying out a comparison of the three stated LPMs for hump-type road profiles, important quantitative insights, not previously reported in the literature, are generated into their behaviors so that their applications can be judicious and efficient.
2015-04-14
Technical Paper
2015-01-0630
Guangzhong Xu, Nong Zhang, Holger Roser, Jiageng Ruan
Abstract The purpose of this paper is to present a concept of Hydro-Pneumatic Interconnected Suspension (HPIS) and investigate the unique property of the zero warp suspension stiffness. Due to the decoupling of warp mode from other modes, the road holding ability of the vehicle is maximized meanwhile the roll stability and ride comfort can be tuned independently and optimally without compromise. Ride comfort can be improved with reduced bounce stiffness and the progressive air spring rate can reduce the requirement of suspension deflection space. The roll stability can also be improved by increased roll stiffness. Vehicle suspension system modelling and modal analysis are carried out and compared with conventional suspension. The frequency response of tyres' dynamic load reveals that the proposed zero-warp-stiffness suspension enables the free articulation of front and rear axles at low frequency.
2015-04-14
Technical Paper
2015-01-0635
Changxin Wang, Wenku Shi, Zhijun Guo, Meilan Liu
Abstract For the roll vibration problem of a Truck, a 4-DOF roll vibration model of its front suspension system was built. According to dynamics theory, the complex modal vibration modes of the model were all obtained. At the same time, the frequency response functions of frame roll angle acceleration, the relative dynamic load of wheel and the suspension dynamic deflection were respectively presented. Then their characteristics were respectively researched. In the process of characteristic analysis, a new system parameter was proposed, which is the space ratio of the space between suspensions of left and right sides and the wheel track of the front axle (space ratio in short). At last, the influence of system parameters on the vibration transmission property was also reserached, which included the natural frequency of the frame, the damping ratio, the stiffness ratio, the mass ratio, the rotational inertia ratio and the space ratio.
2015-04-14
Technical Paper
2015-01-0617
Jie Zhang, Xiao Chen, Bangji Zhang, Lifu Wang, Shengzhao Chen, Nong Zhang
Abstract This paper demonstrates time response analysis of the mining vehicle with bounce and pitch plane hydraulically interconnected suspension (HIS) system. Since the mining vehicles working in harsh conditions inducing obvious pitch motion and the hard stiffness of suspensions leading to the acute vibration, the passive hydraulically interconnected system is proposed to provide better ride comfort. Furthermore, the hydraulic system also increases the suspension stiffness in the pitch mode to prevent vehicle from large pitch motions. According to the hydraulic and mechanical coupled characteristic of the mining vehicles, a 7degrees of freedom (7-DOFS) mathematical model is employed and the state space method is used to establish the mechanical and hydraulic coupled dynamic equations. In this paper, the vehicles are subjected to straight line braking input, triangle block bump input applied to the wheels and random road tests.
2015-04-14
Technical Paper
2015-01-0613
Donghong Ning, James Coyte, Hai Huang, Haiping Du, Weihua Li
Abstract This paper presents a study on experimental vibration simulation using a multiple-DOF motion platform for heavy duty vehicle seat suspension test. The platform is designed to have 6-DOF with the advantages of high force-to-weight ratio, high dexterity and high position accuracy. It can simulate vehicle vibrations in the x, y and z translational axis and in the roll pitch and yaw axis rotation. To use this platform to emulate the real vibration measured from vehicle seat base under real operation for vehicle seat suspension test in lab, an Inertial Measurement Unit (IMU) is applied to collect the acceleration data from a real vehicle. An estimation algorithm is developed to estimate the displacement from the measured acceleration. The estimated displacement is then used to calculate the length of each leg of the platform so that the platform can generate the motion similar to the measured one.
2015-04-14
Technical Paper
2015-01-0576
Jiaquan Chen, Yongfeng Jiang, Min Qin, Wenquan Hao, Yin-Ping Chang, Lingge Jin
This research proposes an automatic computer-aided design, analysis, and optimization process of a twist beam rear suspension system. The process combines CAD (Computer-Aided Design), CAE (Computer-Aided Engineering), and optimization technologies into an automation procedure, which includes: structural design, dynamic analysis, vibration analysis, durability analysis, and multidisciplinary optimization. The automation results shown the twist beam rear suspension weight reduced, the durability fatigue life increased, and the K&C (kinematics & compliance) characteristics are improved significantly.
2015-04-14
Technical Paper
2015-01-1120
Siddhartha Singh, Sudha Ramaswamy
Abstract 1 The modern engine is capable of producing high torque and horsepower. Now the customer wants state of the art comfort and ergonomics.Thus the manufacturers are focusing on reducing the clutch pedal effort and providing a pleasurable driving experience. In heavy traffic conditions where the clutch is used frequently, the pedal effort required to disengage the clutch should be in comfortable range. Often drivers who drive HCV complain about knee pain which is caused due to high pedal effort, this occurs when ergonomics of ABC (accelerator, brake and clutch) pedals is not designed properly. Thus there is a need to reduce the driving fatigue by optimizing the clutch system. Latest technologies like turbo charging and pressure injection have increased the engine power and torque but have also led to increase the clamp load of clutch. Thus the release load required to disengage the clutch has also increased.
2015-04-14
Technical Paper
2015-01-0492
Gaurav Paliwal, Naveen Sukumar, Umashanker Gupta, Ashutosh Dubey, Nitin Chopra
Abstract The need to develop products faster and to have designs which are first time right have put enormous pressure on the product development timelines, thus making computer aided optimization one of the most important tool in achieving these targets. In this paper, a design of experiments (DOE) study is used, to gain an insight as to, how changes to different parameters of front suspension and steering of a passenger bus affect its kinematic properties and thus to obtain an optimized design in terms of handling parameters such as bump steer, percent ackermann error and lock to lock rotation angle of steering wheel. The conventional hit and trial method is time consuming and monotonous and still is an approximate method, whereas in design of experiments (DOE), a model is repeatedly run through simulations in a single setup, for various combinations of parameter settings.
2015-04-14
Technical Paper
2015-01-1504
WeiNing Bao
A ball screw regenerative shock absorber was designed for the relief of the vehicle vibration and the energy recovery of the vehicle vibration. The effect of its main parameters on the suspension system was numerically analyzed. According to the principle of the ball screw regenerative suspension system, a mathematical model of the ball screw regenerative shock absorber was established regarding the ball screw rotational inertia, the motor rotational inertia, the screw lead and the radius of the screw nut. A suspension dynamic model based on the ball screw regenerative shock absorber was developed combining the road model and the two-degrees-of-freedom suspension dynamic model.
2015-04-14
Technical Paper
2015-01-1502
Liangyao Yu, Wenwei Xuan, Liangxu Ma, Jian Song, Xianmin Zhu, Shuai Cheng
Energy saving is one of the most popular and significant motifs of contemporary and future vehicles. A relatively large amount of concern is concentrated on the power steering system as over 70% of the fuel consumed by conventional HPS system is unnecessary and avoidable, so the application of advance power steering systems like EPS and EHPS can help a lot on saving energy. Although the EHPS system has been widely used among passenger cars, SUV, Pickup trucks and Vans, it is now still infeasible on the conventional heavy duty vehicles because of the contradiction between the limitation of the 24V electric power system and the power demand of the electric motor of the general EHPS system. As a solution for this problem, a new type of EHPS system was investigated, which can decrease the demand of the motor power significantly, so that it can be applied to heavy duty vehicles.
2015-04-14
Technical Paper
2015-01-1498
Yuyao Jiang, Weiwen Deng, Sumin Zhang, Shanshan Wang, Qingrong Zhao, Bakhtiar Litkouhi
Driver steering torque feedback is one of the critically important factors in the consideration and measurement both on vehicle design and performance, and on model accuracy of vehicle dynamics. On the one hand, driver steering torque feedback is one of the key measures on human-machine interface for drivers’ comfort and intuitive road feel, such as return-to-center capability, on-center feel and ease of steering effort, etc. This mainly involves the design of vehicle dynamics as a whole, but in particular, vehicle steering system. On the other hand, it is also the most determining factor to the quality of drivers’ interaction with or driver-in-loop simulation of vehicle dynamics models, such as driver simulator, etc.
2015-04-14
Technical Paper
2015-01-1501
Ryusuke Hirao, Kentaro Kasuya, Nobuyuki Ichimaru
Many electronic control components have been introduced into vehicles with the aims of improving their safety and comfort, and saving energy. Various suspension systems have been developed, to reconcile ride feeling with control stability at a high level. Development efforts have been particularly active in the field of semi-active suspension, prompted by its superior energy-saving and cost performance. Algorithm which is based on skyhook control has been applied mostly to the ride comfort control of semi-active suspension system of vehicle. Also, at the time of steering, control for enhancing damping force are commonly used as handling control to restrain transitional roll angle. Therefore, in this development we developed new ride comfort control and new handling control, and constructed a system which uses only vehicle height sensor as dedicated sensor and uses damping force variable damper of pressure control type.
Viewing 1 to 30 of 2362

Filter

  • Range:
    to:
  • Year: