Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2526
2017-12-06 ...
  • December 6-8, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
2017-10-13
Technical Paper
2017-01-7006
Gao Ke, Zhao Weiqiang, Xiaojian Han
As the main passenger and freight transport equipment,commercial vehicle’s safety and comfort has become particularly important.Due to the long traveled distance,commercial vehicle is equipped with more than one driver.Different drivers have their unique steering behavior and same driver have a large physical power change when driving for a long time.Therefore,the needs of drivers cannot be met by a single model of the steering characteristics.If the vehicle steering characteristics are not suitable for the drivers,the vehicle will always produce too much/ little of the steering angle when driver controls steering system.The steering angle need to be adjusted again by driver when this happens.The occurrence of such a situation will affect the road safety, and cause extra burden on driver. On the basis of the traditional hydraulic power, dynamic steering system adds an electric servo motor to the steering column.
2017-10-09 ...
  • October 9-11, 2017 (8:00 a.m. - 5:30 p.m.) - Greer, South Carolina
Training / Education Classroom Seminars
While a variety of new engineering methods are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to deliver desired braking, handling, and other dynamic response characteristics. In order to better prepare today’s engineer for this task, this course offers twelve modules devoted to key the fundamental principles associated with longitudinal and lateral vehicle dynamics.
2017-09-18
WIP Standard
J1574/2
This SAE Information Report presents the background and rationale for SAE J1574-1. The motor vehicle industry is working toward a more complete understanding of the factors affecting the motions of vehicles on the roadway, by using a variety of techniques that predict responses to road and operator inputs. The capability to predict responses is desirable so that vehicles can be designed for optimum safety and utility. In addition to the force and moment properties of the pneumatic tires, a number of vehicle and suspension parameters affect the response of the vehicle; these include weight, center-of-gravity location, moments of inertia, suspension ride and roll rates, suspension kinematic and compliance properties, and shock absorber characteristics. These parameters must be quantified in order to predict vehicle responses. Measurement of most of these parameters will be limited to determining their values in the linear range for use in directional control simulations.
2017-09-18
WIP Standard
J1574/1
The parameters measured according to this SAE Recommended Practice will generally be used in simulating directional control performance in the linear range. (The “linear range” is the steady-state lateral acceleration below which steering wheel angle can generally be considered to be linearly related to lateral acceleration.) But they may be used for certain other simulations (such as primary ride motions), vehicle and suspension characterization and comparison, suspension development and optimization, and processing of road test data. This document is intended to apply to passenger cars, light trucks, and on-highway recreational and commercial vehicles, both non-articulated and articulated. Measurement techniques are intended to apply to these vehicles, with alterations primarily in the scale of facilities required.
2017-09-17
Technical Paper
2017-01-2486
Kyung Jae Lee, Dong Won Kim, Daekyung Ko
Abstract Brake grinding noise is caused by the friction of the disc and pads. The friction generates vibration and it transmits to the body via the chassis system. We called it structure-borne noise. To improve the noise in the vehicle development, the aspects of chassis or body's countermeasure occurs many problems, cost and time. In this reason many brake companies try to make solution with brake system, like brake pad materials or disc surface condition. However the countermeasures of excitation systems also have a lot of risk. It could be occurred side-effects of braking performance, and need to re-verify brake noise like Creep-groan, Groan, Squeal, Judder and so on. For this reason, it is essential to make a robust chassis system in the initial development stage of the vehicle for the most desirable grinding noise-resistant vehicle. This paper is about rear brake grind noise path analysis and countermeasure of chassis system. There are two steps to analysis.
2017-09-17
Technical Paper
2017-01-2487
Yasuyuki Kanehira, Yusuke Aoki, Yukio Nishizawa
Abstract Brake squeal is uncomfortable noise that occurs while braking. It is an important issue for automobile quality to prevent brake products from squealing. Brake shims are widely used to reduce squeal occurrence rate. In particular, laminated shims can effectively suppress squeal via the viscoelastic damping of an adhesive layer. However, there are cases where the damping performance at low temperature and the durability performance at high temperature deteriorate. In that regard, we thought of applying frictional damping to shims instead of relying on a temperature-sensitive adhesive layer. To study the application of frictional damping for shims, it is necessary to clarify the characteristics thereof. In order to quantify the damping performance of shims, loss factor has been generally measured with a bending mode tester. However, the influence of friction cannot be evaluated because it is measured under pressure-free condition.
2017-09-17
Technical Paper
2017-01-2497
Georg Peter Ostermeyer, Alexander Vogel
Abstract The Automated Universal Tribotester (AUT) is developed by the Institute of Dynamics and Vibrations (TU Braunschweig) and represents a reduced scale brake dynamometer. The setup is based on the pin-on-disc principle and the down-scaled test specimen are brought to contact to the disc and loaded via the specifically designed load unit. The AUT’s load unit is designed as a combination of parallel and serial leaf springs, resulting in a friction free motion. The stiffnesses in radial and tangential directions are much higher than in normal orientation. For the investigation of wear debris over time, changes in loads (e.g. forces, speeds, temperatures) are applied. Those varying loads result in tilting of the contact surface of the test specimen due to small elastic deformations. A change of the contact area is inevitable, and long time periods are needed to adopt the contact area to the new conditions. This prevents from investigating fast changes in the above mentioned loads.
2017-09-17
Technical Paper
2017-01-2517
Michael Herbert Putz, Thomas Zipper
Abstract On Electro-Mechanical Brakes (EMB) spring-support can be necessary for releasing the brake without electrical energy. Advantageous brake-configurations can make use of the spring over the whole actuation range during engage and release. Such optimized spring support is known as “energy-swing. Under loss-less conditions the spring force could be in permanent equilibrium with the force required to press the pad, i.e. the brake could be controlled without actuation energy. In reality this will not be fully achievable as actuation losses and different operational conditions need to be covered. Still, significant advantages can be gained. The EMB of Vienna Engineering (VE) fulfills a key condition for energy-swing as it facilitates using the spring for engage- and release-support. Car brakes must release automatically when power is off.
2017-08-31
Magazine
New vision @ Gentex Creating a vital ADAS partner through home-grown R&D and manufacturing in (of all places) western Michigan. Positioning for hybrid growth BorgWarner "modularizes" to provide OEMs optimal electrified-driveline flexibility. Editorial: Beleaguered diesel could use a break-or a breakthrough SAE Standards News Kickoff to begin testing program to validate SAE J2954 wireless charging Recommended Practice Supplier Eye Will you be an active participant or passive bystander? The Navigator For future vehicles, communication equals trust Tenneco readies new semi-active digital suspension for 2020 New 90-degree turbo V6 leads Audi's hybridization blitz GKN using modular control algorithms for added systems integration U of M students engineer new autonomous shuttle system Jaguar's 2018 E-Pace shares Land Rover bones Ford pumps powertrains for 2018 F-150 2018 Subaru Crosstrek moves to new global platform Nissan's Ponz Pandikithura on EV lifecycle value
CURRENT
2017-08-14
Standard
AMS7301J
This specification covers low-alloy steel springs made of annealed round wire heat treated after forming.
CURRENT
2017-08-07
Standard
AMSQQW428B
This specification covers uncoated, round, high carbon steel wire for the fabrication of mechanical springs and wire forms for general purpose use.
2017-08-03
Magazine
Hacked! Is automotive ready for the inevitable? Cybersecurity experts talk defense strategies. Active Aero takes flight Reconfigurable "smart" aerodynamic aids are stretching performance-car envelopes in every direction. The motorcycle's balanced future With its Ride Assist technology, Honda R&D moves two-wheelers toward autonomous capability. Honoring lightweight innovation Chrysler, Toyota, Faurecia and AP&T recognized with the 2017 Altair Enlighten Award for their efforts to reduce vehicle weight.
2017-07-10
Technical Paper
2017-28-1926
Jos Frank, Sohin Doshi, Manchi Rao, Prasath Raghavendran
Abstract In today’s automotive scenario, noise vibration and harshness (NVH) has become a synonym for quality perception. This paper evaluates the problem of vibration and noise experienced in M2 category 40 seat bus and suggests the counter measures. Severe vibration is experienced on the bus floor, predominantly towards rear part of the bus. Vibration along with acoustic boom occurs prominently in 4th gear wide open throttle operating condition between 1300-1600 rpm of the engine. This paper focuses on reducing NVH levels by working on the transfer path with little modifications on power-train. Preliminary torsional measurements conducted on powertrain indicated high torsional excitation in the driveline during the problematic rpm zone. Further, Operational Deflection Shape (ODS) analysis revealed that the transfer path to the cabin is rear differential unit and suspension links. The dominant frequencies were identified along the transfer path and suitable modifications were done.
2017-07-10
Technical Paper
2017-28-1985
Hemasunder Banka, Radhika Muluka, Vikram Reddy
Abstract Conventional materials like steel, brass, aluminum etc will fail without any indication, cracks initiation, propagation, will takes place with a short span. Now-a-days to overcome these problem, conventional materials are replaced by hybrid composite material. Not only have this conventional material failed to meet the requirement of high technology applications, like space applications and marine applications and structural applications in order to meet the above requirements new materials are being searched. Hybrid composites materials found to the best alternative with its unique capacity of designing the materials to give required properties and light weight. This paper aims to preparing hybrid composite using artificial fibers. Epoxy as resin and glass fiber as fiber for artificial hybrid composite to make a laminate for preparing leaf spring.
CURRENT
2017-06-09
Standard
ARP4912C
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down.
2017-06-05
Technical Paper
2017-01-1752
Kapil Gupta, Arun Choudhary, Rakesh Bidre
Abstract At present, a Dual Mass Flywheel (DMF) system is widely known to provide benefits on driveline induced noise, vibration and drivability over a Single Mass Flywheel (SMF). A well-tuned DMF provides nice isolation of torsional vibrations generated in periodic combustion process of automobile IC engines. Similarly, a torsional vibration damper mounted on driveline component reduces the torsional excitation and results a lower torsional vibration at driveline components. Noise and vibration issues like boom noise and high vibrations at low engine RPM range drive are often resulted due to high engine firing order torsional excitation input to the driveline. More often, this becomes one of the most objectionable noise and vibration issues in vehicle and should be eliminated or reduced for better NVH performance. A 4 cylinder, 4 stroke small diesel engine equipped with SMF is found to have high engine firing order torsional excitation.
2017-06-05
Technical Paper
2017-01-1890
Xingyu Zhang, Bo Yang, Manchuang Zhang, Sanbao Hu
Abstract H-Bahn ("hanging railway") refers to the suspended, unmanned urban railway transportation system. Through the reasonable platform layout, H-Bahn can be easily integrated into the existing urban transit system. With the development of urban roads, the associated rail facilities can be conveniently disassembled, moved and expanded. The track beam, circuits, communication equipment, and sound insulation screen are all installed in a box-type track beam so that the system can achieve a high level of integration and intelligence. The carriage of the modern H-banh vehicle is connected with the bogies by two hanging devices. The vehicle is always running in the box-type track beam; therefore there are less possibilities of derailment. Consequently, the key work focuses on the running stability evaluation and curve negotiation performance analysis.
2017-06-05
Technical Paper
2017-01-1819
Cyril Nerubenko, George Nerubenko
Abstract The problem of crankshaft torsional vibrations for heavy car engines is important for the V8 engines. The paper describes the results of the dynamical study of the new patented Torsional Vibration Dampers mounted on a crankshaft in V8 engines. Design and structure of Torsional Vibration Damper is based on author’s US Patent 7,438,165 having the control system with instantaneous frequencies tuner for all frequencies of running engine. Analysis and disadvantages of conventional rubber and viscous Crank Dampers are shown. The focus of the study is on Torsional Vibration Damper having the mechanical self-tuning structure applicable for V8 engines. Mathematical model based on the system of ordinary differential equations describing the rotation and vibration of mechanical components has been used for the analysis of the dynamic behavior of V8 engine crankshaft system having proposed Torsional Vibration Damper.
2017-06-05
Technical Paper
2017-01-1829
Guillaume Loussert
Abstract The new fuel efficiency and emission standards have forced OEMs to put emphasis on different strategies such as engine downsizing, cylinder deactivation… Unfortunately these new technologies may lead to increased powertrain vibrations generated by the engine and transmitted to the chassis and the car cabin, such that their reduction or elimination has become a key topic for the automotive industry. The use of active engine mounts, acting directly on the fluid of an hydromount, or active vibration dampers, acting as an inertial mass-spring system, are very effective solutions, particularly when using electromagnetic based actuators. Nevertheless, all electromagnetic actuators technologies are not equals and the choice of such actuators must be considered carefully by taking into account the full performances and the overall cost of the solutions.
2017-06-05
Technical Paper
2017-01-1879
Pranab Saha
Abstract Traditionally, the damping performance of a visco-elastic material is measured using the Oberst bar damping test, where a steel bar is excited using a non-contacting transducer. However, in an effort to reduce the weight of the vehicles, serious effort is put in to change the body panels from steel to aluminum and composite panels in many cases. These panels cannot be excited using a non-contacting transducer, although, in some cases, a very thin steel panel (shim) is glued to the vibrating bar to introduce ferrous properties to the bar so it can be excited. In the off highway vehicles, although the panels are made of steel, they are very thick and are difficult to excite using the Oberst bar test method. This paper discusses a measurement methodology based on mechanical impedance measurements and has the potential to be a viable/alternate test method to the Oberst bar testing. In the impedance method, the test bar is mounted to a shaker at the center (Center Point method).
2017-06-05
Technical Paper
2017-01-1804
Chulwoo Jung, Hyeon Seok Kim, Hyuckjin Oh, Kwang Hyeon Hwang, Hun Park
Abstract An efficient method to determine optimal bushing stiffness for improving noise and vibration of passenger cars is developed. In general, a passenger vehicle includes various bushings to connect body and chassis systems. These bushings control forces transferred between the systems. Noise and vibration of a vehicle are mainly caused by the forces from powertrain (engine and transmission) and road excitation. If bushings transfer less force to the body, levels of noise and vibration will be decreased. In order to manage the forces, bushing stiffness plays an important role. Therefore, it is required to properly design bushing stiffness when developing passenger vehicles. In the development process of a vehicle, bushing stiffness is decided in the early stage (before the test of an actual vehicle) and it is not validated until the test is performed.
2017-06-05
Technical Paper
2017-01-1836
Fangfang Wang, Peter Johnson, Hugh Davies, Bronson Du
Abstract Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
2017-06-05
Technical Paper
2017-01-1851
Taewook Yoo, Ronald W. Gerdes, Seungkyu Lee, Daniel Stanley, Thomas Herdtle, Georg Eichhorn
Abstract Several methods for evaluating damping material performance are commonly used, such as Oberst beam test, power injection method and the long bar test. Among these test methods, the Oberst beam test method has been widely used in the automotive industry and elsewhere as a standard method, allowing for slight bar dimension differences. However, questions have arisen as to whether Oberst test results reflect real applications. Therefore, the long bar test method has been introduced and used in the aerospace industry for some time. In addition to the larger size bar in the long bar test, there are a few differences between Oberst (cantilever) and long bar test (center-driven) methods. In this paper, the differences between Oberst and long bar test methods were explored both experimentally and numerically using finite element analysis plus an analytical method. Furthermore, guidelines for a long bar test method are provided.
2017-06-05
Technical Paper
2017-01-1857
Joshua R. Goossens, William Mars, Guy Smith, Paul Heil, Scott Braddock, Jeanette Pilarski
Abstract Fatigue life prediction of elastomer NVH suspension products has become an operating norm for OEMs and suppliers during the product quoting process and subsequent technical reviews. This paper reviews a critical plane analysis based fatigue simulation methodology for a front lower control arm. Filled natural rubber behaviors were measured and defined for the analysis, including: stress-strain, fatigue crack growth, strain crystallization, fatigue threshold and initial crack precursor size. A series of four distinct single and dual axis bench durability tests were derived from OEM block cycle specifications, and run to end-of-life as determined via a stiffness loss criterion. The tested parts were then sectioned in order to compare developed failure modes with predicted locations of crack initiation. In all cases, failure mode was accurately predicted by the simulation, and predicted fatigue life preceded actual end-of-life by not more than a factor of 1.4 in life.
2017-05-25
WIP Standard
J551/16
1.1 Vehicle electrical/electronic systems may be affected when immersed in an electromagnetic field generated by sources such as radio and TV broadcast stations, radar and communication sites, mobile transmitters, cellular phones, etc. This part of SAE J551 specifies off-vehicle radiated source test methods and procedures for testing passenger cars and commercial vehicles within a Reverberation Chamber. The method is used to evaluate the immunity of vehicle mounted electronic devices in the frequency range of 80 MHz to 2 GHz, with possible extensions 20 MHz to 10 GHz, depending upon chamber size and construction. Three methods for calibrating and applying electromagnetic fields are described in the document: 1) Mode Tuned Reverberation Chamber method, 2) Mode Stir (Standard) Reverberation Chamber method and 3) Mode Stir (Hybrid) Reverberation Chamber method.
2017-05-24
Technical Paper
2017-36-0007
Luiz Roberto Guimarães, Robson Demétrius Araújo Abreu, Ademir Carvalho, Claudio Jr. Ferreto
Abstract The improvement of motor’s power requires consequently the improvement in brake system also. The kinetic energy of moving vehicles is transformed in a big part of heat, but there is a part that can be transformed in vibration and sound pressure. One of these vibration and sound pressure complain is known as howl noise. The howl noise complain is very intense and uncomfortable for passengers and pedestrians. Today, the customers spend a lot of money in his vehicles comfort and this disorder can’t occur. This paper presents a methodology which uses Experimental Modal Analysis (EMA) and Operational Modal Analysis (OMA) to survey the dynamic behavior of suspension and brake systems at the howl noise occurrence condition.
2017-04-06
Event
This session focusing on vehicle ride comfort, addressing issues such as ride evaluation, suspension tuning, occupant biomechanics, seating dynamics, semi-active and active suspension and vehicle elastomeric components. Topics may include vehicle ride motion smoothness and control balancing, structural shake, impact harshness and after shake, brake judder/pulsation, smooth road shake/shimmy/nibble, power hop, launch shudder, freeway hop and any other phenomena affecting ride comfort.
2017-04-06
Event
This session is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. This session addresses active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
2017-04-05
Event
This session is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. This session addresses active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
Viewing 1 to 30 of 2526

Filter

  • Range:
    to:
  • Year: