Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2308
2015-09-14 ...
  • September 14-17, 2015 (8:30 a.m. - 4:30 p.m.) - Greenville, South Carolina
Training / Education Classroom Seminars
                                                                 Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy truck dynamics.
2015-08-17 ...
  • August 17, 2015 (8:30 a.m. - 4:30 p.m.) - Rosemont, Illinois
Training / Education Classroom Seminars
This seminar provides an introduction to several critical aspects of heavy truck dynamics. The comprehensive presentation and discussion will begin with the mechanics and dynamics of heavy truck tires, followed by steering dynamics, and finally moves participants into suspension kinematics and dynamics. Starting at the ground and moving up, this seminar explores the important dynamic aspects of each subsystem and how each is related to the overall truck dynamics.
2015-06-22
Event
This session includes papers in the areas of static, dynamic, and fatigue characterization of elastomers, bushings, mounts and shock absorbers used in the mobility industry. Particular emphasis is given to new and innovative analysis and testing methodologies to quantify the non-linear properties of these systems in addition to the effects of temperature, frequency, and aging. Papers dealing with specific applications and case studies of existing methodologies are also welcome.
2015-05-18 ...
  • May 18-20, 2015 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
  • November 16-18, 2015 (8:00 a.m. - 5:00 p.m.) - Greer, South Carolina
Training / Education Classroom Seminars
While a variety of new engineering tools are becoming available to assist in creating optimal vehicle designs, subjective evaluation of vehicle behavior is still a vital tool to ensure desired braking, handling, and other dynamic response characteristics. In order to better prepare today's engineer for this task, this course offers twelve modules devoted to the key fundamental principles associated with longitudinal and lateral vehicle dynamics.
2015-04-22 ...
  • April 22-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 4-6, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. Just as the chassis and suspension system provides an ideal framework for the automobile, this popular SAE seminar provides an informative framework for those involved in the design of these important systems.
2015-04-21
Event
The purpose of this session is to provide a forum for presentations on steering and suspension related topics as it applies to ground vehicles. Papers for this session should address new approaches as well as advances in application of steering, suspension related technologies.
2015-03-31 ...
  • March 31-April 2, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 5-7, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar will present an introduction to Vehicle Dynamics from a vehicle system perspective. The theory and applications are associated with the interaction and performance balance between the powertrain, brakes, steering, suspensions and wheel and tire vehicle subsystems. The role that vehicle dynamics can and should play in effective automotive chassis development and the information and technology flow from vehicle system to subsystem to piece-part is integrated into the presentation. Governing equations of motion are developed and solved for both steady and transient conditions.
2015-01-14
Technical Paper
2015-26-0079
Ram Ranjan Sahu, Jayant Sinha
Brake drum is an important component in automotive, which is a link between axle and wheel. It performance is of utmost importance as it is related to the safety of the car as well to the passengers. Many design parameters are taken into consideration while designing the brake drum. The sensitivity of these parameters is studied for optimum design of brake drum. The critical parameters in terms of reliability, safety & durability could be the cross section, thickness of hub, interference & surface roughness between bearing and hub, wheel loading, heat generation on drum, manufacturing and assembly process. The brake drum design is derived by considering these parameters. Hence the sensitivity of these parameters is studied both virtually & physically, in detail. The optimum value of each parameter could be chosen complying each other's values.
2015-01-14
Technical Paper
2015-26-0181
Mukund Trikande, Sujithkumar Muralidharan, Vinit Jagirdar
Road disturbances introduce a combination of vertical and angular motions of pitch and roll that affect the stability and ride comfort of a military vehicle. This study focuses on the enhancement of stability and ride comfort. A half car model with 4 Degree of freedom (DOF), whose vehicle chassis can pitch and bounce, is modeled in Simulink with the objective of attitude control using Stability Augmentation System (SAS). Control is implemented at two levels, one at the suspension level which is an open loop control for improving the ride and the other is closed loop for controlling the body motion by sensing pitch and bounce displacement. The inner loop is utilised to reject the effect of road disturbances and outer loop is to stabilize heave and pitch response. In other words, inner loop provides ride control and the outer loop provides the attitude control. The control force is obtained by using an active damper.
2015-01-14
Technical Paper
2015-26-0084
Ishwar Patil, Kiran P Wani
With the increasing competition in automotive sector, the customer is available with more options when it comes to buying a vehicle. So it has become necessary to improve the vehicle’s characteristics which affect its impression on the customer. Handling and ride comfort are very important characteristics that influence the quality of the vehicle. These characteristics depend on the suspension system of the vehicle. The three main objectives that a suspension system of an automobile must satisfy are ride comfort, vehicle handling and suspension working space. Ride comfort is directly related to the vehicle acceleration experienced by the driver and the passengers. Higher vertical acceleration, lesser is the level of comfort. The aim of this paper is to design and analyze the semi active suspension system models using skyhook, ground hook and hybrid control method.
2015-01-14
Technical Paper
2015-26-0077
Deepak Sharma, Abhishek Atal, Abhay Shah
Abstract In this paper, design methodology of antiroll bar bush is discussed. Typical antiroll bar bushes have slide or slip mechanism, to facilitate the relative motion between ARB and bush. Inherently, this relative motion causes wear and noise of bush. To eliminate stated failure modes, the next generation bushes have been developed, which are using torsion properties instead of slip function. These bushes are already being used in various vehicles. This paper focuses on developing the simple mathematical model, design approach and optimization of ARB bushes. Also, comparison study is presented exploring, the differences and design criteria's between conventional and new generation anti-roll bar bushes.
2015-01-14
Technical Paper
2015-26-0085
Boris Belousov, Tatiana I. Ksenevich, Sergei Naumov
Abstract The modular designing principle is generally recognized in the automotive industry. However, the issue of building a wheel open-link locomotion module (OLLM) as a combination of steering (wheel turning), springing, traction drive and braking systems is not properly developed yet. An automated control system (ACS) is needed to able to unite and coordinate all the vehicle systems intended to manage the wheel. The automated control system intended to manage the steering and wheel springing parameters is a combination of an information and power channels, through which the wheel is electro-hydraulically driven, and the steering, springing and braking systems are controlled. The number of such channels in a wheeled mover of the vehicle or mobile robot is defined by the wheel type (driving, driven, steered or non-steered wheel). The plurality of such channels forms a complex of automated control systems of the wheeled mover.
2014-11-30
Magazine
Riding on a high Rudi Schurmans and Ben Patel head up Tenneco's suspension and clean air divisions. Ian Adcock discovers what the automotive future holds for them Driverless revolution has begun! Breakthrough Photonic radar promises greater accuracy at lower cost, Ian Adcock discovers Winds of change are here Simulating aerodynamics will make a step-change in vehicle design, as Stephen Remondi, President and CEO of EXA, explains to Ian Adcock
2014-10-09
Event
This session focuses on theoretical and experimental vehicle dynamics aspects of both on- and off-road vehicles. Papers on topics such as off-road vehicle chassis and suspension, NVH, driver/operator comfort, as well as on-road suspension design, active and semi-active suspension systems and controls, and full vehicle dynamic studies are welcomed. Topics ranging from on-road vehicles to trucks to construction and mining machinery are covered in CV205.
2014-10-07
Event
Active Safety Systems are becoming commonplace on commercial vehicle systems. These systems can include but are not limited to safety systems that assist to mitigate or in some cases, avoid accidents by intervening through visual/audible warnings, providing steering assist or active braking to slow the vehicle down. The size and complexity of the commercial vehicles offers some challenges to the application of these systems. This panel session will bring together experts in the area to discuss the recent developments and challenges going forward in the application of Anti-lock braking systems, Traction control systems, Electronic Stability Control systems, Lane Keeping Systems, Adaptive Cruise Control, Autonomous Emergency Braking system for commercial vehicles.
2014-10-07
Event
This technical session invites papers on dynamics and performance of conventional and unmanned, on-road/off-road vehicles with emphasis on dynamics and design of chassis, suspension, tires, and tracks. In the area of vehicle chassis with four and more number of driving wheels, papers are welcome, but not limited to: various types of suspensions and their interaction with the driving gear, steering, and driveline systems. Research papers presenting results on analysis, optimization, and control of tire dynamics and design for road and terrain vehicle applications are encouraged to be submitted to this session. Special attention is also given to rubber-track chassis systems and their asphalt passability and terrain mobility. Papers on conventional track system dynamics, design, and reliability issues are also invited. Energy efficiency issues, stochastic modeling, smoothness of ride, integrated design of chassis subsystems are also considered.
2014-10-01
Journal Article
2014-01-9026
Christopher Gill, Christopher Knight, Scott McGarry
Vehicle shock absorbers are designed to dissipate kinetic energy through frictional viscous forces. In some circumstances, this can be in the order of kilowatts of instantaneous power dissipation. This study quantitatively assesses the vehicle damper system energy dissipation of a low-mass utility vehicle and a high-mass hauling vehicle, using empirically derived regression models of the working dampers and custom data logging equipment. The damper force and power is derived from post-processing of the measurement of critical damper metrics, including linear velocity and temperature. Under typical operating conditions, the low-mass utility vehicle showed an average power dissipation of 39 W for a single shock absorber, and approximately 150 W for a complete vehicle-damper model. The high-mass hauling vehicle demonstrated an average power dissipation of 102 W for a single shock absorber, and approximately 600 W for a complete vehicle-damper model under laden operating conditions.
2014-09-30
Technical Paper
2014-01-2297
Mehmet Bakir, Murat Siktas, Serter Atamer
Abstract In today's world, there are a prominent number of weight and cost reduction projects within the vehicle engineering development activities. Regarding this phenomenon, a complete optimization study is applied to a leaf spring assembly, which has 4 leaves and which is used in heavy duty trucks, by reducing the number of leaves down to 3 together with weight and cost reductions. At the first step of the project, the stiffness of the leaf spring is calculated with in-house software based on mathematical calculations using the thickness profile of the leaves. Then the results of these calculations are compared with non-linear elastic leaf spring calculations which are conducted with FEA. This elastic leaf spring finite element model is transferred into Multi-Body-Simulation (MBS) model in order to determine the forces acting on the leaf spring.
2014-09-30
Technical Paper
2014-01-2288
Boris Belousov, Tatiana I. Ksenevich, Vladimir Vantsevich, Sergei Naumov
An open-link locomotion module (OLLM) is an autonomous energy self-sufficient locomotion setup for designing ground wheeled vehicles of a given configuration that includes drive/driven and steered/non-steered wheels with individual suspension and brake systems. Off-road applications include both trucks and trailers. The paper concentrates on the module's electro-hydraulic suspension design and presents results of analytical and experimental studies of a trailer with four driven (no wheel torque applied) open-link locomotion modules. On highly non-even terrain, the suspension design provides the sprung mass with sufficient vibration protection at low level of normal oscillations, enhanced damping and stabilized angular movements. This is achieved by the introduction of two control loops: (i) a fast-acting loop to control the damping of the normal displacements; and (ii) a slow-acting control loop for varying the pressure and counter-pressure in the suspension system.
2014-09-30
Technical Paper
2014-01-2299
Sijing Guo, Zhenfu Chen, Xuexun Guo, Quan Zhou, Jie Zhang
Abstract To integrate the energy-recovery characteristic of the Hydraulic electromagnetic shock absorber (HESA) and the anti-roll characteristic and anti-pitch characteristic of Hydraulic Interconnected Suspension(HIS), a Hydraulic Interconnected Suspension system based on Hydraulic Electromagnetic Shock Absorber (HESA-HIS) is presented. HESA-HIS has three operating modes: energy-recovery priority mode, dynamic performance priority mode and energy-recovery and dynamic performance balance mode. The working principle of HESA-HIS in the three operating modes is introduced, a full vehicle model is built by using the software AMESim, and some simulation tests are conducted by using the vehicle model. The simulation results show that the system can effectively reduce the roll angle of the vehicle, while maintaining good ride performance. Fishhook test results show that the roll angle of the HESA-HIS vehicle is reduced by 80%, compared to the traditional vehicle.
2014-09-30
Technical Paper
2014-01-2310
Anatoliy Dubrovskiy, Sergei Aliukov, Yuriy Rozhdestvenskiy, Olesya Dubrovskaya, Sergei Dubrovskiy
Abstract We have developed a fundamentally new design of adaptive suspension systems of vehicles. Their technical characteristics and functional abilities are far better than the existing designs of suspensions. We have developed the following main suspension components of vehicles: a lockable adaptive shock absorber with an ultra-wide range of control performance, implementing “lockout” mode by means of blocking adaptive shock absorber, and an elastic element with progressive non-linear characteristic and automatic optimization of localization of work areas. Our patents confirm the novelty and efficiency of our major design decisions. Advantages of our developments in the vehicle suspensions are the following.
2014-09-30
Journal Article
2014-01-2320
Yiting Kang, Subhash Rakheja, Wenming Zhang
Abstract A range of axle suspensions, comprising hydro-pneumatic struts and diverse linkage configurations, have evolved in recent years for large size mining trucks to achieve improved ride and higher operating speeds. This paper presents a comprehensive analysis of different independent front suspension linkages that have been implemented in various off-road vehicles, including a composite linkage (CL), a candle (CA), a trailing arm (TA), and a double Wishbone (DW) suspension applied to a 190 tons mining truck. Four different suspension linkages are modeled in MapleSim platform to evaluate their kinematic properties. The relative kinematic properties of the suspensions are evaluated in terms of variations in the kingpin inclination, caster, camber, toe-in and horizontal wheel center displacements considering the motion of a hydro-pneumatic strut. The results revealed the CL and DW suspensions yield superior kinematic response characteristics compared to the CA and TA suspensions.
2014-09-28
Journal Article
2014-01-2487
Mohamed Samy Barakat
The Braking System is the most crucial part of the racing vehicle. There is no doubt, that if only one minority failure in the braking system took place, this would be more than enough reason to cause the racing team disqualification from the competition. Time is the main and the most important criteria for any racing competition; on the other hand the formula student “FS UK SAE” competition care the most about developing the automotive engineering sense in the students by putting them under strict rules normally taken from the original version “formula 1” to encourage their creativity to reach the optimum performance under these strict rules. One of the most important rules is “No Braking by wire”, and the obvious consequences are more stopping distance and time. Braking distance is a critical facture in achieving racing success in a competitive domain.
2014-09-11
Video
Senior Editor Lindsay Brooke recently tested a McLaren 650S, with surprising results.
2014-07-21
WIP Standard
AS24585C
No scope available.
2014-06-30
Technical Paper
2014-01-2045
Hiromichi Tsuji, Satoshi Takabayashi, Eiji Takahashi, Hitoshi Murakami, Shinichi Maruyama
A finite element (FE) model of vibro-acoustic coupling analysis, such as a vehicle noise and vibration, is utilized for the improvement of the performance in the vehicle development phase. However, the accuracy of the analysis is not enough for substituting a prototype phase with a digital phase in the product development phases. Therefore, conducting the experiments with the prototype vehicle or the existed production vehicle is still very important for the performance evaluation and the model validation. The vehicle noise transfer function of the road noise performance cannot be evaluated with the existed excitation equipment, such as the 3 or 6 directional electromagnetic shaker. Therefore, this paper proposes new experimental method to measure the road noise vehicle transfer function. This method is based on the reciprocity between the tire contact patch and the driver's ear location.
2014-06-03
Magazine
Systems-engineering a new 4x4 benchmark Chrysler Powertrain teamed with AAM to create the industry's most capable, sophisticated-and arguably most fuel-efficient-AWD/4WD driveline. Top engineers talk about their collaboration. Achates aims at 2025 light-truck power After more than a decade of steady development, Achates Power's opposed-piston two-stroke diesel is impressing powertrain experts with its test results and pace of technical progress. Lighter, stronger chassis Development of a new high-strength aluminum casting alloy for the production of suspension components.
2014-05-07
Technical Paper
2014-36-0001
Alfred Memmel, Anibal Berberich
Abstract Variable Damping systems for commercial vehicle applications have been in the market for several years now. The systems modify damping according to the actual demand within milliseconds. This reduces vertical accelerations which lead to improved comfort while maintaining vehicle stability and safety at the same time. Driver, cargo and vehicle are better protected. The technical effort for variable damping systems was in the past rather high and affected a limited market penetration. On the other side the used control algorithms did not tap the full potential of the system performance. New concepts, like integration of sensors or concentration on the most relevant axle, in combination with new control algorithms, simplifies the systems architecture and improves the performance. Besides the functional advantages, the system improves vehicle efficiency as it reduces the energy dissipated by the dampers. This energy would have to be generated by the engine.
Viewing 1 to 30 of 2308

Filter

  • Range:
    to:
  • Year: