Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2902
Training / Education
One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena.
Training / Education
The principal functions of the pneumatic tire are to generate driving, braking, and cornering forces while safely carrying the vehicle load and providing adequate levels of ride comfort. This seminar explains how tire forces and moments are generated under different operating and service conditions and, in turn, demonstrates how these forces and moments influence various vehicle responses such as braking, handling, ride, and high-speed performance. The content focuses on the fundamentals of tire behavior in automobiles, trucks, and farm tractors, but also includes experimental and empirical results, when necessary.
Training / Education
This course provides a detailed description of tire failure modes, their potential causes, identification, and the sometimes subtle nuances that go along with determination of tire failure. In addition, proper inspection techniques of tires will be discussed and samples will be available to reinforce the concepts learned. The book, Tire Forensic Investigation, authored by the instructor, is included with the course materials. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 13 Continuing Education Units (CEUs).
Training / Education
This course provides an introduction to basic tire mechanics, including materials, sidewall stampings, pressure, tread patterns, tire inspection and basic tire failure identification of passenger and light truck tires. Practical in nature and supplemented with samples and hands-on activities, the course will provide you with information that you can use immediately on-the-job and apply to your own vehicle. It serves as a good primer for the in-depth SAE Tire Forensic Analysis course. This course has been approved by the Accreditation Commission for Traffic Accident Reconstruction (ACTAR) for 7 Continuing Education Units (CEUs).
2018-04-10
Event
2018-01-19
Standard
J1205_201801
No scope available.
2018-01-08
WIP Standard
J345
This SAE Recommended Practice defines the best known techniques for evaluating peak and locked wheel braking traction. It covers an important phase of tire braking traction, namely, the wet or dry pavement straight ahead conditions. However, this is but a small portion of the whole field of tire traction. As test procedures are established for other phases of this complex study, additional supplementary procedures will be written. A discussion of this entire subject is contained in Appendix B to this recommended practice.
2017-11-29
Standard
J2675_201711
This SAE Recommended Practice describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under combined cornering and braking conditions. The properties are acquired as functions of slip angle, normal force, and slip ratio. Slip angle and normal force are changed incrementally using a sequence specified in this document. At each increment, the slip ratio is continually changed by application of a braking torque ramp. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control. This document is intended to be a general guideline for testing on an ideal machine, and modifications to the protocols recommended within are expected depending on the requirements of each customer. Due care is necessary when modifying protocols to ensure that the integrity of the data is maintained.
2017-11-10
WIP Standard
J2705
This SAE Recommended Practice describes a test method for determining properties of a non-rolling tire quasi-statically enveloping either a set of triangular cleats or a single step cleat. In the case of the triangular cleats the normal force and vertical deflection of the non-rolling tire are determined. In the case of the step cleats the normal force, longitudinal force, and vertical deflection of the non-rolling tire are determined. The method applies to any tire so long as the equipment is properly sized to correctly conduct the measurements for the intended test tire. The data are intended for use in determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular pavements. Within the context of this document, forces applied to the pavement are not considered.
2017-11-10
WIP Standard
J2717
This SAE Recommended Practice describes a trio of test methods which determine basic tire size (geometry), mass, and moments of inertia. The methods apply to any tire so long as the equipment is properly scaled to conduct the measurements for the intended test tire. The data are suitable for determining parameters for road load models and for comparative evaluations of the measured properties in research and development. NOTE: Herein, road load models are models for predicting forces applied to the vehicle spindles during operation over irregular surfaces paved or unpaved. Within the context of this Recommended Practice, forces applied to the surface on which the tire is operating are not considered.
2017-11-07
Technical Paper
2017-36-0095
Arthur Braga Thiriet, Fabrício José P. Pujatti, Paulo César S. Araújo
Abstract Resistive forces are a great source of fuel consumption in vehicles. In particular, rolling resistance represent the major resistance force at low speeds. It is highly influenced by the inflation pressure of the tire and vertical load over it. In the present work, a computer model is created with the objective of investigating the influence of tire inflation pressure on fuel consumption and rolling resistance force. Pressure is varied and parameters analyzed at different vehicle speeds for two different calculation methods. Results show significant decrease in fuel consumption and rolling resistance force as inflation pressure is augmented.
2017-11-07
Technical Paper
2017-36-0389
G. R. Sanchez, T. R. L. Santos, Y. C. Pereira, A. V. N. Dias, F. Malvezzi
Abstract Worldwide, there is a popular charge for equipment and processes that have an ecological responsibility, aiming the preservation of the environment. That charge comes specially in the automotive industry, due to the emission of harmful gases to the health, provoked by the burn of fossil fuel, being directly correlated with the fuel consumption of the vehicle. Although the automotive researches have worked to increase the vehicle autonomy, the driver behavior has influence on the vehicle fuel consumption, due their involvement with vehicle components maintenance. Moreover, nowadays there is a large effort by the automobile industry and their suppliers to use software to simulate real test, aiming to reduce the outdoor test. This work aims to analyses the influence of parameters that can be controlled by the driver on the fuel consumption.
2017-11-07
Technical Paper
2017-36-0121
C.S. VIEIRA
Abstract This work describes a statistic analysis of the service life of tires applied in off-highway trucks used in open-pit mining. Understanding the process of occurrence of structural failures, correlated to the fatigue mechanism and often observed in mechanic components, is of vital importance for the current industry. Since these failures usually happen suddenly, understanding them in the most diverse components submitted to cyclic loads helps analyzing the material’s progressive deterioration along time; it acts as a return to potential improvements in the product, giving feedback of computing simulation data; and it potentially increases operational safety by mitigating the consequences it has on the productive process and on the people exposed to such failures. The tires, components that integrate great part of the on wheels vehicles fleet - amongst them: transportation equipment, industrial mobile equipment and mining equipment - are inserted in this context.
2017-11-07
Technical Paper
2017-36-0177
André Noronha de Oliveira, Caroline Goulart Campos, Alejandro Oscar Peralta, Ricardo Teixeira da Costa Neto, Aldélio Bueno Caldeira
Abstract This paper uses an inverse problem approach to estimate parameters of a tire model based on Julien’s Theory (JT). The modeling process of an all-wheel drive (AWD) vehicle is presented in this work, as well as JT and Pacejka’s Magic Formula (MF) tire models. Numerical simulations of the longitudinal vehicle dynamics, considering MF, provide pseudo-experimental data to the inverse problem. Particle Swarm Optimization (PSO), Random Restricted Window (R2W) and Differential Evolution (DE) are used to estimate the parameters of the JT tire model. Accuracy, computational time, efficiency and efficacy of the models are compared regarding the behavior of the performance responses of the vehicle. Throughout this process, Julien’s Theory is validated for use in future studies of vehicle dynamics.
2017-11-07
Technical Paper
2017-36-0212
Jony Javorski Eckert, Elvis Bertoti, Eduardo dos Santos Costa, Fabio Mazzariol Santiciolli, Rodrigo Yassuda Yamashita, Ludmila Corrêa de Alkmin e Silva, Franco Giuseppe Dedini
Abstract Chassis dynamometers are important equipment to perform vehicular experiments in the automotive industry. Usually, these equipments are used according to standard procedures for emissions, fuel consumption, and performance analyses. In this paper, an alternative procedure was developed to experimentally determine the dynamometer inertia and losses related to bearings and transmission systems. Furthermore, a study on the tires rolling resistance, considering a double tire-roller contact, was carried out. The experiments were performed in a 4x2 chassis dynamometer with four rollers, equipped with an eddy current brake (coupled to a transmission reducer of 2.5 instrumented with a 3000 Nm torque flange) and with a 30 CV AC electric motor (coupled to a planetary transmission with reduction of 4.43 and instrumented with a 500 Nm torque flange). The dynamometer was also instrumented with an encoder system for speed measurement.
2017-11-05
Technical Paper
2017-32-0086
Shinji Takayanagi, Kiyotaka Sakai, Takashi Iwasa, Tomoyuki Matsumura, Shigehiro Yamaguchi, Kenji Tanaka
A low fuel consumption tire with an affordable price that is applicable for small motorcycles marketed mainly for India and Southeast Asian countries was developed. Two contradicting requirements, which are reduction of the rolling resistance and retention of the wet grip performance, were satisfied by applying a method based on viscoelastic properties of the tread rubber. Regarding the composition of compound of the tread rubber, the amounts of carbon black and oil were reduced instead of using silica. In addition, a polymer having a high glass transition temperature was employed. Moreover, response to the roll motion, which is unique in motorcycles, was made satisfactory to the requirement by modifying the dynamic modulus E* of the tread rubber. With those measures, the rolling resistance was reduced by more than 15% to conventional tires while maintaining the basic performances such as tire grip and stability in maneuvering.
2017-11-05
Technical Paper
2017-32-0018
Masayuki Miki, Tetsuya Kimura
The stability factor is widely used for four-wheel vehicles as an index representing the turning performance of a vehicle. Stability factor for two-wheel vehicles has been proposed as an indicator of cornering performance from the same way of thinking. In line traceability evaluation as a sensory evaluation item of motorcycles, the expressions of understeer and oversteer are sometimes used, but the relation with stability factor for two-wheel vehicles has not been investigated. In this paper, a test in which the slip angle characteristics of the front and rear tires were varied using a riding simulator was conducted, and the correlation between the stability factor and the rider evaluation was investigated to derive an index showing the line traceability.
2017-10-26
WIP Standard
ARP6812
This SAE Aerospace Recommended Practice (ARP) covers the functional, design, construction, and test requirements for Brake Temperature Monitoring Systems (BTMS), and sometimes referred to as Brake Temperature Indication Systems (BTIS). The BTMS is limited to aircraft where a dispatch indication and brake temperature indication is required. The scope of this BTMS equipment shall be limited to the 1) brake temperature sensor or indicator, 2) temperature reference measurement, if required, and 3) processing and communication of brake temperature. This recommended practice will not address cockpit ergonomics and aircraft operating procedures.
2017-10-13
WIP Standard
J2523
This SAE Standard is established for the following purpose: a. simplify the application of radial drive wheel tires to agricultural vehicles especially those with multiple drive axle having tires of different sizes; and b. provide a pattern to combine similar sized tires into Rolling Circumference Index groups with uniform spacing between groups.
2017-10-12
Standard
J1270_201710
The force, torque, and power methods of measurement are all in common use and should yield the same test results. Effects of steering, traction, surface texture, and non-steady-state tire operations are excluded from the recommended practice because they are still in the research stage.
2017-10-03
WIP Standard
J1015
This SAE Standard establishes the Tonne Kilometer Per Hour Test Procedure for off-the-road tires. This document is applicable to only those tires used on certain earthmoving machines referenced in SAE J1116.
2017-10-03
Event
2017-09-28
WIP Standard
AS4833B
This SAE Aerospace Standard (AS) sets forth criteria for the selection and verification processes to be followed in providing tires that will be suitable for intended use on civil aircraft. This document encompasses new and requalified radial and bias aircraft tires.
Viewing 1 to 30 of 2902

Filter

  • Range:
    to:
  • Year: