Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2801
2015-09-14 ...
  • September 14-17, 2015 (8:30 a.m. - 4:30 p.m.) - Greenville, South Carolina
Training / Education Classroom Seminars
                                                                 Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy truck dynamics.
2015-08-17 ...
  • August 17, 2015 (8:30 a.m. - 4:30 p.m.) - Rosemont, Illinois
Training / Education Classroom Seminars
This seminar provides an introduction to several critical aspects of heavy truck dynamics. The comprehensive presentation and discussion will begin with the mechanics and dynamics of heavy truck tires, followed by steering dynamics, and finally moves participants into suspension kinematics and dynamics. Starting at the ground and moving up, this seminar explores the important dynamic aspects of each subsystem and how each is related to the overall truck dynamics.
2015-06-23
Event
This session includes papers regarding vehicle exterior or interior tire/pavement noise.
2015-06-23
Event
This session includes papers regarding vehicle exterior or interior tire/pavement noise.
2015-06-16 ...
  • June 16, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena.
2015-06-15
Technical Paper
2015-01-2193
Masami Matsubara, Daiki Tajiri, Makoto Horiuchi, Shozo Kawamura
Generally as change of vibration characteristics of a tire, natural frequency of a load and rolling tire is lower than that of an unrolling tire. This phenomena is considered to be due to the change of tire stiffness. Early studies described the reason why the change was caused by property of rubber material. One of the evaluation tire stiffness is sidewall stiffness. This stiffness, which have an influence on tire vibration characteristics, is also important design parameter for carry the vehicle body. Tire sidewall is parts of resisting the tension due to inflation pressure. Hence, it is considered that tire sidewall stiffness is decided by tension of inflation pressure and structural dynamic characteristics including property of rubber material. It is necessary to reveal the dynamic characteristic of tire sidewall stiffness. This study describes tire sidewall stiffness as difference of inflation pressure.
2015-06-15
Technical Paper
2015-01-2199
Rui Cao, J Stuart Bolton
Experimental measurements of tire tread band vibration have provided direct evidence that higher order structural-acoustic modes exist in tires, not just the well-known fundamental mode. These modes display both circumferential and radial pressure variations. The theory governing these modes has thus been investigated. A brief recapitulation of the previously-presented coupled tire-acoustical model based on a tensioned membrane approach will be given, and then an improved tire-acoustical model with a ring-like shape will be introduced. In the latter model, the effects of flexural and circumferential stiffness are considered. This improved model accounts for propagating in-plane vibration in addition to the essentially structure-borne flexural wave and the essentially airborne longitudinal wave accounted for in the previous model. The longitudinal structure-borne wave “cuts on” at the tire’s circumferential ring frequency.
2015-06-15
Technical Paper
2015-01-2197
Stijn Vercammen, Fabio Bianciardi, Peter Kindt, Wim Desmet, Paul Sas
In the context of the reduction of traffic-related noise the research reported in this paper contributes to the development of low noise tyres. Two measurement techniques have been analyzed for exterior noise radiation characterization of a loaded rotating slick tyre on a rough road surface. On one hand sound pressure measurements at low spatial resolution with strategically placed microphones on a half-hemisphere around the tyre/road contact point have been performed. This technique provides a robust solution to compute the (overall) sound power level. On the other hand sound intensity measurements at high spatial resolution by means of a scanning intensity probe, LMS Soundbrush, have been performed. This technique allows a more detailed spatial visualization of the noise radiation and helps in getting more insight and better understanding of the acoustical phenomena.
2015-06-15
Technical Paper
2015-01-2198
Masami Matsubara, Nobutaka Tsujiuchi, Takayuki Koizumi, Akihito Ito, Kensuke Bito
Tires of passenger cars greatly influence the performance of NVH (Noise, Vibration and harshness). Especially, it is important to reveal the tire vibration characteristics because there is a strong correlativity between the tire vibration and the interior noise of passenger cars as against road noise, one of the NVH performance. Early studies on the tire vibration characteristics for road noise focused on tire vibration of radial direction, circumferential mode is known, because this mode is dominant in vertical spindle force. However, recent studies of NVH prediction with development, including tires as car substructure, found that not only the circumferential mode, but also the lateral bending mode affect interior noise. Tire vibration mode making noise and vibration problem differs depending on axle vibration direction, and it is demand a comprehensive approach for this problem. This paper presents a new approach for evaluation of natural frequency of tire.
2015-06-15
Technical Paper
2015-01-2194
Giorgio Bartolozzi, Marco Danti, Guido Nierop, Andrea Camia
Within the automotive industry, a typical way to account for tires in a roadnoise mission simulation is to use the “modal model” supplied by tire manufacturers. Even though this kind of models is certified by the suppliers and is very simple to use, it has the drawback to be disconnected from the physical description of the tire. This reflects in limiting the carmaker company to be able only to request certain modal characteristics to the supplier. The aim of this paper is to present an accurate, yet easy to use, methodology to develop an FE model of a tire, to be used in a full-vehicle simulation. The determined model must be connected to the tire physical properties. These properties are not measured directly, but determined by tuning a properly created geometric FE model to the measured point inertances of the inflated tire. This allows creating the model only by using an optimization algorithm to tune such properties.
2015-06-15
Technical Paper
2015-01-2196
Farokh Kavarana, Scott Fritz, John DeYoung
Recent trends in vehicle light-weighting and tire design requirements have created an increased awareness to tire flat-spotting. Tire flat-spotting occurs when tires remain in a loaded condition without rolling for an extended period of time. Tire flat-spotting can either be temporary or permanent depending on the length of storage and other environmental factors. Tire non-uniformity caused due to flat-spots often induce shake and shimmy (back and forth oscillation of steering wheel) vibration in vehicles due to increased tire-wheel force variation input into the chassis. This can result in increased warranty costs for OEMs (Original Equipment Manufacturers) as well as customer dissatisfaction exhibited in third party quality surveys like the annual J. D. Power IQS (Initial Quality Survey).
2015-06-15 ...
  • June 15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The principal functions of the pneumatic tire are to generate driving, braking, and cornering forces while safely carrying the vehicle load and providing adequate levels of ride comfort. This seminar explains how tire forces and moments are generated under different operating and service conditions and, in turn, demonstrates how these forces and moments influence various vehicle responses such as braking, handling, ride, and high-speed performance. The content focuses on the fundamentals of tire behavior in automobiles, trucks, and farm tractors, but also includes experimental and empirical results, when necessary.
2015-05-01
Journal Article
2015-01-9106
Magnus Löfdahl, Arne Nykänen, Roger Johnsson
Abstract In the automotive industry, tire noise is an important factor for the perceived quality of a product. A useful method to address such NVH problems is to combine recordings with measurements and/or simulations into auralizations. An example of a method to create structure-borne tire noise auralizations is to filter recordings of hub forces and moments through binaural transfer functions experimentally measured from the hub of the car to an artificial head in the car cabin. To create authentic auralizations of structure-borne sound, all six degrees of freedom (DOFs) of hub forces and moments and transfer functions should be included. However, rotational DOFs are often omitted due to measurement difficulty, complexity, time, and cost. The objective was to find which DOF (or DOFs) is perceived as most prominent in structure-borne tire noise. An auralization model of interior structure-borne tire noise was used.
2015-04-22
Event
The aim of this symposium is to provide a forum to bring together researchers do discuss and disseminate the research on tire and wheel technology. Examples of topics to this symposium include (but are not limited to) nonlinear behavior of tires and wheels, static/dynamic stress analysis, nonlinear material modeling, contact stress, impact, noise, vibration, traction, hydroplaning, effect of tires on vehicle performance, rolling resistance, and durability. Session 1/2
2015-04-22
Event
The aim of this symposium is to provide a forum to bring together researchers do discuss and disseminate the research on tire and wheel technology. Examples of topics to this symposium include (but are not limited to) nonlinear behavior of tires and wheels, static/dynamic stress analysis, nonlinear material modeling, contact stress, impact, noise, vibration, traction, hydroplaning, effect of tires on vehicle performance, rolling resistance, and durability. Session 2/2
2015-04-21
Event
Focusing on tire and terrain mechanics modeling for load simulations, tire model development, parameters identification, and sensitivity analyses, tire test development, road profile characterization, effective road profile development, and interactions between tire, suspension/steering/brake systems, and different terrains, spindle loads/travel variation characteristics from deterministic and rough roads, terramechanics, tire noise, rolling resistance and correlation studies.
2015-04-20
Event
2015-04-14
Collection
Topics of this technical paper collection include (but are not limited to) nonlinear behavior of tires and wheels, static/dynamic stress analysis, nonlinear material modeling, contact stress, impact, noise, vibration, traction, hydroplaning, effect of tires on vehicle performance, rolling resistance, and durability.
2015-04-14
Technical Paper
2015-01-1237
Xiaoming Chen, Jeff L. Conklin, Robert M. Carpenter, Jeff Wallace, Cynthia Flanigan, David A. Wagner, Vijitha Kiridena, Stephane Betrancourt, Jason Logsdon
Abstract The Multi Material Lightweight Vehicle (MMLV) developed by Magna International and Ford Motor Company is a result of a US Department of Energy project DE-EE0005574. The project demonstrates the lightweighting potential of a five passenger sedan, while maintaining vehicle performance and occupant safety. Prototype vehicles were manufactured and limited full vehicle testing was conducted. The Mach-I vehicle design, comprised of commercially available materials and production processes, achieved a 364kg (23.5%) full vehicle mass reduction, enabling the application of a 1.0-liter three-cylinder engine resulting in a significant environmental benefits and fuel consumption reduction. As part of this project, several automotive chassis components were selected for development and evaluation on the MMLV C/D segment passenger sedan.
2015-04-14
Technical Paper
2015-01-1601
Long Chen, Mingyuan Bian, Yugong Luo, Keqiang Li
Abstract This paper proposes an estimation method of road-tire friction coefficient for the 4WID EV(4-wheel-independent-drive electric vehicle) in the pure longitudinal wheel slip, lateral sideslip and combined slip situations, which fuses both estimated longitudinal and lateral friction coefficients together, compared with existing methods based on a tire model in one single direction. Unscented Kalman filter (UKF) is introduced to estimate one-directional friction coefficient based on a modified Dugoff tire model. Considering the output results for each direction as a signal for the same target with different noise, MSE-weighted fusion method is proposed to fuse these two results together in order to reach a higher accuracy. The tire forces are estimated with the benefits of the 4WID EV that the driving torque and rolling speed of each wheel can be accurately known. The sideslip angles and slip ratios of each tire are calculated with a vehicle kinematic model.
2015-04-14
Journal Article
2015-01-1511
Srikanth Sivaramakrishnan, Kanwar Bharat Singh, Peter Lee
Abstract Anti-lock Braking System (ABS) is a critical safety component and its performance is crucial for every vehicle manufacturer. The tire plays an important role during an ABS braking maneuver as it is the component that connects the vehicle to the ground and is responsible for generating braking force. The steady-state and transient properties of the tire affect the operation of the vehicle's ABS system and consequently affects its performance/ operational efficiency. The main objective of this study is to investigate how tire design changes influence its interaction with the ABS and its eventual effect on stopping distance. This was conducted through an experimental study where tires were built with three levels of variation in carcass stiffness, tread stiffness and tread compound. Following this, ABS braking maneuvers were performed on two instrumented vehicles including a mid-tier sedan and a high-performance sports car.
2015-04-14
Journal Article
2015-01-1517
David Stalnaker, Ke-Jun Xie, Terence Wei
Abstract Tire manufacturers need to perform various types of testing to determine tire performance under representative vehicle load conditions. However, test results are influenced by a number of external variables other than tire construction. Vehicle load distribution and suspension properties are some of those external variables which can have a significant effect on tire wear rate and durability. Therefore, in order to measure real world tire performance in a controlled and repeatable manner, a representative vehicle and associated tire load conditions are needed. Laboratory or indoor tire testing offers many advantages over vehicle fleet testing. It provides a well-defined test environment and repeatable results without influence from external factors. Indoor testing has been largely developed around the process of simulating tire wear performance on a specific reference vehicle, including its specific weight distribution, suspension characteristics, and alignment.
2015-04-14
Technical Paper
2015-01-1518
Emmanuel O. Bolarinwa, Oluremi Olatunbosun
Abstract Three-dimensional (3D) Finite element (FE) tyre models have been widely used for tyre design, vehicle design and dynamic investigations. Such tyre models have the inherent advantage of covering a wide range of tyre modelling issues such as the detailed tyre geometry and material composition, in addition to an extensive coverage of tyre operational conditions such as the static preload, inflation pressure and driving speed. Although tyre vibration behaviour, in different frequency ranges are of general interest, both for the vehicle interior and exterior noise, the present study is limited to a frequency of 100 Hz which is prevalent in most road induced (Noise, Vibration, Harshness) NVH ride and handling problems. This study investigates tyre vibration behaviour using a proprietary FE code. Such investigation plays an important role in the study of vehicle dynamics.
2015-04-14
Technical Paper
2015-01-1513
Anudeep K. Bhoopalam, Kevin Kefauver
Abstract Indoor laboratory tire testing on flat belt machines and tire testing on the actual road yield different results. Testing on the machine offers the advantage of repeatability of test conditions, control of the environmental condition, and performance evaluation at extreme conditions. However, certain aspects of the road cannot be reproduced in the laboratory. It is thus essential to understand the connection between the machine and the road, as tires spend all their life on the road. This research, investigates the reasons for differences in tire performance on the test machine and the road. The first part of the paper presents a review on the differences between tire testing in the lab and on the road, and existing methods to account for differences in test surfaces.
2015-04-14
Technical Paper
2015-01-1512
Sairom Yoo, Md Salah Uddin, Hyeonu Heo, Jaehyung Ju, Doo Man Kim, Seok-Ju Choi
Abstract In an effort to develop tires with low rolling resistance, nonpneumatic tires (NPTs) with low viscoelastic energy loss materials are receiving more attention. For better design of NPTs on fuel efficiency, one may need to analyze rolling energy loss of NPT at a component level. The objective of this study is to develop a tool to quantify rolling energy loss and the corresponding internal heat generation of NPTs at a component level. For varying vehicle loads and rolling speeds, we suggest a thermo-mechanical model of an NPT with hexagonal cellular spokes and investigate temperature distribution of the NPT generated by hysteresis and convection loss into air. Using a hyper-viscoelastic material model developed from uniaxial (tensile and compression) tests and dynamic mechanical analysis (DMA), a thermo-mechanical model is developed by combining a longitudinal shear deformation induced hysteresis and a cooling procedure exposed to air.
2015-04-14
Technical Paper
2015-01-1515
Kwangwon Kim, Hyeonu Heo, Md Salah Uddin, Jaehyung Ju, Doo-Man Kim
Abstract Due to the relatively high freedom of selection of materials associated with a simple manufacturing method, a nonpneumatic tire (NPT) can be manufactured with a low viscoelastic energy loss material. A highly increasing demand to reduce greenhouse gases drives engineers to explore NPTs. NPTs consisting of flexible spokes and the shear band are still at an early stage of research and development. An optimization study of NPTs' geometry needs to be conducted, which is the objective of this paper. Parametric studies and design of experiments (DOE) of an NPT are conducted with a hyper-viscoelastic finite element (FE) model to determine the effects of three design variables on rolling resistance: the thickness of cellular spokes, the cell angle, and the shear band thickness. Considering vehicle load carrying capacity and riding comfort, ranges of vertical deflection between 18 and 20mm and contact pressure between 0.6 and 0.8MPa are selected as constraints for the optimization.
2015-04-14
Technical Paper
2015-01-1524
Ping Chen, Nan Xu, Konghui Guo, Rongsheng Liu
Abstract The tire lateral force is essential to the vehicle handling and stability under cornering. However, it is difficult for engineers to get the tire lateral force under high loading condition due to the limitation of loading ability for most tire test machine in the world. The widely used semi-empirical tire lateral force models are obtained by curve-fitting experiments data and thus unable to predict the load dependent lateral force. The objective of this paper is to predict the tire lateral force under high-load condition based on the low-load tire data. The nonlinear characteristics of the tire cornering stiffness with the load are greatly affected by the tire carcass compliance. In this paper, a theoretical tire lateral model was built by considering carcass complex deformation. Combined with the relationship between the half-length of the tire contact patch and the load, the non-linear characteristics of the tire cornering stiffness with load were obtained.
Viewing 1 to 30 of 2801

Filter

  • Range:
    to:
  • Year: