Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2745
2015-06-22
Event
This session includes papers regarding vehicle exterior or interior tire/pavement noise.
2015-06-16 ...
  • June 16, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
One of the most important safety critical components on cars, trucks, and aircraft is the pneumatic tire. Vehicle tires primarily control stopping distances on wet and dry roads or runways and strongly influence over-steer/under-steer behavior in handling maneuvers of cars and trucks. The inflated tire-wheel assembly also acts as a pressure vessel that releases a large amount of energy when catastrophically deflated. The tire can also serve as a fulcrum, both directly and indirectly, in contributing to vehicle rollover. This seminar covers these facets of tire safety phenomena. Engineering fundamentals...
2015-06-15 ...
  • June 15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The principal functions of the pneumatic tire are to generate driving, braking, and cornering forces while safely carrying the vehicle load and providing adequate levels of ride comfort. This seminar explains how tire forces and moments are generated under different operating and service conditions and, in turn, demonstrates how these forces and moments influence various vehicle responses such as braking, handling, ride, and high-speed performance. The content focuses on the fundamentals of tire behavior in automobiles, trucks, and farm tractors, but also includes experimental and empirical results,...
2014-11-11
Technical Paper
2014-32-0088
Claudio Annicchiarico, Renzo Capitani
Abstract In a Formula SAE car, as for almost all racecars, suppressing or limiting the action of the differential mechanism is the technique mostly adopted to improve the traction exiting the high lateral acceleration corners. The common Limited Slip Differentials (LSDs) unbalance the traction torque distribution, generating as a secondary effect a yaw torque on the vehicle. If this feature is electronically controlled, these devices can be used to manage the attitude of the car. The yaw torque introduced by an electronically controlled LSD (which can also be called SAD, “Semi-Active Differential”) could suddenly change from oversteering (i.e. pro-yaw) to understeering (i.e. anti-yaw), depending on the driving conditions. Therefore, controlling the vehicle attitude with a SAD could be challenging, and its effectiveness could be low if compared with the common torque vectoring systems, which act on the brake system of the car. In addition, unlike common ESC (“Electronic Stability Control”) systems do, a SAD can modify the vehicle attitude without limiting its traction performance, which is a crucial factor for racecars.
2014-10-10
WIP Standard
J1939DA
The J1939 Digital Annex The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. For all other SPNs and PGNs which are published in a document other than SAE J1939-71, J1939DA lists only basic details along with a reference to the document that contains the complete technical details. J1939DA replaces, and expands upon, the 1939 Companion Spreadsheet (CS1939), which was last published through November 2012. The data fields included in J1939DA for PGNs are: PGN Parameter Group Label Acronyn EDP DP PF PGN Length PS PGN Description Multipacket Transmission Rate PGN Data Length Default Priority PGN Reference PGN Document The data fields included in J1939DA for SPNs are: SPN SPN Name SPN Description SPN Length Resolution Offset Data Range Operational Range Units SLOT Identifier SPN Type SPN Reference SPN Document The J1939 Digital Annex is current through Second Quarter 2014 and can be purchased separately or as part of the SAE J1939 Standards Collection on the Web.
2014-10-07
Event
2014-10-07
Event
This technical session invites papers on dynamics and performance of conventional and unmanned, on-road/off-road vehicles with emphasis on dynamics and design of chassis, suspension, tires, and tracks. In the area of vehicle chassis with four and more number of driving wheels, papers are welcome, but not limited to: various types of suspensions and their interaction with the driving gear, steering, and driveline systems. Research papers presenting results on analysis, optimization, and control of tire dynamics and design for road and terrain vehicle applications are encouraged to be submitted to this session. Special attention is also given to rubber-track chassis systems and their asphalt passability and terrain mobility. Papers on conventional track system dynamics, design, and reliability issues are also invited. Energy efficiency issues, stochastic modeling, smoothness of ride, integrated design of chassis subsystems are also considered.
2014-09-30
Technical Paper
2014-01-2379
Yang Li, JianWei Zhang, Konghui Guo, Dongmei Wu
Abstract This paper presents an ideal force distribution control method for the electric vehicle, which is equipped with four independently in-wheel motors, in order to improve the lateral stability of the vehicle. According to the friction circle of tyre force, the ideal distribution control method can be obtained to make the front and rear wheels reach the adhesion limit at the same time in different conditions. Based on this, the force re-distributed control is applied to enhance the security of vehicle when the in-wheel motor is in the failure mode. The simulation result shows that: the force distributed method can not only improves the lateral stability of the vehicle but also enhances the vehicle safety.
2014-09-30
Technical Paper
2014-01-2321
Xianjian Jin, Guodong Yin, Youyu Lin
Abstract Knowledge of vehicle dynamics variables is very important for vehicle control systems that aim to improve handling characteristics and passenger safety. However for both technical and economical reasons some fundamental data (e.g., Lateral tire-road forces and vehicle sideslip angle) are difficult to measure in a standard car. This paper proposes a novel Interacting Multiple Model Filter-Based method to estimate lateral tire-road forces by utilizing real-time measurements. The estimation method of lateral tire-road forces is based on an interacting multiple model (IMM) filter that integrates in-vehicle sensors of in-wheel-motor-driven electric vehicles to adaptively adjusted multiple vehicle-road system models to match variable driving conditions. A four-wheel nonlinear vehicle dynamics model (NVDM) is built considering extended roll dynamics and load transfer. The vehicle-road system model set of the IMM filter is consists of a linear tire model based NVDM and a nonlinear Dugoff tire model based NVDM.
2014-09-30
Technical Paper
2014-01-2425
L. Joseph Bachman, Anthony Erb, Jeffry Sellers
Abstract Road tests of class 8 tractor trailers were conducted by the US Environmental Protection Agency (EPA) on a new and retreaded tires of varying rolling resistance in order to provide estimates of the quantitative relation between rolling resistance and fuel consumption. Reductions in fuel consumption were measured using the SAE J1231 (reaffirmation of 1986) test method. Vehicle rolling resistance was calculated as a load-weighted average of the rolling resistance (as measured by ISO28580) of the tires in each axle position. Both new and retreaded tires were tested in different combinations to obtain a range of vehicle coefficient of rolling resistance from a baseline of 7.7 kg/ton to 5.3 kg/ton. Reductions in fuel consumption displayed a strong linear relationship with coefficient of rolling resistance, with a maximum reduction of fuel consumption of 10 percent relative to the baseline. The return factor for the new tires was 1: 3.1, that is, a one percent decrease in fuel consumption is obtained by a 3.1 percent decrease in rolling resistance.
2014-09-30
Technical Paper
2014-01-2292
Anudeep K. Bhoopalam, Corina Sandu, Saied Taheri
Abstract Safety and minimal transit time are vital during transportation of essential commodities and passengers, especially in winter conditions. Icy roads are the worst driving conditions with the least available friction, leaving valuable cargo and precious human lives at stake. The study investigates the available friction at the tire-ice interface due to changes in key operational parameters. Experimental analysis of tractive performance of tires on ice was carried out indoor, using the terramechanics rig located at the Advanced Vehicle Dynamics Laboratory (AVDL) at Virginia Tech. The friction-slip ratio curves obtained from indoor testing were inputted into TruckSIM, defining tire behavior for various ice scenarios and then simulating performance of trucks on ice. The shortcomings of simulations in considering the effects of all the operational parameters result in differences between findings of indoor testing and truck performance simulations. Thus, the need for state-of-the-art tire-ice models capable of predicting accurate friction levels taking into account all operational conditions becomes evident.
2014-09-30
Technical Paper
2014-01-2358
Marius-Dorin Surcel, Yves Provencher
Abstract The objective of this project was to compare the fuel consumption and traction performances of 6 × 2 and 6 × 4 Class 8 tractors. Two approaches have been considered: evaluation of 6 × 2 tractors, modified from 6 × 4 tractors, and evaluation of OEM 6 × 2 tractors. Compared to the 6 × 4 tractors, which are equipped with a rear tandem with both drive axles, the 6 × 2 tractors have a rear tandem axle with one drive axle, and one non-drive axle, also called dead axle. The 6 × 2 tractor configurations are available from the majority of Class 8 tractor manufacturers. The SAE Fuel Consumption Test Procedures Type II (J1321) and Type III (J1526) were used for fuel consumption track test evaluations. Traction performances were assessed using pull sled tests to compare pulling distance, maximum speed, and acceleration when pulling the same set sled on similar surface. Fuel consumption tests showed that 6 × 2 tractors consume up to 3.5% less than the similar 6 × 4 tractors, whilst pull sled tests showed shorter distance, lower maximum speed, and lower acceleration for the 6 × 2 tractors, when compared to similar 6 × 4 tractors.
2014-09-28
Technical Paper
2014-01-2496
Adarsh Venkata Padmanabhan, Hariram Ravichandran, Lokendra Pavan Kumar Pappala, Shreyas Shenoy
This paper comprises obtaining friction coefficient (μ) measure by extracting surface and texture information using sensors during brake interventions. A primary estimate of friction coefficient has been obtained using wheel and vehicle signals. The estimates have been compared and combined to obtain a more accurate measure of friction coefficient. Finally, a suitable interpolation technique is used to obtain a μ-grid around the vehicle. The grid is graphically realized with the aid of visualization techniques using vehicle traces. This type of surface characterization usually enables brake distance optimization and effective countermeasures pertaining to a standard ESP system.
2014-09-15
WIP Standard
J393
This SAE Recommended Practice establishes uniform engineering nomenclature for wheels, hubs, rims, and their components used in truck, bus, and trailer applications. This nomenclature and accompanying drawings are intended to define functional truck wheel, hub, and rim designs. The International Standard (ISO) nomenclature is shown in parentheses when different than SAE J393.
2014-08-11
Standard
J1939DA_201408
The J1939 Digital Annex The J1939 Digital Annex, introduced in August 2013, offers key J1939 technical data in an Electronic Spreadsheet that can be easily searched, sorted, and adapted to other formats. J1939DA contains all of the SPNs (parameters), PGNs (messages), and other J1939 data previously published in the SAE J1939 top level document. J1939DA also contains all of the SLOTs, Manufacturer ID Codes, NAME Functions, and Preferred Addresses previously published in the SAE J1939 top level and the J1939-71 document. J1939DA contains the complete technical details for all of the SPNs and PGNs previously published in the SAE J1939-71 document. For all other SPNs and PGNs which are published in a document other than SAE J1939-71, J1939DA lists only basic details along with a reference to the document that contains the complete technical details. J1939DA replaces, and expands upon, the 1939 Companion Spreadsheet (CS1939), which was last published through November 2012. The data fields included in J1939DA for PGNs are: PGN Parameter Group Label Acronyn EDP DP PF PGN Length PS PGN Description Multipacket Transmission Rate PGN Data Length Default Priority PGN Reference PGN Document The data fields included in J1939DA for SPNs are: SPN SPN Name SPN Description SPN Length Resolution Offset Data Range Operational Range Units SLOT Identifier SPN Type SPN Reference SPN Document The J1939 Digital Annex is current through Second Quarter 2014 and can be purchased separately or as part of the SAE J1939 Standards Collection on the Web.
2014-07-30
Standard
J2475_201407
This recommended practice contains dimensions and tolerances for spindles in the interface area. Interfacing components include axle spindle, bearing cones, bearing spacer, seal and wheel hub. This recommended practice is intended for axles commonly used on Class 7 and 8 commercial vehicles. Included are SAE axle configurations FF, FL, I80, L, N, P, R, U, and W.
2014-07-29
Standard
AIR5372A
This SAE Aerospace Information Report (AIR) describes the design approaches used for current applications of aircraft Brake-by-Wire (BBW) control systems. The document also discusses the experience gained during service, and covers system, ergonomic, hardware, and development aspects. The document includes the lessons that have been learned during application of the technology. Although there are a variety of approaches that have been used in the design of BBW systems, the main focus of this document is on the current state of the art systems.
Training / Education Classroom Seminars
                                                                 Understanding vehicle dynamics is one of the critical issues in the design of all vehicles, including heavy trucks. This seminar provides a comprehensive introduction to the fundamentals of heavy truck dynamics. It covers all of the critical subsystems that must be considered by designers and decision makers in determining the effect of various components on heavy truck dynamics. This seminar begins where the tires meet the ground, progressing up through the various components and bringing together the theory and practice of heavy...
2014-07-11
Standard
AS1188A
This specification covers minimum design and test requirements for aircraft tire inflation-deflation equipment for use on all types of aircraft. It shall be the responsibility of the airframe manufacturer to determine the compatibility of the requirement with the applicable aircraft and to specify requirements in excess of these minimums as necessary.
2014-06-30
Technical Paper
2014-01-2075
Gregor Koners, Ralf Lehmann
Abstract Low interior noise levels in combination with a comfortable sound is an important task for passenger cars. Due to the reduction of many noise sources over the last decades, nowadays tire-road noise has become one of the dominant sources for the interior noise. Especially for manufactures of luxury cars, the reduction of tire-road noise is a big challenge and therefore a central part of NVH development. The knowledge of the noise transmission behavior based on the characteristics of the relevant sources is a fundamental of a modern NVH - development process. For tire-road noise the source characteristics can be described by wheel forces and radiated airborne noise. In combination with the related vehicle transfer functions it is possible to describe the noise transmission behavior in detail. A method for estimating wheel forces and radiated airborne noise is presented. The method is based on TPA (= Transfer Path Analysis) via matrix inversion and involves the measurement of the vehicle transfer functions.
2014-06-16
Standard
ARP5265B
This SAE Aerospace Recommended Practice (ARP) sets forth criteria for the installation, inflation, inspection, and maintenance of aircraft tires as well as criteria for the maintenance of the operating environment so as to achieve the purpose stated in 1.1. (Definitions of terms related to aircraft tires are found in 2.2.)
2014-06-16
Standard
J1892_201406
This SAE Recommended Practice describes the basic content requirements, bar-code specifications, and functional test specifications of a vehicle emission configuration (VEC) label. On the vehicle, the VEC label is to be mounted under the hood in a readily accessible location for use of a bar-code scanning device. This document specifies a permanent vehicle emission configuration label that can be automatically identified through a bar-coded format.
2014-06-10
Standard
AIR5914
This SAE Aerospace Information Report (AIR) provides guidelines for the development of landing gear fatigue spectra for the purpose of designing and certification testing of Part 25 landing gear. Many of the recommendations herein are generalizations based on data obtained from a wide range of landing gears. The aircraft manufacturer or the landing gear supplier is encouraged to use data more specific to their particular undercarriage whenever possible.
2014-06-06
Standard
J2673_201406
This SAE Recommended Practice describes a test method for determination of heavy truck (Class VI, VII, and VIII) tire force and moment properties under straight-line braking conditions. The properties are acquired as functions of normal force and slip ratio using a sequence specified in this practice. At each normal force increment, the slip ratio is continually changed by application of a braking torque ramp. The data are suitable for use in vehicle dynamics modeling, comparative evaluations for research and development purposes, and manufacturing quality control.
2014-06-02
WIP Standard
J2028
This SAE Recommended Practice outlines the qualification testing and performance related criteria of elastomeric boot seals used in constant velocity joint applications. These applications are referred to as front- wheel-drive halfshafts or axles, but can also be utilized in rear-wheel-drive halfshaft applications. For additional information regarding CV joint systems and their applications refer to SAE AE-7 "Universal Joint and Driveshaft Design Manual." The grease type and grease quantities, clamps and clamping mechanisms of an assembly are critical and considered to be the same as OEM, service, or aftermarket designation. Although joint lubricating grease and clamping mechanism are not addressed in this document, they are critical to a total system performance. The purpose of this document is to establish a uniform practice for those in the surface vehicle industry that specify and/or manufacture CV joint boot seals (boots) for OEM or aftermarket use with respect to qualification testing for physical and mechanical properties.
Viewing 1 to 30 of 2745

Filter

  • Range:
    to:
  • Year: