Criteria

Text:
Display:

Results

Viewing 1 to 30 of 18694
2015-11-02 ...
  • November 2-6, 2015 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Today's transportation industries are facing multi-disciplinary challenges. The product design and development process challenges often contradict each other, for example cost, weight, quality and performance. A central challenge is the need for cost and mass reduction to compete in the global market, while continuing to meet all new and existing requirements for quality and performance. Accelerated Concept to Product (ACP) Process is a performance-driven, holistic, product design development method intended to create a balance between structure and strength, synchronizing the individual facets of the product development process.
2015-10-27
Event
2015-06-26 ...
  • June 26, 2015 (12:30 p.m. - 4:30 p.m.) - Grand Rapids, Michigan
Training / Education Classroom Seminars
The June offering of this seminar is held in conjunction with the SAE 2015 Noise and Vibration Conference and Exhibition. Register for this offering and you can register to attend the Noise and Vibration Conference and Exhibition for 25% off the classic member event rate. Please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for SAE 2015 Noise and Vibration Conference and Exhibition for this special rate.
2015-06-25
Event
This session includes an ice accretion prediction on engine nacelles in both liquid and solid phase, a bpoundary layer transition effect model study for ice protected airfoils, an icing modeling with Level-Set approach, and a multi-step icing calculations using the latest NSMB3D-ICE icing code.
2015-06-24
Event
This session includes a numerical improvement of 2D ice accretion simulation capability of ONERA2D, a study on ice adhesion and a reduced order modeling approach to explore the 14 CFR 25/29 Appendix C icing envelope.
2015-06-24
Event
This session includes a CFD evaluation of ice accretion scaling methods using the ONERA2D icing code, , a comparison of natural flight test results with CFD simulations using FENSAP-ICE, and an overview of the A350XWB icing certification program.
2015-06-24
Event
This session provides a good overview of recent innovations to SEA modeling techniques. SEA models can be used alone or together with hybrid analytical or experimental techniques to establish good comparative NVH predictions at the earliest stage of the vehicle design process. The papers of this session will describe recent advances and / or validations of SEA theory, applications, or use in conjunction with hybrid techniques for high- and mid-frequency NVH predictions.
2015-06-24
Event
This session includes a numerical study of the electrothermal deicing process on a helicopter rotor blade, an experimental study of icing effect on a mechanical deicing system based on natural frequency, and a study of open loop anti-icing control of rotor blade heaters.
2015-06-24
Event
This session includes an experimental study of altitude effect on thermal IPS performance, an analysis of thermal ice protection of restraining grids on aircraft, an unsteady thermal simulation of aircraft wing IPS integrated in metallic or composite structures, and an update on recent advances in the GlennIce icing model.
2015-06-23
Event
This session includes a quasi-3D numerical evalution of icing effect on high lift configurations and a Lattice-Boltzmann analysis of 3D ice shapes on a NACA23012 airfoil.
2015-06-15
Technical Paper
2015-01-2109
Rodrigo Domingos, Daniel Silva
This paper outlines a three-dimensional computer model named AIPAC suitable for bleed-air ice protection system parametric studies in support of system design and optimization. This 3D simulation code was derived from HASPAC, which is a 2D anti-icing model developed at Wichita State University in 2010. AIPAC is based on the Finite Volumes Method and, similarly to HASPAC, combines a commercial Navier-Stokes flow solver with a Messinger model based thermodynamic analysis that applies internal and external flows heat transfer coefficients, pressure distribution, wall shear stress, etc, to compute wing leading edge skin temperatures, 3D runback flow distribution, and the location, extent and rate of icing. In addition, AIPAC was built using a transient formulation and with the capability of extruding a 3D surface mesh into a volumetric domain, so that “single-shot” ice shapes can be predicted (a more accurate multiple-step ice growth methodology is currently being developed).
2015-06-15
Technical Paper
2015-01-2122
Cameron Butler, Eric Loth
INTRODUCTION To support a collaborative research project aimed at studying icing on large-scale, swept wings, unsteady simulations were performed on test articles with and without icing in NASA Glenn’s Icing Research Tunnel (IRT). The models being tested are all swept hybrid models designed to have the same leading-edge geometry as a 65% scaled version of the Common Research Model (CRM). Three models were designed as hybrid airfoils where the leading edge geometry and flow field matched that of the CRM, but the rest of the airfoil was reduced substantially in length to accommodate the tunnel cross-section. This hybrid design allows for the largest leading-edge which avoids complex issues associated with geometric scaling in icing conditions. To investigate the effect of sweep along the wing, three different test models are investigated to represent different spanwise locations along the CRM, from inboard, mid-span and outboard.
2015-06-15
Technical Paper
2015-01-2162
Krzysztof Szilder, Edward Lozowski
Atmospheric icing resulting from freezing rain, freezing drizzle and freezing cloud droplets occurs when airborne supercooled water drops freeze on objects they encounter. This process is especially hazardous to aircraft, when the build-up of ice changes the stability and control characteristics of the aerodynamic surfaces. Ice can also be shed with disastrous consequences, if it is ingested into engines, strikes the aircraft or leads to unbalanced aerodynamics forces. Ice accretion is a complex phenomenon involving 3-D multi-phase flow, heat transfer, and gravitational, viscous, surface tension and shear forces. An ability to predict how ice accretes on engineering structures is essential to the prediction of its associated aerodynamic penalties. We have developed an original icing modelling capability, called the “morphogenetic” approach, based on a discrete formulation and emulation of ice formation physics.
2015-06-15
Technical Paper
2015-01-2304
Hiroko Tada
In order to achieve a good balance between quietness in the vehicle interior cavity and lighter vehicle weight, it is necessary to study and optimize the specifications of the sound-proof packages. And, this optimization study is advisably done in the early stage of the vehicle development. For challenging to this antinomic, the process for improving automotive interior quietness (as related to air-borne noise above 400 Hz, considered the high-frequency range), with setting the marketability targets, the vehicle body acoustical performances and the parts specifications, was established. With conventional methods, it is challenging to disseminate the relationship between the overall vehicle performance and the performance of individual parts directly. Moreover, without new methods, it is also challenging to propose detailed specifications for the optimal sound-proof packages directly.
2015-06-15
Technical Paper
2015-01-2302
Yuksel Gur, Jian Pan, David Wagner
Light weighting of vehicle panels enclosing vehicle cabin causes NVH degradation since engine, road, and wind noise acoustic sources propagate to the vehicle interior through these panels. In order to reduce this NVH degradation, there is a need to develop new sound package materials and designs for use in lightweight vehicles. In this paper, we will focus on the use of SEA (Statistical Energy Analysis Tool) as a CAE design tool to develop sound packages for use in lightweight vehicle design to recover NVH deficiencies due to sheet metal light weighting actions. Statistical Energy Analysis results for vehicle level as well as dash and floor subsystem levels will be presented and SEA prediction capability for the sound package development for vehicle design will be discussed.
2015-06-15
Technical Paper
2015-01-2303
Katherine Tao, Alan Parrett, David Nielubowicz
The headliner system in a vehicle is an important element in vehicle noise control. In order to predict the performance of the headliner, it is necessary to develop an understanding of the substrate performance, the effect of air gaps, and the contribution from any acoustic pads in the system. Current Statistical Energy Analysis (SEA) models for predicting absorption performance of acoustic absorbers are based on material Biot properties. However, the resources for material Biot property testing are limited and cost is high. In this paper, modeling parameters for the headliner substrate are identified from a set of standard absorption measurements on substrates, using curve fitting and optimization techniques. The parameters are then used together with thickness/design information in a SEA model to predict the vehicle headliner system absorption performance.
2015-06-15
Technical Paper
2015-01-2300
Robert Fiedler, Chadwyck Musser
This paper addresses the NVH design of a light rail vehicle whose maximum allowable interior SPL levels at certain speeds are regulated and may vary between countries, states, and cities. The objective of this study was to predict sound pressure levels (SPL) at several interior locations across a wide range of frequencies and estimate if the current design configuration will meet the noise level limits. Statistical Energy Analysis (SEA) was used to predict interior SPL and to understand and rank the various noise contribution paths and give a better understanding of the physics of transmission and what types of design changes are most effective to reduce the overall interior SPL to meet targets. A typical light rail vehicle is composed of a frame-like structure covered by lightweight panels and with interior panels that are increasingly made from composites, sandwich, laminated, or honeycomb materials or extruded panels.
2015-06-15
Technical Paper
2015-01-2132
David L. Rigby, Joseph Veres, Colin Bidwell
Three dimensional Navier-Stokes simulations of the Honeywell ALF502 low pressure compressor using the NASA Glenn code Glenn-HT have been carried out. A total of eight operating points were investigated. These operating points are at, or near, points where engine icing has been determined to be likely. The results of this study are expected to be used immediately, and in the future, for further analysis such as predicting collection efficiency of ice particles and ice growth rates at various locations in the compressor. A mixing plane boundary condition is used between each blade row, resulting in convergence to steady state within each blade row. Results for two levels of approximation are discussed. The first set of cases were run allowing all of the solid surfaces to slip (i.e. inviscid). That is, the velocity boundary layers are not resolved. This allows for much smaller grids and shorter run times.
2015-06-15
Technical Paper
2015-01-2115
Antonio Criscione, Suad Jakirlic, Zeljko Tukovic, Ilia Roisman, Cameron Tropea
Atmospheric icing occurs when supercooled large drops (SLD) of water come in contact with the surface of exposed structures. Excessive accumulation on structures and equipment is well known for causing serious problems in cold-climate regions which lead to material damage and high costs in various sectors of the economy. Hereby, SLD impact with the exposed structure results consequently in an ice layer growth covering the surface of the substrate. The present study enables, among other things, modeling of both stages of the solidification process of a supercooled large water drop on a cold substrate - the first rapid, recalescent stage and the second slower, quasi-isothermal stage. The different mechanisms underlying both freezing stages can be explained as follows: in the first stage the initial planar solidification front becomes morphologically unstable due to a high degree of supercooling. Small bumps/instabilities evolving at the interface propagate further into the liquid.
2015-06-15
Technical Paper
2015-01-2088
Richard E. Kreeger, Lakshmi Sankar, Robert Narducci, Robert Kunz
The formation of ice over lifting surfaces can affect aerodynamic performance. In the case of helicopters, this loss in lift and the increase in sectional drag forces will have a dramatic effect on vehicle performance. The ability to predict ice accumulation and the resulting degradation in rotor performance is essential to determine the limitations of rotorcraft in icing encounters. The consequences of underestimating performance degradation can be serious and so it is important to produce accurate predictions, particularly for severe icing conditions. The simulation of rotorcraft ice accretion is a challenging multidisciplinary problem that until recently has lagged in development over its counterparts in the fixed wing community. But now, several approaches for the robust coupling of a computational fluid dynamics code, a rotorcraft structural dynamics code and an ice accretion code have been demonstrated.
2015-06-15
Technical Paper
2015-01-2163
Caio Fuzaro Rafael, Diogo Mendes Pio, Guilherme A. Lima da Silva
The present paper shows integral boundary-layer solutions and finite-volume Reynolds-Averaged Navier Stokes (RANS) Computational Fluid Dynamics (CFD) results for flow around three airfoils: NACA 8H12, MMB-V2 and NACA0012. The objective of the present paper is to verify and compare results of a proposed two-equation integral model to those of a traditional one-equation integral model used by classic 2D icing codes and previous anti-ice works. In addition, the present paper compares the results of both proposed and traditional integral codes to CFD results and, whenever possible - validate with experimental data. A numerical code that solves integral equations of boundary layer - with transition onset and length predictions as well as the intermittency evolution - is implemented based on different literature models.
2015-06-15
Technical Paper
2015-01-2161
Kazem Hasanzadeh, Dorian Pena, Yannick Hoarau, Eric Laurendeau
The paper will present the framework of fully automated two/three dimensional ice accretion simulation package NSMB3D-ICE, with emphasis on the remeshing step. The NSMB3D-ICE Navier-Stokes code, coupled to an Eulerian droplet module and iterative Messinger thermodynamic model, can perform multi time-steps ice accretion simulations via an automated multi-block elliptic/parabolic grid generation code (NSGRID3D). Attention is paid to the efficiency and robustness of the numerical procedure especially for complex 3D glaze ice simulation. The new automated multi time-step icing code NSMB3D-ICE/NSGRID3D is validated and verified using several icing case studies such as the GLC305-3D rime and glaze ice cases. The Navier-Stokes flow solver NSMB3D is a finite volume three-dimensional multi-block Euler/Navier-Stokes flow solver developed by J. Vos et al. [1-3].
2015-06-15
Technical Paper
2015-01-2140
Emiliano Iuliano
The presence of ice crystals in deep convective clouds has become a major threat for aviation safety. As recently highlighted, once inside the engine core, ice crystals encounter a high temperature environment, so that they can either melt by convection with the warm environment or melt upon impact onto hot static components of the low-pressure components. As a consequence, a liquid film may form which, in turn, is able to capture further ice crystals by sticking mechanism. This scenario results in a significant decrease of the local surface temperature and, hence, promotes the accretion of ice. Therefore, it is clear that icing simulation capabilities have to be updated in order to be able to predict such phenomena. The paper proposes an extension of CIRA icing tools to deal with ice crystals along with supercooled water droplets.
2015-06-15
Technical Paper
2015-01-2141
Markus Widhalm
This paper focuses on the numerical simulation of the motion of regular shaped ice particles and the computation of aerodynamic forces and torques on such particles. The shape of an ice crystal may deviate considerably from a sphere and can occur as thin needles or disk-shaped configurations, referred as regular non-spherical particles, or in irregular form as flakes or agglomerates. Ice crystals can be found at the upper boundary of the troposphere in anvils of cumulonimbus clouds, where strong winds exist and an altitude, where jet aircraft cruise at transonic speed, imposing a high flow Reynolds number. As the particle size grows from a few microns into several 100's of microns a high particle Reynolds number may be expected too.
2015-06-15
Technical Paper
2015-01-2301
Maxwell Hill, Dan Luo, Mark Moeller
Wind noise can be a significant event for automotive design engineers. The greenhouse glass plays an important role in the wind noise process. Robust estimates of the greenhouse glass damping are necessary for both understanding and modeling the role of the glass in the wind noise process. One unanswered question is whether the aerodynamic loads affect the window glass damping. To make this determination a method to assess the operational damping is required. The civil engineering community uses the random decrement technique to assess operational damping due wind loads. The random decrement technique has been shown to be a normalized autocorrelation function. In this paper the damping is estimated directly from the autocorrelation function. In the first section the relationship between the damping and autocorrelation function is examined for white noise excitation. A single oscillator is examined as the first case. Extension to higher modal densities is discussed.
2015-06-15
Technical Paper
2015-01-2142
Colin Hatch, Roger Gent, Richard Moser
Summary Initial results from a hybrid electro-thermal electro-mechanical simulation (HETEMS) analysis tool are presented and compared to data measured during a dedicated icing trial. Temperatures and ice shed prediction data are compared with the data measured on a full size wing tested in the CIRA Icing Wind Tunnel (IWT) Additional Test Section (ATS). Background The demand for low power ice protection systems was one of the components of the EU Clean Sky initiative [1]. Under Clean Sky a research programme HETEMS looked at the development of a tool to analyse electro-thermal (ET) and electro-mechanical (EM) ice protection systems (IPS). The tool was intended to analyse independent ET and EM systems or a hybrid system using both technologies combined. The aims and scope of the tool are presented in [2]. The HETEMS software was developed around open source tools for the aerodynamic analysis [3] and mechanical failure analysis [4] in conjunction with in-house software.
2015-06-15
Technical Paper
2015-01-2151
Reinhard F.A. Puffing, Wolfgang Hassler, Andreas Tramposch, Marian Peciar
For studying ice accretion processes experimentally and establishing a valuable validation basis for ice accretion simulation models it is desirable to document experimentally generated ice shapes as accurately as possible. The generated set of data then forms the basis for aerodynamic studies, the improvement of icing test facilities, the development of design criteria, the development of ice accretion simulation tools as well as a number of further applications. In the past, various ice shape documentation methods have been established. These include photography, cross-sectional tracing, molding and casting as well as 3D-scanning. Photography is the easiest and fastest documentation method but provides little quantitative information on the ice accretion process itself. Additional quantitative information can be obtained by using multiple cameras or calibrated camera positions which, however, implicates significant additional time and cost efforts.
2015-06-15
Technical Paper
2015-01-2155
Tadas P. Bartkus, Peter Struk, Jen-Ching Tsao
This paper describes a numerical model that simulates the thermal interaction between ice particles, water droplets, and the flowing air applicable during icing wind tunnel tests where there is significant phase-change of the cloud. The model is compared to measurements taken during wind tunnel tests simulating ice-crystal and mixed-phase icing that relate to ice accretions within turbofan engines. This model, written in MATLAB, is based on fundamental conservation laws and empirical correlations. Due to numerous power-loss events in aircraft engines, potential ice accretion within the engine due to the ingestion of ice crystals is being investigated. To better understand this phenomenon and determining the physical mechanism of engine ice accretion, fundamental tests have been collaboratively conducted by NASA Glenn Research Center and the National Research Council of Canada (NRC).
Viewing 1 to 30 of 18694

Filter

  • Range:
    to:
  • Year: