Criteria

Text:
Display:

Results

Viewing 1 to 30 of 5181
2017-06-05
Technical Paper
2017-01-1788
Kishore Chand Ulli, Upender Rao Gade
Abstract Automotive window buffeting is a source of vehicle occupant’s discomfort and annoyance. Original equipment manufacturers (OEM) are using both experimental and numerical methods to address this issue. With major advances in computational power and numerical modelling, it is now possible to model complex aero acoustic problems using numerical tools like CFD. Although the direct turbulence model LES is preferred to simulate aero-acoustic problems, it is computationally expensive for many industrial applications. Hybrid turbulence models can be used to model aero acoustic problems for industrial applications. In this paper, the numerical modelling of side window buffeting in a generic passenger car is presented. The numerical modelling is performed with the hybrid turbulence model Scale Adaptive Simulation (SAS) using a commercial CFD code.
2017-06-05
Technical Paper
2017-01-1802
Dong chul Lee, Insoo Jung, Jaemin Jin, Stephan Brandl, Mehdi Mehrgou
Abstract In the automotive industry, various simulation-based analysis methods have been suggested and applied to reduce the time and cost required to develop the engine structure to improve the NVH performance of powertrain. This simulation is helpful to set the engine design concept in the initial phase of the powertrain development schedules. However, when using the conventional simulation method with a uniformed force, the simulation results sometimes show different results than the test results. Therefore, in this paper, we propose a method for predicting the radiated noise level of a diesel engine using actual combustion excitation force. Based on the analytical radiated noise development target, we identify the major components of the engine that are beyond this development target by in the frequency range. The components of the problem found in this way are reflected in the engine design of the early development stage to shorten the development time.
2017-06-05
Technical Paper
2017-01-1892
Yosuke Tanabe, Masanori Watanabe, Takafumi Hara, Katsuhiro Hoshino, Akira Inoue, Masaru Yamasaki
Abstract Predicting the vibration of a motor gearbox assembly driven by a PWM inverter in the early stages of development is demanding because the assembly is one of the dominant noise sources of electric vehicles (EVs). In this paper, we propose a simulation model that can predict the transient vibration excited by gear meshing, reaction force from the mount, and electromagnetic forces including the carrier frequency component of the inverter up to 10 kHz. By utilizing the techniques of structural model reduction and state space modeling, the proposed model can predict the vibration of assembly in the operating condition with a system level EV simulator. A verification test was conducted to compare the simulation results with the running test results of the EV.
2017-06-05
Journal Article
2017-01-1902
Guan Qiao, Geng Liu, Zhenghong Shi, Yawen Wang, Shangjun Ma, Teik Lim
Abstract Actuator and roller screw mechanism are key components of electromechanical brake (EMB) system in automotive and aerospace industry. The inverted planetary roller screw mechanism (IPRSM) is particularly competitive due to its high load-carrying capacity and small assembly size. For such systems, friction characteristic and friction torque generated from rolling/sliding contacts can be an important factor that affects the dynamic performance as well as vibration behavior. This paper investigates the modeling and simulation of the EMB system in early design stage with special attention to friction torque modelling of IPRSM. Firstly, a step-by-step system model development is established, which includes the controller, servo motor, planetary gear train and roller screw mechanism to describe the dynamic behavior of the EMB system.
2017-05-05
Magazine
Alternative fuels and challenges Automotive powertrain development: virtually-connected hardware co-simulation Functional Safety-progressing towards safer mobility Electric rockets and the future of satellite propulsion Achates powers toward production A potential ICE game-changer, the Achates OP engine is being tooled up for production at one OEM while a new 2.7-L triple for light-truck demonstrations enters the build phase. Engineering with simulation and data Companies are discovering new simulation techniques, especially optimization; the next step is to combine simulation with sensor data and predictive analytics to create even more robust off-highway equipment.
CURRENT
2017-04-27
Standard
ARP1420C
The turbine-engine inlet flow distortion methodology addressed in this document applies only to the effects of inlet total-pressure distortion. Practices employed to quantify these effects continue to develop and, therefore, periodic updates are anticipated. The effects of other forms of distortion on flow stability and performance, and of any distortion on aeroelastic stability are not addressed. The guidelines can be used as necessary to create a development method to minimize the risk of inlet/engine compatibility problems. The degree to which guidelines for descriptor use, assessment techniques, and testing outlined in this document are applied to a specific program should be consistent with the expected severity of the compatibility problem.
2017-04-27
Magazine
Interoperability Standards Pave the Way for Modular Robotic Manipulators Solar Powering UAVs Deploying COTS Subsystems in UUVs Developing a Multi-Modal UGV Robot Control Interface Fast-Tracking Autonomous Vehicles with Simulation Gesture-Based Controls for Robots: Overview and Implications for Use by Soldiers Identifying the Flow Physics and Modeling Transient Forces on Two-Dimensional Wings Experimental Confirmation of an Aquatic Swimming Motion Theoretically of Very Low Drag and High Efficiency The Scaling of Loss Pathways and Heat Transfer in Small Scale Internal Combustion Engines A Guide for Developing Human-Robot Interaction Experiments in the Robotic Interactive Visualization and Experimentation Technology (RIVET) Simulation
2017-04-10
WIP Standard
ARP6538
The aerospace industry is facing some of its biggest challenges to date. Chief among these are range and endurance limitations, restricted flight envelopes caused by thermal constraints, increasing power demands, and power compatibility issues. Unlike past challenges, these are too complex to solve at just the component level, and a subsystem and/or air vehicle level analysis is necessary. An important tool utilized by aerospace community for this is modeling, simulation, analysis, and testing (MSAT). Unfortunately, there are as many modeling methods as there are model users. Thus, a set of modeling standards and guidelines is necessary in order to facilitate the interconnection and compatibility of electric power system models across industry. This document, the Dynamic Modeling and Simulation (DyMAS) Aerospace Recommended Practice, provides this.
2017-04-06
Magazine
Connectivity continues its advance More OEMs and Tier 1 suppliers are focusing on embedded telematic systems, hoping to displace aftermarket hardware. Tailoring fuel injection to control NOx The next big step to help heavy-duty diesel engines meet stricter emissions regulations involves adapting the fuel-injection system to the combustion needs. Active on safety Crash-avoidance technologies are vital "building blocks" to automate commercial vehicles, implement truck platooning and ultimately achieve zero accidents. Engineering with simulation and data Companies are discovering new simulation techniques, especially optimization; the next step is to combine simulation with sensor data and predictive analytics to create even more robust off-highway equipment.
2017-03-28
Collection
This technical paper collection is focused on vehicle dynamics and controls using modeling and simulation, and experimental analysis of passenger cars, heavy trucks, and wheeled military vehicles. The papers address active and passive safety systems to mitigate rollover, yaw instability and braking issues; driving simulators and hardware-in-the-loop systems; suspension kinematics and compliance, steering dynamics, advanced active suspension technologies; and tire force and moment mechanics.
2017-03-28
Collection
This collection of papers focus on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry. Studies and discussions on innovative and improved fatigue theory/methods in will be discussed along with and engineering applications of CAE durability analysis.
2017-03-28
Collection
This collection papers advances the knowledge in product design, manufacturing processes, and engineering analysis using the state-of-the-art computer technology. The scope includes such areas as CFD, manufacturing and assembly simulation, crash-worthiness, computational mechanics, mold flow, ride simulation, ergonomic design, NVH, reverse engineering, etc. Developments in numerical methods applicable to automotive engineering problems are also included.
2017-03-28
Technical Paper
2017-01-1141
Bashar Alzuwayer, Robert Prucka, Imtiaz Haque, Paul Venhovens
Abstract Fuel economy regulations have forced the automotive industry to implement transmissions with an increased number of gears and reduced parasitic losses. The objective of this research is to develop a high fidelity and a computationally efficient model of an automatic transmission, this model should be suitable for controller development purposes. The transmission under investigation features a combination of positive clutches (interlocking dog clutches) and conventional wet clutches. Simulation models for the torque converter, lock-up clutch, transmission gear train, interlocking dog clutches, wet clutches, hydraulic control valves and circuits were developed and integrated with a 1-D vehicle road load model. The integrated powertrain system model was calibrated using measurements from real-world driving conditions. Unknown model parameters, such as clutch pack clearances, compliances, hydraulic orifice diameters and clutch preloads were estimated and calibrated.
2017-03-28
Technical Paper
2017-01-0260
Yuanying Wang, Heath Hofmann, Denise Rizzo, Scott Shurin
Abstract This paper presents a computationally-efficient model of heat convection due to air circulation produced by rotor motion in the air gap of an electric machine. The model calculates heat flux at the boundaries of the rotor and stator as a function of the rotor and stator temperatures and rotor speed. It is shown that, under certain assumptions, this mapping has the homogeneity property. This property, among others, is used to pose a structure for the proposed model. The coefficients of the model are then determined by fitting the model to the results of a commercial Computational Fluid Dynamics (CFD) simulation program. The accuracy of the new model is compared to the CFD results, shown an error of less than 0.3% over the studied operating range.
2017-03-28
Technical Paper
2017-01-0261
Randolph Jones, Robert Marinier III, Frank Koss, Robert Bechtel, John A. Sauter
Abstract When evaluating new vehicle designs, modeling and simulation offer techniques to predict parameters such as maximum speed, fuel efficiency, turning radius, and the like. However, the measure of greatest interest is the likelihood of mission success. One approach to assessing the likelihood of mission success in simulation is to build behavior models, operating at the human decision-making level, that can execute realistic missions in simulation. This approach makes it possible to not only measure changes in mission success rates, but also to analyze the causes of mission failures. Layering behavior modeling and simulation on underlying models of equipment and components enables measurement of more conventional parameters such as time, fuel efficiency under realistic conditions, distance traveled, equipment used, and survivability.
2017-03-28
Technical Paper
2017-01-0264
Venkatesh Babu, Ravi Thyagarajan, Jaisankar Ramalingam
Abstract In this paper, the capability of three methods of modelling detonation of high explosives (HE) buried in soil viz., (1) coupled discrete element & particle gas methods (DEM-PGM) (2) Structured - Arbitrary Lagrangian-Eulerian (S-ALE), and (3) Arbitrary Lagrangian-Eulerian (ALE), are investigated. The ALE method of modeling the effects of buried charges in soil is well known and widely used in blast simulations today [1]. Due to high computational costs, inconsistent robustness and long run times, alternate modeling methods such as Smoothed Particle Hydrodynamics (SPH) [2, 9] and DEM are gaining more traction. In all these methods, accuracy of the analysis relies not only on the fidelity of the soil and high explosive models but also on the robustness of fluid-structure interaction. These high-fidelity models are also useful in generating fast running models (FRM) useful for rapid generation of blast simulation results of acceptable accuracy.
2017-03-28
Technical Paper
2017-01-0182
Gautam Peri, Saravanan Sambandan, S. Sathish Kumar
Abstract Cool down of a passenger vehicle cabin is a preferred method to test the efficiency of the vehicle HVAC (Heating, Ventilation and Air Conditioning) system. The intended primary objective of a passenger vehicle air conditioning system is to ensure thermal comfort to the passengers seated inside at all prevailing conditions. Presently 1-D analysis plays a major role in determining the conformation of the selected system to achieve the desired results. Virtual analysis thus saves a lot of time and effort in predicting the system performance in the initial development phase of the vehicle HVAC systems. A variety of parameters play an important role in achieving the above thermal comfort. Thermal comfort is measured using the Human comfort sensor for all the passengers seated inside.
2017-03-28
Technical Paper
2017-01-0250
Jizhou Zhang, Jianhua Zhou, Mian LI, Min Xu
Abstract Manufacturing of the internal combustion engines (ICEs) has very critical requirements on the precision and tolerance of engine parts in order to guarantee the engine performance. As a typical complex nonlinear system, small changes in dimensions of ICE components may have great impact on the performance and cost of the manufacturing of ICES. In this regard, it is still necessary to discuss the optimization of the tolerance and manufacturing precision of the critical components of ICEs even though the tolerance optimization in general has been reported in the literature. A systematic process for determining optimal tolerances will overcome the disadvantages of the traditional experience-based tolerance design and therefore improve the system performance.
2017-03-28
Technical Paper
2017-01-0903
Sarp Mamikoglu, Jelena Andric, Petter Dahlander
Abstract Many technological developments in automobile powertrains have been implemented in order to increase efficiency and comply with emission regulations. Although most of these technologies show promising results in official fuel economy tests, their benefits in real driving conditions and real driving emissions can vary significantly, since driving profiles of many drivers are different than the official driving cycles. Therefore, it is important to assess these technologies under different driving conditions and this paper aims to offer an overall perspective, with a numerical study in simulations. The simulations are carried out on a compact passenger car model with eight powertrain configurations including: a naturally aspirated spark ignition engine, a start-stop system, a downsized engine with a turbocharger, a Miller cycle engine, cylinder deactivation, turbocharged downsized Miller engine, a parallel hybrid electric vehicle powertrain and an electric vehicle powertrain.
2017-03-28
Collection
Papers in the session cover topics cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions.
2017-03-28
Technical Paper
2017-01-1225
Jayaraman Krishnasamy, Martin Hosek
Abstract An advanced electric motor with hybrid-field topology has been developed for automotive traction applications. Departing from the conventional radial- and axial-field designs, the hybrid-field motor features three-dimensional magnetic flux paths, which are enabled by a novel isotropic soft magnetic material produced by a unique additive-manufacturing process based on spray forming. The motor is expected to offer an unprecedented combination of high power output, compact size, low weight and energy efficiency, achieving more than two times higher power density than state-of-the-art high-performance traction motors.
2017-03-28
Collection
The papers in this collleciton focus on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods
2017-03-28
Collection
Classical HCCI combustion with temperature controlling combustion onset and only a modest effect of fuel injection. Papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, combustion control, and mode change are invited are included in this collection.
2017-03-28
Journal Article
2017-01-0267
Tomasz Haupt, Gregory Henley, Angela Card, Michael S. Mazzola, Matthew Doude, Scott Shurin, Christopher Goodin
Abstract The Powertrain Analysis and Computational Environment (PACE) is a powertrain simulation tool that provides an advanced behavioral modeling capability for the powertrain subsystems of conventional or hybrid-electric vehicles. Due to its origins in Argonne National Lab’s Autonomie, PACE benefits from the reputation of Autonomie as a validated modeling tool capable of simulating the advanced hardware and control features of modern vehicle powertrains. However, unlike Autonomie that is developed and executed in Mathwork’s MATLAB/Simulink environment, PACE is developed in C++ and is targeted for High-Performance Computing (HPC) platforms. Indeed, PACE is used as one of several actors within a comprehensive ground vehicle co-simulation system (CRES-GV MERCURY): during a single MERCURY run, thousands of concurrent PACE instances interact with other high-performance, distributed MERCURY components.
2017-03-28
Journal Article
2017-01-0899
Paul Dekraker, John Kargul, Andrew Moskalik, Kevin Newman, Mark Doorlag, Daniel Barba
Abstract The Environmental Protection Agency’s (EPA’s) Advanced Light-Duty Powertrain and Hybrid Analysis (ALPHA) tool was created to estimate greenhouse gas (GHG) emissions from light-duty vehicles. ALPHA is a physics-based, forward-looking, full vehicle computer simulation capable of analyzing various vehicle types with different powertrain technologies, showing realistic vehicle behavior, and auditing of internal energy flows in the model. In preparation for the midterm evaluation (MTE) of the 2017-2025 light-duty GHG emissions rule, ALPHA has been updated utilizing newly acquired data from model year 2013-2016 engines and vehicles. Simulations conducted with ALPHA provide data on the effectiveness of various GHG reduction technologies, and reveal synergies that exist between technologies. The ALPHA model has been validated against a variety of vehicles with different powertrain configurations and GHG reduction technologies.
2017-03-28
Journal Article
2017-01-0518
Sebastian Hann, Lukas Urban, Michael Grill, Michael Bargende
Abstract Since 0D/1D-simulations of natural gas spark ignition engines use model theories similar to gasoline engines, the impact of changing fuel characteristics needs to be taken into consideration in order to obtain results of higher quality. For this goal, this paper proposes some approaches that consider the influence of binary fuel mixtures such as methane with up to 40 mol-% of ethane, propane, n-butane or hydrogen on laminar flame speed and knock behavior. To quantify these influences, reaction kinetics calculations are carried out in a wide range of the engine operation conditions. Obtained results are used to update and extend existing sub-models. The model quality is validated by comparing measured burn rates with simulation results. The benefit of the new sub-models are utilized by predicting the influence the fuel takes on engine operating limits in terms of knocking and lean misfire limits, the latter being determined by using a cycle-to-cycle variation model.
2017-03-28
Technical Paper
2017-01-0214
Simon O. Omekanda, Rezwanur Rahman, Eric M. Lott, Sadek S. Rahman, Daniel E. Hornback
Abstract Designing an efficient transient thermal system model has become a very important task in improving fuel economy. As opposed to steady-state thermal models, part of the difficulty in designing a transient model is optimizing a set of input parameters. The first objective in this work is to develop an engine compatible physics-based 1D thermal model for fuel economy and robust control. In order to capture and study the intrinsic thermo-physical nature, both generic “Three Mass” and “Eight Mass” engine models are developed. The models have been correlated heuristically using Simulink. This correlation and calibration process is challenging and time consuming, especially in the case of the 8-mass model. Hence, in this work a Particle Swarm Optimizer (PSO) method has been introduced and implemented on a simple 3-mass and more complex 8-mass engine thermal model in order to optimize the input parameters.
2017-03-14
Journal Article
2017-01-9677
Chengwu Duan, Jian Yao, Ying Huang
Abstract A toothed chain continuously variable transmission concept is studied. By designing positive engagement at top overdrive ratio, we explored the potential to improve CVT mechanical efficiency. The low cost solution could improve fuel economy by 0.7% in FTP composite cycle. Preliminary multi-body dynamic simulation is also completed using VL-Motion to concept-proof the technical feasibility of disengagement and engagement. To address the noise issue resulted from abandoning the random pitch design in production chain, we proposed an alternate chain pitch sequence but more experimental data is required to validate the design.
Viewing 1 to 30 of 5181

Filter

  • Range:
    to:
  • Year: