Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3923
2017-07-17 ...
  • July 17-18, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Engineers are taught to create designs that meet customer specifications. When creating these designs, the focus is usually on the nominal values rather than variation. Robustness refers to creating designs that are insensitive to variability in the inputs. Much of the literature on robustness is dedicated to experimental techniques, particularly Taguchi techniques, which advocate using experiments with replications to estimate variation. This course presents mathematical formulas based on derivatives to determine system variation based on input variation and knowledge of the engineering function.
2017-06-05
Journal Article
2017-01-1765
Albert Allen, Noah Schiller, Jerry Rouse
Abstract Corrugated-core sandwich structures with integrated acoustic resonator arrays have been of recent interest for launch vehicle noise control applications. Previous tests and analyses have demonstrated the ability of this concept to increase sound absorption and reduce sound transmission at low frequencies. However, commercial aircraft manufacturers often require fibrous or foam blanket treatments for broadband noise control and thermal insulation. Consequently, it is of interest to further explore the noise control benefit and trade-offs of structurally integrated resonators when combined with various degrees of blanket noise treatment in an aircraft-representative cylindrical fuselage system. In this study, numerical models were developed to predict the effect of broadband and multi-tone structurally integrated resonator arrays on the interior noise level of cylindrical vibroacoustic systems.
2017-06-05
Technical Paper
2017-01-1819
Cyril Nerubenko, George Nerubenko
Abstract The problem of crankshaft torsional vibrations for heavy car engines is important for the V8 engines. The paper describes the results of the dynamical study of the new patented Torsional Vibration Dampers mounted on a crankshaft in V8 engines. Design and structure of Torsional Vibration Damper is based on author’s US Patent 7,438,165 having the control system with instantaneous frequencies tuner for all frequencies of running engine. Analysis and disadvantages of conventional rubber and viscous Crank Dampers are shown. The focus of the study is on Torsional Vibration Damper having the mechanical self-tuning structure applicable for V8 engines. Mathematical model based on the system of ordinary differential equations describing the rotation and vibration of mechanical components has been used for the analysis of the dynamic behavior of V8 engine crankshaft system having proposed Torsional Vibration Damper.
2017-06-05
Technical Paper
2017-01-1831
Longchen Li, Wei Huang, Hailin Ruan, Xiujie Tian, Keda Zhu, Melvyn Care, Richard Wentzel, Xiaojun Chen, Changwei Zheng
Abstract The control strategy design of vehicle active noise control (ANC) relies too much on experiment experience, which costs a lot to gather mass data and the experimental results lack representation. To solve these problems, a new control strategy optimization method based on the genetic algorithm is proposed. First, a vehicle cabin sound field simulation model is built by sound transfer function. Based on the filtered-X Least Mean Squares (FX-LMS) algorithm and the vehicle cabin sound field simulation model, a vehicle ANC simulation model is proposed and verified by a vehicle field test. Furthermore, the genetic algorithm is used as a strategy optimization tool to optimize an ANC control strategy parameter set based on the vehicle ANC simulation model. The optimized results provide a reference for the ANC control strategy design of the vehicle.
2017-06-05
Technical Paper
2017-01-1833
Bonan Qin, Jue Yang, Xinxin Zhao
Abstract Articulated engineering vehicle travels on complex road, its working condition is bad and because of the non-rigid connection between the front and rear body, additional DOF is brought in and the transverse stiffness is relatively weak. When the articulated vehicle runs in a high speed along a straight line, it is easy to cause the transverse swing and the poor handling stability. If it is serious enough, it will lead to "snakelike" instability phenomenon. This kind of instability will increase driving resistance and tire wear, the lateral dynamic load and aggravate the damage of the parts. The vehicle will have a lateral migration of center of gravity (CG) when steering, which will lead a higher probability of rollover accident. A dynamic mathematical model for a 35t articulated truck with four motor-driven wheels was established in this paper, to study the condition for its stable driving and the influence of the vehicle structural parameters.
2017-06-05
Technical Paper
2017-01-1878
Kevin Verdiere, Raymond Panneton, Noureddine Atalla, Saïd Elkoun
Abstract A poroelastic characterization of open-cell porous materials using an impedance tube is proposed in this paper. Commonly, porous materials are modeled using Biot’s theory. However, this theory requires several parameters which can be difficult to obtain by different methods (direct, indirect or inverse measurements). The proposed method retrieves all the Biot’s parameters with one absorption measurement in an impedance tube for isotropic poroelastic materials following the Johnson-Champoux-Allard’s model (for the fluid phase). The sample is a cylinder bonded to the rigid termination of the tube with a diameter smaller than the tube’s one. In that case, a lateral air gap is voluntary induced to prevent lateral clamping. Using this setup, the absorption curve exhibits a characteristic elastic resonance (quarter wavelength resonance) and the repeatability is ensured by controlling boundary and mounting conditions.
2017-04-11
Journal Article
2017-01-9075
Rami Abousleiman, Osamah Rawashdeh, Romi Boimer
Abstract Growing concerns about the environment, energy dependency, and the unstable fuel prices have increased the sales of electric vehicles. Energy-efficient routing for electric vehicles requires novel algorithmic challenges because traditional routing algorithms are designed for fossil-fueled vehicles. Negative edge costs, battery power and capacity limits, vehicle parameters that are only available at query time, alongside the uncertainty make the task of electric vehicle routing a challenging problem. In this paper, we present a solution to the energy-efficient routing problem for electric vehicles using ant colony optimization. Simulation and real-world test results demonstrate savings in the energy consumption of electric vehicles when driven on the generated routes. Real-world test results revealed more than 9% improvements in the energy consumption of the electric vehicle when driven on the recommended route rather than the routes proposed by Google Maps and MapQuest.
2017-03-28
Technical Paper
2017-01-1140
Yang Xu, Yuji Fujii, Edward Dai, James McCallum, Gregory Pietron, Guang Wu, Hong Jiang
Abstract A transmission system model is developed at various complexities in order to capture the transient behaviors in drivability and fuel economy simulations. A large number of model parameters bring more degree of freedom to correlate with vehicular test data. However, in practice, it requires extensive time and effort to tune the parameters to satisfy the model performance requirements. Among the transmission model, a hydraulic clutch actuator plays a critical role in transient shift simulations. It is particularly difficult to tune the actuator model when it is over-parameterized. Therefore, it is of great importance to develop a hydraulic actuator model that is easy to adjust while retaining sufficient complexity for replicating realistic transient behaviors. This paper describes a systematic approach for reducing the hydraulic actuator model into a piecewise 1st order representation based on piston movement.
2017-03-28
Technical Paper
2017-01-1169
Ahmed M. Ali, Alhossein Mostafa Sharaf, Hesham Kamel, Shawky Hegazy
Abstract This paper presents an integrated experimental and simulation investigation which is conducted on a series hybrid electric vehicle. The mathematical model is simulated in two distinct environments; MATLAB/Simulink and GT-Suite. An experimental test rig is devised in order to measure the vehicle performance including wheeled-chassis dynamometer. Components consumed powers, vehicle speed, engine revolution, fuel consumption and consumed energies are all measured in real time and the results are used to verify the numerical modelling work. For optimizing the performance of the vehicle, a rule based control algorithm is proposed and applied to the model using Stateflow environment. Many sequential-decision logic-based rules are graphical coded to operate the internal combustions engine at its most fuel efficient modes.
2017-03-28
Technical Paper
2017-01-1214
Jujun Xia, Haifeng Dai, Zechang Sun, Massimo Venturi
Abstract Lithium-ion batteries have been applied in the new energy vehicles more and more widely. The inconsistency of battery cells imposes a lot of difficulties in parameter and state estimations. This paper proposes a new algorithm which can online identify the parameters of each individual battery cell accurately with limited increase of computational cost. An equivalent circuit battery model is founded and based on the RLS (recursive least squares) algorithm, an optimization algorithm with the construction of weight vectors is proposed which can identify the parameters of lithium battery pack considering inconsistency of single battery cell. Firstly, the average value of the parameters of the battery pack is identified with the traditional RLS algorithm. Then the ratios between the parameters of each battery cell can be deduced from the mathematical model of battery. These ratios are used to determine the weight vector of each parameter of individual battery cells.
2017-03-28
Technical Paper
2017-01-1205
Letao Zhu, Zechang Sun, Xuezhe Wei, Haifeng Dai
Abstract To monitor and guarantee batteries of electric vehicles in normal operation, battery models should be established primarily for the further application in battery management system such as parameter identification and state estimation including state of charge (SOC), state of health (SOH) and so on. In this paper, an improved battery modeling method is proposed which is based on the recursive least square (RLS) algorithm employing an optimized objective function. The proposed modified objective function not only includes the normal sum of voltage error squares between measured voltage and model output voltage but also introduces a new variable representing the sum of first order difference error squares for both kinds of voltages. This specialty can undoubtedly guarantee better agreement for the measured output and the model output. The battery model used in this paper is selected to be the conventional second order equivalent circuit model.
2017-03-28
Technical Paper
2017-01-1230
Cyrille Goldstein, Joel Hetrick
Abstract Mechanical losses in electric machines can contribute significantly to overall system losses in an electric drive [1]. With a permanent magnet synchronous machine (PMSM), measuring mechanical losses is difficult without an un-magnetized rotor. Even with an un-magnetized rotor, physical testing can be time consuming and expensive. This paper presents a simple theoretical model of mechanical drag in an electric machine. The model was built using calculations for bearing, seal, and windage drag and was compared to experimental results from testing with un-magnetized motors. Based on this information, the model was modified to better represent the physical system. The goal of this work is to understand the contributors to mechanical drag, to be able to estimate mechanical losses without physical testing, and to be able to quickly evaluate design choices that could reduce mechanical losses.
2017-03-28
Technical Paper
2017-01-1219
Steven G. Rinaldo, Zhihong Jin, Perry Wyatt
Abstract Validation of the State-Of-Function (SOF) algorithm and associated cell models are critical for battery management as they are responsible for optimal pack power utilization as well as safety protection and life. The SOF accomplishes this optimization task by communicating pack level operation limits related to power, current, voltage and temperature. These operation limits are, in some cases, estimated via parameters and equations derived from cell models. Correspondingly, any errors within the cell models will propagate into the model-dependent SOF limits. Understanding the source of errors and thus finding areas for improvement requires a visualization-based SOF validation strategy.
2017-03-28
Technical Paper
2017-01-1237
Ahmad Arshan Khan, Michael J. Kress
Abstract For high performance motor controls applications such as electric vehicles, accurate motor parameter knowledge is required. Motor parameters like d-axis inductance, q-axis inductance, resistance and permanent magnet flux linkage are difficult to obtain and measure directly. These four parameters can be reduced to three parameters resistance, d-axis and q axis flux linkage. In this paper, a new scheme is proposed to approximate d-axis and q-axis flux linkage using measured torque, dq-axis measured current, and dq-axis voltage commands to the inverter. d-axis and q-axis flux linkages are estimated over a range of d-axis and q-axis currents that fully map the desired motor operation region.
2017-03-28
Technical Paper
2017-01-1141
Bashar Alzuwayer, Robert Prucka, Imtiaz Haque, Paul Venhovens
Abstract Fuel economy regulations have forced the automotive industry to implement transmissions with an increased number of gears and reduced parasitic losses. The objective of this research is to develop a high fidelity and a computationally efficient model of an automatic transmission, this model should be suitable for controller development purposes. The transmission under investigation features a combination of positive clutches (interlocking dog clutches) and conventional wet clutches. Simulation models for the torque converter, lock-up clutch, transmission gear train, interlocking dog clutches, wet clutches, hydraulic control valves and circuits were developed and integrated with a 1-D vehicle road load model. The integrated powertrain system model was calibrated using measurements from real-world driving conditions. Unknown model parameters, such as clutch pack clearances, compliances, hydraulic orifice diameters and clutch preloads were estimated and calibrated.
2017-03-28
Technical Paper
2017-01-1148
Toumadher Barhoumi, Hyunjun Kim, Dongsuk Kum
Abstract Finding optimal split hybrid configurations through exhaustive search is almost intractable, mainly due to the huge design space, e.g. 252 compound split configurations using two planetary gear sets (PG). Thus, a systematic exhaustive design methodology is required to find optimal configurations. While most of the prior studies proposed methodologies that assess the performance within the physical design space, i.e. based on the powertrain configurations, this paper proposes a compound lever-based comprehensive design methodology. The (virtual) compound lever is an attractive design tool defined by two design variables, i.e. α and β, that omits the redundancy existing within the physical design space, thus, reduces the computational load. The proposed method explores the entire (virtual) compound lever design space to find optimal compound split configurations with outstanding fuel economy and acceleration performance.
2017-03-28
Technical Paper
2017-01-1326
Santhoji Katare, Ravichandran S, Gokul Ram, Giri Nammalwar
Abstract Model based computer-aided processes offer an economical and accelerated alternative to traditional build-and-test "Edisonian" approaches in engineering design. Typically, a CAE based design problem is formulated in two parts, viz. (1) the inverse design problem which involves identification of the appropriate geometry with desired properties, and (2) the forward problem which is the prediction of performance from the product geometry. Solution to the forward problem requires development of an accurate model correlated to physical data. This validated model could then be used for Virtual Verification of engineering systems efficiently and for solving the inverse problem. This paper demonstrates the rigorous process of model development, calibration, validation/verification, and use of the calibrated model in the design process with practical examples from automotive chassis and powertrain systems.
2017-03-28
Technical Paper
2017-01-0085
Wanyang Xia, Yahui Wu, Gangfeng Tan, Xianyao Ping, Benlong Liu
Abstract Typical vehicle speed deceleration occurs at the freeway exit due to the driving direction change. Well conducting the driver to control the velocity could enhance the vehicle maneuverability and give drivers more response time when running into potential dangerous conditions. The freeway exit speed limit sign (ESLS) is an effect way to remind the driver to slow down the vehicle. The ESLS visibility is significant to guarantee the driving safety. This research focuses on the color variable ESLS system, which is placed at the same location with the traditional speed limit sign. With this system, the driver could receive the updated speed limit recommendation in advance and without distraction produced by eyes contract change over the dashboard and the front sight. First, the mathematical model of the drivetrain and the engine brake is built for typical motor vehicles. The vehicle braking characteristics with various initial speeds in the deceleration area are studied.
2017-03-28
Technical Paper
2017-01-0544
Philipp Mayr, Gerhard Pirker, Andreas Wimmer, Markus Krenn
Abstract It is critical for gas and dual fuel engines to have improved transient characteristics in order that they can successfully compete with diesel engines. Testing of transient behavior as well as of different control strategies for the multi-cylinder engine (MCE) should already be done on the single cylinder engine (SCE) test bed during the development process. This paper presents tools and algorithms that simulate transient MCE behavior on a SCE test bed. A methodology that includes both simulation and measurements is developed for a large two-stage turbocharged gas engine. Simple and fast models and algorithms are created that are able to provide the boundary conditions (e.g., boost pressure and exhaust back pressure) of a multi-cylinder engine in transient operation in real-time for use on the SCE test bed. The main models of the methodology are discussed in detail.
2017-03-28
Technical Paper
2017-01-0129
Sinya Miura, Takashi YASUDA
Abstract In general, CFD analysis with porous media is precise enough to simulate airflow behavior in a heat exchanger core, placed in the vehicle. In a case when the airflow behavior is complex, however, the precision lowers according to our study. Therefore, we developed a new modeling method to keep high-precision and applied it to analysis of airflow in the vehicle. The concept is at first that the shape of tubes and the distance between the tubes are as the actual product so that the airflow with an oblique angle is to pass through a core. With this concept, airflow with an oblique angle hits the surface of tubes and passes through a core with changing the direction. Next, the concept is to reproduce the air pressure loss in actually-shaped fins, and therefore, we use a porous medium for the modeling of the fins instead of the product shape modeling to combine with the the tubes.
2017-03-28
Technical Paper
2017-01-1562
Junyu Zhou, Chao Liu, Jan Kubenz, Günther Prokop
Abstract This paper describes a new hybrid algorithm for multibody dynamics in vehicle system dynamics which combines the advantages of both embedding technique algorithm and augmented formulation algorithm. An approach to vehicle dynamics modeling based on the hybrid algorithm is presented. Embedding technique algorithm has relatively small number of equations of motion. With help of this technique, an enhanced parametric vehicle dynamics model can be built, representing characteristic curves of suspension comprised in kinematic and compliance. Small number of equations enables the vehicle dynamics model to be simulated very efficiently. In comparison to embedding technique algorithm, the main benefit of augmented formulation algorithm is relatively simple for computer programming. With help of augmented formulation algorithm, the structure of the vehicle dynamic model can be easily extended.
2017-03-28
Technical Paper
2017-01-1441
Heungseok Chae, Kyong Chan Min, Kyongsu Yi
Abstract This paper describes design and evaluation of a driving mode decision and lane change control algorithm of automated vehicle in merge situations on highway intersection. For the development of a highly automated driving control algorithm in merge situation, driving mode change from lane keeping to lane change is necessary to merge appropriately. In a merge situation, the driving objective is slightly different to general driving situation. Unlike general situation, the lane change should be completed in a limited travel distance in a merge situation. Merge mode decision is determined based on surrounding vehicles states and remained distance of merge lane. In merge mode decision algorithm, merge availability and desired merge position are decided to change lane safely and quickly. Merge availability and desired merge position are based on the safety distance that considers relative velocity and relative position of subject and surrounding vehicles.
2017-03-28
Technical Paper
2017-01-0338
Jeong Kyun Hong, Andrew Cox
Abstract Even under uniaxial loading, seemingly simple welded joint types can develop multi-axial stress states, which must be considered when evaluating both the fatigue strength and failure location. Based on the investigation of fatigue behavior for the multi-axial stress state, a procedure for fatigue behavior of welded joints with multi-axial stress states was proposed using an effective equivalent structural stress range parameter combined normal and in-plane shear equivalent structural stress ranges and the master S-N curve approach. In automotive structures, fatigue failure is often observed at weld end, which often show a complex stress state. Due to simplified weld end representation having a sharp right-angled weld corner, the fatigue failure prediction at the weld end tends to be overly conservative due to the excessive stress concentration at the right-angled weld termination.
2017-03-28
Collection
Papers in the session cover topics cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions.
2017-03-28
Journal Article
2017-01-0126
Joshua W. Finn, John R. Wagner
Abstract Hybrid vehicle embedded systems and payloads require progressively more accurate and versatile thermal control mechanisms and strategies capable of withstanding harsh environments and increasing power density. The division of the cargo and passenger compartments into convective thermal zones which are independently managed can lead to a manageable temperature control problem. This study investigates the performance of a Peltier-effect thermoelectric zone cooling system to regulate the temperature of target objects (e.g., electronic controllers, auxiliary computer equipment, etc) within ground vehicles. Multiple thermoelectric cooling modules (TEC) are integrated with convective cooling fans to provide chilled air for convective heat transfer from a robust, compact, and solid state device. A series of control strategies have been designed and evaluated to track a prescribed time-varying temperature profile while minimizing power consumption.
2017-03-28
Journal Article
2017-01-1634
Hui Sung Lee
Abstract When customers use a tailgate (or trunk), some systems such as power tailgate and smart tailgate have been introduced and implemented for improving convenience. However, they still have some problems in some use cases. Some people have to search for the outside button to open the tailgate, or they should take out the key and push a button. In some cases, they should move their leg or wait a few seconds which makes some people feel that it is a long time. In addition, they have to push the small button which is located on the inner trim in order to close the tailgate. This paper proposes a new tailgate control technology and systems based on acoustic patterns in order to solve some inconvenience. An acoustic user interaction (AUI) is a technology which responds to human’s rubbing and tapping on a specific part analyzing the acoustic patterns. The AUI has been recently spotlighted in the automotive industry as well as home appliances, mobile devices, musical instruments, etc.
2017-03-28
Journal Article
2017-01-1563
Abhijeet Behera, Murugan Sivalingam
Abstract Two and three wheeler vehicles are largely used in many developing and under developing countries because of their lower cost, better fuel economy and easy handling. Although, the construction of them is simpler than the four wheeler vehicle, they pose some problems related to instability. Wobbling is the main cause of instabilities in two wheeler and three wheeler vehicles. In this study, a mathematical model was proposed and developed to determine wobble instability of a two wheeler. Nonlinear equations were formulated by using kinematics and the D’Alembert’s principle with the help of multi body formalism. The non-linear equations found in the study were linearized with respect to rectilinear and upright motion, considering no rolling. It led to formation of matrix. The real part of the Eigen value of the matrix was found to be negative, implication of whose was an asymptotic stable motion.
2017-03-28
Technical Paper
2017-01-1560
Wei Liu, Lu Xiong, Bo Leng, Haolan Meng, Renxie Zhang
Abstract In this paper, a novel method is proposed to establish the vehicle yaw stability criterion based on the sideslip angle-yaw rate (β-r) phase plane method. First, nonlinear two degrees of freedom vehicle analysis model is established by adopting the Magic Formula of nonlinear tire model. Then, according to the model in the Matlab/Simulink environment, the β-r phase plane is gained. Emphatically, the effects of different driving conditions (front wheels steering angle, road adhesion coefficient and speed) on the stability boundaries of the phase plane are analyzed. Through a large number of simulation analysis, results show that there are two types of phase plane: curve stability region and diamond stability region, and the judgment method of the vehicle stability domain type under different driving conditions is solved.
2017-03-28
Technical Paper
2017-01-0623
Zun Wang, Yi Zhang, Christophe lenormand, Mohammed Ansari, Manuel Henner
Abstract Radiator thermal cycle test is a test method to check out the robustness of a radiator. During the test, the radiator is going through transient cycles that include high and low temperature spikes. These spikes could lead to component failure and transient temperature map is the key to predict high thermal strain and failure locations. In this investigation, an accurate and efficient way of building a numerical model to simulate the transient thermal performance of the radiator is introduced. A good correlation with physical test result is observed on temperature values at various locations.
Viewing 1 to 30 of 3923

Filter

  • Range:
    to:
  • Year: