Criteria

Text:
Display:

Results

Viewing 1 to 30 of 7275
Event
2015-06-22
This session is dedicated to the tools and methodology involved in identifying, calculating and modifying various noise and vibration sources and paths in vehicles, aircraft and various consumer products and assist in the design and validation of noise and vibration targets
Event
2015-06-22
This session covers subjective testing and analysis related to automotive noise and vibration, usually referred to as sound quality and vibration quality. The focus is on both subjective and objective tools and methods that can be used either to design sound or vibration quality into the automotive product, or to characterize and eliminate undesired sounds or vibrations.
Event
2015-06-22
This session provides a good overview of recent innovations to SEA modeling techniques. SEA models can be used alone or together with hybrid analytical or experimental techniques to establish good comparative NVH predictions at the earliest stage of the vehicle design process. The papers of this session will describe recent advances and / or validations of SEA theory, applications, or use in conjunction with hybrid techniques for high- and mid-frequency NVH predictions.
Event
2015-06-22
This session covers the relationships between vibration and noise that can be generated throughout the vehicle. Included in this session are modal vibration studies related to noise, vibration transfer paths throughout the vehicle, and coupling of vibration and acoustical modes. Both experimental and analytical approaches are included in this session.
Training / Education
2015-05-06
This seminar will include a review of statistical theory and present statistical methods, which are used to better select and/or analyze Tolerance Stack-ups. The Probability (RMS) Method, the Monte Carlo Simulation Technique and tolerance optimization techniques will be discussed along with guidelines on which method(s) to use in given situations. Attendees will also view a demonstration of a microcomputer Monte Carlo Simulation program that analyzes the effects of form and assembly variation on the quality of a finished product. This seminar will provide an overview of Design of Experiments (DOE) methods, which enable effective analysis of critical product dimensions and tolerances.
Training / Education
2014-12-15
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component replacement.
Training / Education
2014-12-02
Failure Mode and Effects Analysis (FMEA) is a systematic method for preventing failure through the discovery and mitigation of potential failure modes and their cause mechanisms. Actions are developed in a team environment and address each high: severity, occurrence or detection ranking indicated by the analysis. Completed FMEA actions result in improved product performance, reduced warranty and increased product quality. This course assists FMEA team members to apply severity, occurrence and detection rankings consistently and efficiently and explores, in detail, the linkage of the Design FMEA and the Process FMEA through special characteristics development and product and process design collaboration.
Event
2014-11-19
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
Event
2014-11-19
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
Event
2014-11-18
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
Event
2014-11-18
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
Event
2014-11-18
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
Technical Paper
2014-11-11
Tatsuhiko Sato, Hirotaka Kurita, Akemi Ito, Hideyuki Iwasaki
The frictional force generated between an actual monolithic aluminum cylinder block and a piston / a piston-ring in a firing mode was measured with using a newly developed floating liner device for the first case in the world. The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. The piston-cylinder system plays quite important role for the reduction of the engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. In order to meet the above-mentioned demand, the renewed floating liner device was developed. In the newly developed floating liner device, the actual cylinder block itself was used as a test specimen, whereas a thin-walled cylindrical sleeve should be used as the test specimen in the conventional floating liner device. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17Si alloy using a high pressure die casting process.
Technical Paper
2014-11-11
Sara Gronchi, Raffaele Squarcini
In recent years, the automotive industry, in case of both small and large size engine, is experiencing different technological and scientific levels of investigation thanks to the new market requests. For example, many different aspects should be evaluated in volumetric oil pumps: flow rate, back flow, filling chamber, pressure ripples and so on. All these features are fundamental fluid dynamic outputs, each aimed at defining a different aspect of the pump. For this reason, each of them requires different levels of precision. Focusing on the hydraulic pressure ripples calculation, several levels of accuracy are required in order to define the pressure profile according to the type of analysis for which you want to use it. By noise emission, as in this case, where the hydraulic load is the main input , the calculation should necessarily be a high performance fluid dynamic simulation. In this way it is possible to validate the pressure signal calculated with the presence of high frequencies and higher pump orders as in the experimental one so that the input for the numerical and experimental methodology can be compared.
Technical Paper
2014-11-11
Giovanni Vichi, Luca Romani, Giovanni Ferrara, Luca Carmignani, Francesco Maiani
In the last years, the engineering in the automotive industry has been revolutionized by the continuous research in the reduction of consumption and pollutant emissions. On this topic there is the maximum attention both by the legislative bodies and by the costumers. The more and more severe limitations in pollutant and CO2 emissions imposed by international standards on the engine manufacturers and the increasing price of the fuel force the automotive research to more efficient and ecological engines. The standard approach for the definition of the engine parameters at the beginning of the design process is based on wide open throttle condition although, both in homologation cycles and in the real utilization, engines work mainly in partial load where the efficiency dramatically decreases. This aspect has recently become strongly relevant also for two-wheels vehicles especially for urban purpose. Within this context the authors developed an integrated numerical model, in MatLab Simulink ambient, in order to couple the engine simulation, performed by means of a 1D computer-aided engineering code, with the whole vehicle dynamic behaviour.
Technical Paper
2014-11-11
Francesco Maiani, Alessio Sisi, Walther Leardini
In recent years the 2-wheelers engines companies are focused on increasing the overall engine efficiency, that can be gained through engine down-speeding, engine down-sizing and by reducing the frictions; however, to maintain or improve vehicle performance, it is necessary to provide a corresponding increase in specific power. In accordance with these trends, the studied approaches and methodologies have been exploited, during the development of the new Piaggio small scooter engine. In this work a multi-target analysis has been applied to the valvetrain system design, in order to optimize engine performance in terms of friction reduction, power curve and dynamic response of the timing system. Along with this optimization methodology, a robust design has been studied and applied to make the peak cranking compression pressure insensitive to engine starting device working. These calculation methodologies was achieved using commercial software as GT–SUITE for engine performance and valvetrain simulation and modeFRONTIER for multiobjective optimization analysis.
Technical Paper
2014-11-11
Jonathan Tenenbaum, Michael Shapiro, Leonid Tartakovsky
Two-phase jets are found in a variety of applications, including ink-jet printers, spray cooling, etc. Fuel sprays in internal combustion engines is an application of particular interest because of its direct influence on engine performance, energy efficiency and pollutants formation. Many phenomenological models have been proposed to quantify the temporal behavior of spray properties such as spray penetration with time, spray dispersion angle and cross-sectional averaged fuel concentration. However, most of the existing models have the limitation of providing a one-dimensional description and are thus unable to adequately describe the spatial point-wise spray distribution, in particular the local fuel concentration and mixture velocity. The aim of this study is to develop a more elaborate spray model which allows for calculation of spatial local fuel concentration and mixture velocity. The model is based on the single-phase steady-state laminar axisymmetric jet flow field solution by Schlichting, which is applied for a two-phase jet in the limit of dilute fuel concentration.
Technical Paper
2014-11-11
Rama Subbu, Baskar Anthony samy, Piyush mani Sharma, Prasanna Mahendiran
Ride comfort, driving stability and drivability are vital factors in terms of vehicle performance and the customer satisfaction. Crankshaft balancing is the source for the vibration that reduces the vehicle performance and it need to be controlled to some extent such that the vehicle performance will be improved. The IC engine is made up of reciprocating and rotating parts and they produce unbalanced forces during their operation and produce the vibratory output at the vehicle supporting members. The vibration reduction will be possible by minimizing unbalanced forces and by optimizing the crankshaft at the two wheeled vehicle engine design. Many researches were made to find the causes for the vibration and to reduce the vibrations at the engine supports. But still there is a research gap on the testing and simulation of engine components (crankshaft, connecting rod and piston assembly) and the correlation between the testing and simulation. In this work, an attempt is made to represent the engine vibrations and its isolations and to provide a gate way for the future work on it.
Technical Paper
2014-11-11
Akira Ishibashi, Muneaki Nakamura, Hitoshi Muramatsu, Seizaburo Katsuta
Fuel economy improvement has become the most important issue in automobile engine developments nowadays. For the purpose of improving fuel economy due to the higher thermal efficiency, the enhancement of compression ratio and the reduction of thermal loss through cooling have been conducted widely. Those efforts exerted in the ongoing developments to improve thermal efficiency increase the thermal load on pistons. Considering the reliability of the pistons and anti-knocking capacity of engines, it is necessary to make a better understanding of piston temperature distributions through accurate measurement under various engine operating conditions. Thus, direct and indirect measurement methods have been developed to estimate the actual piston temperature. The direct method, such as linkage-type is not typically available under higher engine speed due to the durability of linkages. The indirect method, such as material hardness-type can neither measure real-time piston temperature nor measure temperature of piston skirts which are thin-walled.    
Technical Paper
2014-11-11
Tomokazu Nomura, Koichiro Matsushita, Yoshihiko Fujii, Hirofumi Fujiwara
To meet growing demands on the fuel economy, various studies have been made to improve thermal efficiency of engines. In spite of such efforts, approximately 30% of fuel energy is still dissipated to the atmosphere finally as cooling loss, through engine parts, coolant and oil. Therefore, if the heat dissipation from the engine is insufficient, the temperature of engine parts rises. An excessively higher engine temperature causes a degradation of engine performance and a deterioration of material strength. Especially in air-cooled engines, there are contradicting demands between the heat dissipation capacity and the light weighted compactness. Therefore, to realize the optimized design for a light and compact engine, a method of a precise temperature prediction is required in the early stage of the development. A number of studies have been made on the cooling performance and the temperature prediction of engines. In many of such studies, temperature of an engine cannot be directly estimated but heat transfer from the engine to the atmosphere and to the coolant are evaluated on the basis of heat transfer coefficients calculated by 3D-CFD.
Technical Paper
2014-11-11
Mohamed El morsy, Gabriela Achtenova
Through PULSE platform for vibration analysis, which is developed as an advanced solution for vibration measurements was developed the robust diagnostic concept (RDC). The PULSE setup is designed to help in fault diagnosis of vehicle gearbox -the main part of vehicle powertrain-. Time Domain, Continuous Wavelet Transformation Technique (CWT), FFT and Order analysis measurements are used for detection of an artificial pitting defect in gear by tracking the gearbox response at accelerated speed and different load. The test stand is equipped with three dynamometers; the input dynamometer serves as internal combustion engine, the output dynamometers introduce the load on the flanges of output joint shafts. The pitting defect is manufactured on the tooth side of gear of the fifth speed on the intermediate shaft. Temperature effect on the vibration measurements has been also investigated to study its effect on the fault diagnosis. The presented concept has an important application in the field of mechanical fault diagnosis.
Technical Paper
2014-11-11
Yoshihiro Nakagawa, Shinya takahashi, Mikihito Masaki, Ranju Imao
In brake squeal analysis using FE models, minimizing differences in natural frequency between the measurement and the simulation in each component are a key issue for improvement in reproducibility of brake squeal. In the evaluations of model-measurement correlations in the study of brake discs, if amounts of shifts in natural frequencies and their deviation orientations, between the measured and simulated, have the same tendency in each vibration mode, the gaps between the measurements and simulations are relatively easy to be corrected to match to each other by adjusting parameters of densities and/or Young’s moduli. However, these tendencies in natural frequency differences vary depending on the situations and the opposite tendencies may appear in some cases. In such cases, the model-measurement gaps in natural frequency cannot be adequately reduced by adjusting densities and/or Young’s moduli. The potential cause of this model-measurement gap was assumed to be the residual stresses, which were imposed during the inductive hardening process of the brake disc to increase the hardness of the sliding surfaces.
Technical Paper
2014-11-11
Toshio Watanabe, Hiroki SAKAMOTO
It is well known that for high-speed planing craft with outboard motor, cavitation occurs around the lower unit(gear case) and propeller blades. There are several kinds of cavitation; (1)Tip vortex cavitation (2)Hub vortex cavitation (3)Sheet cavitation (4)Cloud cavitation (5)Root cavitation Among them ,Cloud cavitation and root cavitation lead to erosion damage on the surface of lower unit and propeller. To prevent from poor appearance or performance deterioration of outboard motor by erosion damage, It is important to simulate the occurrence of erosion in advance at the design stage. In this paper, we propose the new method of predicting the area that erosion occurs using CFD (computational fluid dynamics). In order to simulate cavitation phenomena, basically, we have implemented the CFD analysis using the barotropic model. But the area that cavitation occurs does not correspond to the position of erosion damage. Therefore, we focus on the bubble nucleus which is due to cavitation. First, we predict cavitation phenomena on the basis of single-bubble motion with Rayleigh plesset model.
Training / Education
2014-11-10
Design Review Based on Failure Modes (DRBFM) is a methodology focused on change management and continuous improvement. It centers on early prevention and engineering knowledge, eliminating time spent debating ranking systems, waiting for lead engineers to document and list their concerns, identifying what types of concerns are open for discussion and resolution, and brainstorming without any actionable closure. This web seminar will explain all phases of the DRBFM methodology and provide details on how to accomplish the specific steps. With the Design Review Based on Failure Modes (DRBFM) and Design Review Based on Test Results (DRBTR) Process Guidebook that is bundled with the course, the instructor will provide specific information on each step.
Training / Education
2014-10-28
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions. This course will enable participants to expand the scope of FEA to vibration analysis to simulate product behavior under those conditions.
Event
2014-10-23
The EcoCAR 2: Plugging in to the Future student vehicle competition, sponsored by General Motors and the U.S. Department of Energy, tasks university teams with designing, implementing and refining advanced powertrains into a conventional midsize sedan. This session presents yearly results from teams in the competition, highlighting the entire EcoCAR vehicle development process.
Technical Paper
2014-10-13
Di Zhu, Ewan Pritchard
EcoCAR 2: Plugging in to the Future is a three-year collegiate engineering competition established by the U.S. Department of Energy (DOE) and General Motors (GM). North Carolina State University is designing a Series Plug-in Hybrid Electric Vehicle (PHEV) on a 2013 Chevrolet Malibu vehicle platform. The designed vehicle has a pure electric range of 55 miles and an overall range of 235 miles with a range extension system. The vehicle is designed to reduce fuel consumption and gas emission while maintaining consumer acceptability in the areas of performance, utility, and safety. This reports details the vehicle development process with an emphasis on control system development and refinement. Advanced manufacturing, modeling, and simulation have been used to ensure a safe and functional vehicle at the upcoming year 3 final competition.
Technical Paper
2014-10-13
R. Pradeepak, Mihir Bhambri
Motor scooters are popular in most parts of the world, especially in countries with local manufacturers. Parking, storage, and traffic issues in crowded cities, along with the easy driving position makes them a popular mode of transportation. Motor scooters are the segment of 2 wheelers which is driven by the entire family with ease unlike motorcycles which is a male dominated segment. Due to the importance that the scooters hold in the present time, it has become very important to manufacture stable, light weight yet robust scooters. For the best product in the market, testing is given a great importance in automotive manufacturing companies. Virtual testing has been the latest development in terms of testing a vehicle during the design stage itself. Multi Body Dynamics approach is used to study - 1) the articulation of various sub-assemblies and 2) the static & dynamic loads generated at various attachment points of the scooter. Integration of sub-assemblies into a final product creates a minimal scope of modification of the location of different components.
Technical Paper
2014-10-13
Chris D. Monaco, Chris Golecki, Benjamin Sattler, Daniel C. Haworth, Jeffrey S. Mayer, Gary Neal
As one of the fifteen universities in North America taking part in the EcoCAR 2: Plugging into the Future competition, The Pennsylvania State University Advanced Vehicle Team (PSUAVT) designed and implemented a series plug-in hybrid electric vehicle (PHEV) that reduces fuel consumption and emissions while maintaining high consumer acceptability and safety standards. This architecture allows the vehicle to operate as a pure electric vehicle until the Energy Storage System (ESS) State of Charge (SOC) is depleted. The Auxiliary Power Unit (APU) then supplements the battery to extend range beyond that of a purely electric vehicle. General Motors (GM) donated a 2013 Chevrolet Malibu for PSUAVT to use as the platform to implement the PSUAVT-selected series PHEV design. A 90 kW electric traction motor, a 16.2 kW-hr high capacity lithium-ion battery pack, and Auxiliary Power Unit (APU) are now integrated into the vehicle. The APU is a 750cc, two-cylinder engine running on an 85% ethanol/15% gasoline (E85) mixture coupled to an electric generator.
Viewing 1 to 30 of 7275

Filter

  • Range:
    to:
  • Year: