Criteria

Text:
Display:

Results

Viewing 1 to 30 of 7504
2015-10-22 ...
  • October 22-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Engines can and do experience failures in the field in a variety of equipment, vehicles, and applications. On occasion, a single vehicle type or equipment family will even experience multiple engine failures leading to the inevitable need to determine what the most likely cause of one or all of those failures was. This comprehensive seminar introduces participants to the methods and techniques used to determine the most likely cause of an individual engine or group of engine failures in the field.
2015-10-19 ...
  • October 19-30, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
2015-09-16 ...
  • September 16-October 2, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Failure Modes and Effects Analysis (FMEA) is an integral part of product design activity applicable to any type of product or service. It is a quantitative and quantitative step-by-step approach for identifying and analyzing all actual and potential points of failure in a design, product or service. A successful team-based FMEA activity can use their collective experience with similar products to dramatically improve not only product performance but also reduce manufacturing issues at both a component and system and processing level. This web seminar introduces the five basic types of FMEAs with emphasis on constructing a Design FMEA.
2015-09-14 ...
  • September 14-25, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
The Finite Element Analysis (FEA) has been widely implemented by automotive companies and is used by design engineers as a tool during the product development process. Design engineers analyze their own designs while they are still in the form of easily modifiable CAD models to allow for quick turnaround times and to ensure prompt implementation of analysis results in the design process.
2015-08-19 ...
  • August 19-20, 2015 (8:30 a.m. - 4:30 p.m.) - Rosemont, Illinois
  • November 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Failure Mode and Effects Analysis (FMEA) is a systematic method for preventing failure through the discovery and mitigation of potential failure modes and their cause mechanisms. Actions are developed in a team environment and address each high: severity, occurrence or detection ranking indicated by the analysis. Completed FMEA actions result in improved product performance, reduced warranty and increased product quality.
2015-08-10 ...
  • August 10-12, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 9-11, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component replacement.
2015-06-25
Event
This session is dedicated to the tools and methodology involved in identifying, calculating and modifying various noise and vibration sources and paths in vehicles, aircraft and various consumer products and assist in the design and validation of noise and vibration targets
2015-06-24
Event
This session covers subjective testing and analysis related to automotive noise and vibration, usually referred to as sound quality and vibration quality. The focus is on both subjective and objective tools and methods that can be used either to design sound or vibration quality into the automotive product, or to characterize and eliminate undesired sounds or vibrations.
2015-06-24
Event
This session covers subjective testing and analysis related to automotive noise and vibration, usually referred to as sound quality and vibration quality. The focus is on both subjective and objective tools and methods that can be used either to design sound or vibration quality into the automotive product, or to characterize and eliminate undesired sounds or vibrations.
2015-06-24
Event
This session provides a good overview of recent innovations to SEA modeling techniques. SEA models can be used alone or together with hybrid analytical or experimental techniques to establish good comparative NVH predictions at the earliest stage of the vehicle design process. The papers of this session will describe recent advances and / or validations of SEA theory, applications, or use in conjunction with hybrid techniques for high- and mid-frequency NVH predictions.
2015-06-24
Event
Frequency analysis is often referred to as Fourier analysis but is that really true? The foundation is based on stationary and "Fourier signals." What happens if that is not the case? Modern FFT signal analyzers use very sparse sampling that is correct according to Shannon but what will happen when using time domain analysis. Many of the myths and frequent questions will be answered using a "user perspective" and rules of thumb will be given together with good methods to avoid large errors.
2015-06-23
Event
This session covers the relationships between vibration and noise that can be generated throughout the vehicle. Included in this session are modal vibration studies related to noise, vibration transfer paths throughout the vehicle, and coupling of vibration and acoustical modes. Both experimental and analytical approaches are included in this session.
2015-06-23
Event
This session covers the relationships between vibration and noise that can be generated throughout the vehicle. Included in this session are modal vibration studies related to noise, vibration transfer paths throughout the vehicle, and coupling of vibration and acoustical modes. Both experimental and analytical approaches are included in this session.
2015-06-15
Technical Paper
2015-01-2131
Colin Bidwell, David Rigby
A flow and ice particle trajectory analysis was performed for the booster of the Honeywell ALF502 engine. The analysis focused on two closely related conditions one of which produced an icing event and another which did not during testing of the ALF502 engine in the Propulsion Systems Lab (PSL) at NASA Glenn Research Center. The flow analysis was generated using the NASA Glenn GlennHT flow solver and the particle analysis was generated using the NASA Glenn LEWICE3D v3.61 ice accretion software. The inflow conditions for the two conditions were similar with the main difference being that the condition that produced the icing event was 6.8 K colder than the non-icing event case. The particle analysis, which considered sublimation, evaporation and phase change, was generated for a 5 micron ice particle with a sticky impact model and for a 24 micron, 7 bin ice particle distribution with an SLD splash model used to simulate ice particle breakup.
2015-06-15
Technical Paper
2015-01-2135
Martin Schulz, Michael Sinapius
A designer of a new mechanical ice protection system for airplanes needs to know how much and in which way he has to deform the surface to break off the ice. The ice adhesion strength is often used as design value. To measure the adhesive strength several methods have been published. This paper presents a review about those methods and discusses the way the adhesion strength is derived. Finite Element Method is used to give a good insight into the stress state at failure for different load cases. The implication of these illustrations is that equations which use only ultimate force and total interfacial area to calculate adhesion strength miss the local stress state at the crack tip and the complex process of crack growing. Hence the derived adhesion strength may not be comparable with others, because they depend in fact on neglected parameters like specimen size, substrate thickness and stiffness.
2015-06-15
Technical Paper
2015-01-2294
Kodali Ajay Krishna, Pankaj Bhardwaj, Sanjeevgouda Patil, Mansinh Kumbhar
One of the primary excitation sources in a passenger car comes from the powertrain [1]. Refinement of powertrain induced noise is one of the major tasks during a full vehicle NVH refinement. For better fuel efficiency and emission norms, vehicle manufacturers need to focus drastically on reducing the weight and also at the same time achieving defined NVH targets. Due to ever increasing demand for reducing the development cycle of the design, most critical decisions have to be made at the concept stage of the powertrain design itself. Combustion excitation forces and powertrain radiated noise are the most important design factors along with the thermal, durability, and strength requirements that must be evaluated during concept stage and also during other stages of the development process. Solution time for calculating the radiated noise using the existing acoustic solvers is very high and requires very expensive resources (software and hardware).
2015-06-15
Technical Paper
2015-01-2326
Denis Blanchet, Anton Golota
Recent developments in the prediction of the contribution of wind noise to the interior SPL have opened a realm of new possibilities. The main physical mechanisms related to noise generation within a turbulent flow and transmission through the vehicle greenhouse are nowadays better understood. Several simulation methods such as CFD, FEM, BEM, FE/SEA Coupled and SEA can be coupled together to represent the physical phenomena involved. The main objective being to properly represent the convective and acoustic component within the turbulent flow to ensure proper computation of the wind noise contribution to the interior SPL of a vehicle. This paper presents comparisons between simulations results and measurements for various configurations such as i) with and without mirror, ii) various A-Pillar shapes, iii) various vehicle speeds and finally iv) various yaw angles.
2015-06-15
Technical Paper
2015-01-2329
Paolo Di Francescantonio, Charles Hirsch, Piergiorgio Ferrante, Katsutomo Isono
The prediction of the broadband noise generated by the flow interaction with solid bodies such as for example side mirror noise, exhaust pipe noise, or ventilation and air conditioning noise require in principle the execution of extremely high demanding unsteady CFD simulations that nowadays cannot be afforded in an industrial environment. Therefore research efforts have been focused on alternative approaches that could permit to obtain engineering accurate results with much reduced computational efforts by stochastically reconstructing the turbulent velocity field starting from a steady RANS analysis. Two main families of methods have been introduced up to now, SNGR [1], and RPM[2], but applications in industrial environment are still limited mainly due to the lack of reliability of these methods and the need to introduce some tuning parameters.
2015-06-15
Technical Paper
2015-01-2361
Sajjad Beigmoradi
Nowadays, by the introduction of significant advances in automotive industries, noise, vibration and harshness (NVH), in the position of the main comfort attribute, plays a crucial role in marketing and passenger satisfaction. In order to cope NVH problems, three main actions are taken by NVH engineers for reducing perceived level of noise in cabin: Noise reduction in sources, Noise path treatment and Noise control at receiver. Among these approaches, those pertain to modification of noise pass, through structure and air, to the cabin are more prevalent in automotive applications. Accordingly, identification of noise paths that dominantly contribute to sound and vibration transfer to cabin phenomenon should be dealt with importance. In practice, engine vibration transmitted through sub-frame attachments to body can induce high level of noise and vibration to the passenger cabin.
2015-06-15
Technical Paper
2015-01-2358
Rod Morris-Kirby, Evan Harry, Dirk Jaeger, Bernd Borgmann
Acoustic Diagnostic Network Algorithms (DNA) are experimental methods that extract airborne acoustic characteristics from a motor vehicle and decompose this information into a set of networks from which the source, path and receiver noise sources and paths can be determined. Unlike traditional transfer path analysis Acoustic DNA takes the problem into the fine detail and answers questions such as what, where and how does a vehicle system need to be changed in order to achieve any given objective. This paper describes the fundamental methodology and features together with how it has been implemented into a user friendly computer program that has been used successfully in over 50 vehicle projects within the Adler Pelzer group on a wide range of motor vehicles.
2015-06-15
Technical Paper
2015-01-2300
Robert Fiedler, Chadwyck Musser, Petr Cuchý
This paper addresses the NVH design of a light rail vehicle whose maximum allowable interior SPL levels at certain speeds are regulated and may vary between countries, states, and cities. The objective of this study was to predict sound pressure levels (SPL) at several interior locations across a wide range of frequencies and estimate if the current design configuration will meet the noise level limits. Statistical Energy Analysis (SEA) was used to predict interior SPL and to understand and rank the various noise contribution paths and give a better understanding of the physics of transmission and what types of design changes are most effective to reduce the overall interior SPL to meet targets. A typical light rail vehicle is composed of a frame-like structure covered by lightweight panels and with interior panels that are increasingly made from composites, sandwich, laminated, or honeycomb materials or extruded panels.
2015-06-15
Technical Paper
2015-01-2237
Nickolas Vlahopoulos, Sergey Medyanik
Structural-Acoustic Joints for Incompatible Models in the Energy Finite Element Analysis Sergey Medyanik, Michigan Engineering Services, LLC Nickolas Vlahopoulos, University of Michigan In the EFEA method, the governing differential equations are formulated for an energy variable that has been spatially averaged over a wavelength and time averaged over a period. Differential equations are derived for all wave bearing domains within a system. Each differential equation represents a power balance over a control volume. The corresponding fundamental solutions vary exponentially with space, thus requiring only a small number of elements to capture numerically the smooth spatial variation. Joint matrices are required between the finite elements at locations where discontinuities in the primary EFEA variables exist.
2015-06-15
Technical Paper
2015-01-2280
Bernd Philippen, Roland Sottek
Transfer Path Analysis and Synthesis is a widely-used troubleshooting and engineering method in the development process of a car. An engine TPA model should include the engine mounts because they are important elements of the structure-borne paths from the engine to the driver’s ears. This allows identifying if the structure, the sound radiation or the mount is a weak point of the transmission. A mount can be characterized, e. g., by a mount attenuation function, a four-pole model, or a simple parametric mount model. If the mount characteristics are known, the influence of a different mount on the structure-borne sound can be virtually predicted without a real modification. The mount characteristics could be determined on special test rigs but the transferability to the real situation is often questionable because the same boundary conditions on the test rig and in the car are difficult to guarantee.
2015-06-15
Technical Paper
2015-01-2084
Benedikt König, Ehab Fares, Andy P. Broeren
Abstract A Lattice-Boltzmann approach is used to simulate the aerodynamics of complex three-dimensional ice shapes on a NACA 23012 airfoil. The digitally produced high fidelity geometrical ice shapes were created using a novel laser scanning technique in the NASA Icing Research Tunnel. The geometrically fully resolved unsteady simulations are conducted on two ice shapes representing a roughness type and a horn type icing on the leading edge of the airfoil. Comparisons between simulation and experiment of lift, drag, and pitching moment as well as pressure distributions indicate overall a good qualitative agreement in capturing the aerodynamic degradation. Especially for the horn-type ice shape, the quantitative agreement is also mostly very good. Analysis of the flow structures indicates furthermore a good capturing of the three-dimensional separation behavior of the flow.
2015-06-15
Technical Paper
2015-01-2110
Jozef Brzeczek, Janusz Pietruszka, Robert J. Flemming, Ben C. Bernstein
Abstract In 2014 PZL Mielec obtained an EASA Type Certificate extension for the PZL M28 05 airplane for flight into icing conditions and this has been validated by the FAA. Thus, a project that lasted four years was finished successfully. During this period, activities consisted of icing analyses, wind tunnel tests in the NASA Glenn Research Center Icing Research Tunnel, and natural icing flight tests, artificial icing flight tests, flight tests with simulated ice shapes, and calibration tests. Flights in measured natural icing conditions began during the spring of 2009 and certification flight tests were performed in 2012. The natural icing test flights, apart one flight in the USA, were performed in Poland in the Mielec area. The final test campaign can be divided into two phases: (1) March -April flight tests campaign; and (2) November - December flight test campaign, the latter after introducing some design changes in airframe ice protection system.
2015-06-15
Technical Paper
2015-01-2262
Tom Knechten, Marius-Cristian Morariu, PJG van der Linden
Structural and vibro-acoustic transfer functions still form an essential part of NVH data in vehicle development programs. Excitation in the three DOFs at all body interface connection locations to target responses gives information on local dynamics stiffness and the body sensitivity for that specific path in an efficient manner. However, vehicles become more compact for fuel efficiency and production costs and to meet the market demand for urban vehicles. Alternative driveline concepts increase the electronic content and new mount locations. To achieve the optimum on road noise NVH, handling performance while conserving interior space and trunk volume requires a complex suspension layout. On top of that, customers put weight on safety and comfort systems which result to a higher packaging density. These trends imply ever limiting accessibility of the interface connections on the body structure.
2015-06-15
Technical Paper
2015-01-2293
Manchi Venkateswara Rao, S Nataraja Moorthy, Prasath Raghavendran
Tactile vibration during vehicle key on/off is one of the critical factors contributing to the customer perceived quality of the vehicle. Minimization of the powertrain transient vibration in operating conditions such as key on/off, tip in/out and engagement/disengagement of engine in hybrid vehicles must be addressed carefully in the vehicle refinement stage. Source of start/stop vibration depends on many factors like engine cranking, engine rpm at which the combustion process starts and rate of engine rpm rise etc. The transfer path consists of elastomeric mounts of powertrain and vehicle structure from mounts to tactile response location. In this paper, the contribution of rigid body motion of powertrain of a front wheel drive vehicle during key on/off is analyzed in both frequency and time domain. The signal is analyzed in frequency domain by using Fast Fourier Transform, Short Time Fourier Transform and Wavelet Analysis. The merits and demerits of each method are illustrated.
2015-06-15
Technical Paper
2015-01-2287
Yaqiong Deng, Yanjing Zhao, Xiandi Zeng
Among the lower frequency vehicle NVH problems, booming noise is one of the most concerned issues. There are all kinds of booming noises from different driving conditions such as idling, driving away, and driving at lower speed on coarse road. In order for a vehicle to avoid those booming noises, the vehicle has to be designed to have the right structures and right counter -measures for all conditions possible for booming noise. One of the most common booming noise sources is the torsional vibration of the powertrain and driveline for rear-wheel drive and four-wheel drive vehicle. The solutions for this problem are either to use a torsional dynamic absorber or to use a lower stiffness clutch. Both solutions require the modal frequency of the torsioanal vibration of the powertrain and driveline. At early design stages, vehicle prototype is not available for measuring this frequency. Analytical method is usually used to calculate this frequency.
2015-06-15
Technical Paper
2015-01-2233
Hudson P. V, V Shivaraj, Sukumar T, Suresh Gaikwad
Generally the brake system products are mounted on chassis with brackets which are subjected to dynamic loads due to road undulations. Exhaust brake is used to restrict the engine exhaust flow passage and thereby creates a back pressure in the engine for reducing the engine speed. This in turn reduces the vehicle speed. This is widely used in the vehicles operating in the hilly areas. This product is mounted on the exhaust passage and the air cylinder sub-assembly which actuates the exhaust brake is mounted on a bracket. Automotive industries perform durability tests on vehicles to reduce the failure on end-user environment. An assembly which has cleared the durability test got failed on addition of a spring into the assembly. The inclusion of spring is for enhancing the performance of the overall assembly. This paper deals with investigations carried out using finite element method (FEM) to study the effect of spring on the assembly and to propose a design solution for the failure.
Viewing 1 to 30 of 7504

Filter

  • Range:
    to:
  • Year: