Criteria

Text:
Display:

Results

Viewing 1 to 30 of 7284
2015-06-22
Event
This session is dedicated to the tools and methodology involved in identifying, calculating and modifying various noise and vibration sources and paths in vehicles, aircraft and various consumer products and assist in the design and validation of noise and vibration targets
2015-06-22
Event
This session covers subjective testing and analysis related to automotive noise and vibration, usually referred to as sound quality and vibration quality. The focus is on both subjective and objective tools and methods that can be used either to design sound or vibration quality into the automotive product, or to characterize and eliminate undesired sounds or vibrations.
2015-06-22
Event
This session covers the relationships between vibration and noise that can be generated throughout the vehicle. Included in this session are modal vibration studies related to noise, vibration transfer paths throughout the vehicle, and coupling of vibration and acoustical modes. Both experimental and analytical approaches are included in this session.
2015-06-22
Event
This session provides a good overview of recent innovations to SEA modeling techniques. SEA models can be used alone or together with hybrid analytical or experimental techniques to establish good comparative NVH predictions at the earliest stage of the vehicle design process. The papers of this session will describe recent advances and / or validations of SEA theory, applications, or use in conjunction with hybrid techniques for high- and mid-frequency NVH predictions.
2015-05-06 ...
  • May 6, 2015 (8:30 a.m. - 4:30 p.m.) - Tysons, Virginia
Training / Education Classroom Seminars
This seminar will include a review of statistical theory and present statistical methods, which are used to better select and/or analyze Tolerance Stack-ups. The Probability (RMS) Method, the Monte Carlo Simulation Technique and tolerance optimization techniques will be discussed along with guidelines on which method(s) to use in given situations. Attendees will also view a demonstration of a microcomputer Monte Carlo Simulation program that analyzes the effects of form and assembly variation on the quality of a finished product. This seminar will provide an overview of Design of Experiments (DOE)...
2015-03-16 ...
  • March 16-27, 2015 (6 Sessions) - Live Online
  • September 14-25, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
The Finite Element Analysis (FEA) has been widely implemented by automotive companies and is used by design engineers as a tool during the product development process. Design engineers analyze their own designs while they are still in the form of easily modifiable CAD models to allow for quick turnaround times and to ensure prompt implementation of analysis results in the design process. While FEA software is readily available, successful use of FEA as a design tool still requires an understanding of FEA basics, familiarity with FEA process and commonly used modeling techniques, as well as an appreciation...
2014-12-15 ...
  • December 15-17, 2014 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 1-3, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • August 10-12, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 9-11, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component...
2014-12-02 ...
  • December 2-3, 2014 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • August 3-4, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. Failure Mode and Effects Analysis (FMEA) is a systematic method for preventing failure through the discovery and mitigation of potential failure modes and their cause mechanisms. Actions are developed in a team environment and address each high: severity,...
2014-11-19
Event
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
2014-11-19
Event
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
2014-11-18
Event
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
2014-11-18
Event
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
2014-11-18
Event
The session is associated with engine and vehicle simulation tasks and their related measurements. Simulation and measurement methodology as well as the simulation and measurement application on development tasks will find a place within the session.
2014-11-11
Technical Paper
2014-32-0060
Giovanni Vichi, Luca Romani, Giovanni Ferrara, Luca Carmignani, Francesco Maiani
In the last years, the engineering in the automotive industry has been revolutionized by the continuous research in the reduction of consumption and pollutant emissions. On this topic there is the maximum attention both by the legislative bodies and by the costumers. The more and more severe limitations in pollutant and CO2 emissions imposed by international standards on the engine manufacturers and the increasing price of the fuel force the automotive research to more efficient and ecological engines. The standard approach for the definition of the engine parameters at the beginning of the design process is based on wide open throttle condition although, both in homologation cycles and in the real utilization, engines work mainly in partial load where the efficiency dramatically decreases. This aspect has recently become strongly relevant also for two-wheels vehicles especially for urban purpose. Within this context the authors developed an integrated numerical model, in MatLab Simulink ambient, in order to couple the engine simulation, performed by means of a 1D computer-aided engineering code, with the whole vehicle dynamic behaviour.
2014-11-11
Technical Paper
2014-32-0051
Akira Ishibashi, Muneaki Nakamura, Hitoshi Muramatsu
Fuel economy improvement has become the most important issue in automobile engine developments nowadays. For the purpose of improving fuel economy due to the higher thermal efficiency, the enhancement of compression ratio and the reduction of thermal loss through cooling have been conducted widely. Those efforts exerted in the ongoing developments to improve thermal efficiency increase the thermal load on pistons. Considering the reliability of the pistons and anti-knocking capacity of engines, it is necessary to make a better understanding of piston temperature distributions through accurate measurement under various engine operating conditions. Thus, direct and indirect measurement methods have been developed to estimate the actual piston temperature. The direct method, such as linkage-type is not typically available under higher engine speed due to the durability of linkages. The indirect method, such as material hardness-type can neither measure real-time piston temperature nor measure temperature of piston skirts which are thin-walled.    
2014-11-11
Technical Paper
2014-32-0054
Toshio Watanabe, Hiroki Sakamoto
It is well known that for high-speed planing craft with outboard motor, cavitation occurs around the lower unit(gear case) and propeller blades. There are several kinds of cavitation; (1)Tip vortex cavitation (2)Hub vortex cavitation (3)Sheet cavitation (4)Cloud cavitation (5)Root cavitation Among them ,Cloud cavitation and root cavitation lead to erosion damage on the surface of lower unit and propeller. To prevent from poor appearance or performance deterioration of outboard motor by erosion damage, It is important to simulate the occurrence of erosion in advance at the design stage. In this paper, we propose the new method of predicting the area that erosion occurs using CFD (computational fluid dynamics). In order to simulate cavitation phenomena, basically, we have implemented the CFD analysis using the barotropic model. But the area that cavitation occurs does not correspond to the position of erosion damage. Therefore, we focus on the bubble nucleus which is due to cavitation. First, we predict cavitation phenomena on the basis of single-bubble motion with Rayleigh plesset model.
2014-11-11
Technical Paper
2014-32-0052
Tatsuhiko Sato, Hirotaka Kurita, Akemi Ito, Hideyuki Iwasaki
The frictional force generated between an actual monolithic aluminum cylinder block and a piston / a piston-ring in a firing mode was measured with using a newly developed floating liner device for the first case in the world. The improvement of fuel consumption is the most important issue for engine manufactures from the viewpoint of energy and environment conservation. The piston-cylinder system plays quite important role for the reduction of the engine friction. For the improvement of the frictional behavior of the piston-cylinder system, it is beneficial to observe and analyze the frictional waveforms during an engine operation. In order to meet the above-mentioned demand, the renewed floating liner device was developed. In the newly developed floating liner device, the actual cylinder block itself was used as a test specimen, whereas a thin-walled cylindrical sleeve should be used as the test specimen in the conventional floating liner device. The measured single cylinder was an aluminum monolithic type made of hypereutectic Al-17Si alloy using a high pressure die casting process.
2014-11-11
Technical Paper
2014-32-0050
Tomokazu Nomura, Koichiro Matsushita, Yoshihiko Fujii, Hirofumi Fujiwara
To meet growing demands on the fuel economy, various studies have been made to improve thermal efficiency of engines. In spite of such efforts, approximately 30% of fuel energy is still dissipated to the atmosphere finally as cooling loss, through engine parts, coolant and oil. Therefore, if the heat dissipation from the engine is insufficient, the temperature of engine parts rises. An excessively higher engine temperature causes a degradation of engine performance and a deterioration of material strength. Especially in air-cooled engines, there are contradicting demands between the heat dissipation capacity and the light weighted compactness. Therefore, to realize the optimized design for a light and compact engine, a method of a precise temperature prediction is required in the early stage of the development. A number of studies have been made on the cooling performance and the temperature prediction of engines. In many of such studies, temperature of an engine cannot be directly estimated but heat transfer from the engine to the atmosphere and to the coolant are evaluated on the basis of heat transfer coefficients calculated by 3D-CFD.
2014-11-11
Technical Paper
2014-32-0047
Mohamed El Morsy, Gabriela Achtenova
Through PULSE platform for vibration analysis, which is developed as an advanced solution for vibration measurements was developed the robust diagnostic concept (RDC). The PULSE setup is designed to help in fault diagnosis of vehicle gearbox -the main part of vehicle powertrain-. Time Domain, Continuous Wavelet Transformation Technique (CWT), FFT and Order analysis measurements are used for detection of an artificial pitting defect in gear by tracking the gearbox response at accelerated speed and different load. The test stand is equipped with three dynamometers; the input dynamometer serves as internal combustion engine, the output dynamometers introduce the load on the flanges of output joint shafts. The pitting defect is manufactured on the tooth side of gear of the fifth speed on the intermediate shaft. Temperature effect on the vibration measurements has been also investigated to study its effect on the fault diagnosis. The presented concept has an important application in the field of mechanical fault diagnosis.
2014-11-11
Technical Paper
2014-32-0020
Patrick Falk, Christian Hubmann
Abstract Originally developed for the automotive market, a fully automatic real-time measurement tool AVL-DRIVE is commercially available for analyzing and scoring vehicle drive quality, also known as “Driveability”. This system from AVL uses its own transducers, calibrated to the sensitivity and response of the human body to measure the forces felt by the driver, such as acceleration, shock, surging, vibration, noise, etc. Simultaneously, the vehicle operating conditions are measured, (throttle grip angle, engine speed, gear, vehicle speed, temperature, etc.). Because the software is pre-programmed with the scores from a multitude of different vehicles in each vehicle class via neural networks and fuzzy logic formula, a quality score with reference to similar competitor vehicles is instantly given. This tool is already successfully implemented in the market for years to investigate such driveability parameters for passenger cars. Due to the fact that electronic systems more and more find their way into the 2-wheeler applications, motorcycle manufacturers are facing a lot of challenges and these are increasing from year to year.
2014-11-11
Technical Paper
2014-32-0018
Kenichi Morimoto, Kenichi Tanaka
Abstract There have been a number of attempts to clarify the relationship between motorcycle specifications and shimmy phenomenon. Some of such efforts are based on equations of motion. The methods used in those efforts are suitable for analyzing motions in a fundamental structure. However, when the degree of freedom is large, it is extremely difficult to deliver an equation of motion. Therefore, a practical method cannot be found generally when applying the methods employing equations of motion. We also conducted the analysis of shimmy using multi-body dynamics simulation. The yielded results were useful only for clarifying the differences in shimmy levels among motorcycles. However, they were not helpful to understand the relationships between specifications and shimmy phenomenon. In this study, we focused clarifying these relationships and we took four study steps shown below: 1 Narrowing down the motorcycle specifications affecting shimmy2 Determining physical parameters influential to shimmy3 Investigating how a change of physical parameters affects shimmy using simplified model4 Analyzing how the changes of motorcycle specifications affect the shimmy Following these steps, we clarified the relationships between motorcycle's specifications and shimmy by using only three physical parameters.
2014-11-11
Technical Paper
2014-32-0128
Francisco Payri, José Javier Lopez, Benjamin Pla, Diana Graciano Bustamante
Abstract Direct injection compression ignited (CI) engines are today's most efficient engine technology, granting efficiencies exceeding 40% for their optimal operation point. In addition, a strong technological development has allowed the CI engine to overcome its traditional weak points: both its pollutant emissions and the gap in specific power regarding its competitor, i.e. the spark ignited (SI) engine, have been noticeably reduced. Particularly, the increase in specific power has led to the downsizing as an effective method to improve vehicle efficiency. Despite the reduction in total displacement, the cylinder displacement of current CI engines is still around 0.5 liters. For some applications (urban light duty vehicles, Range Extenders…) it may be interesting to reduce the engine displacement to address power targets around 20kW with high efficiencies. This paper assesses the thermo- and fluid-dynamic limitations which make challenging extending the application of automotive CI engines to the low power region: Firstly, space limitations for injection and combustion processes.
2014-11-11
Technical Paper
2014-32-0109
Denis Neher, Maurice Kettner, Fino Scholl, Markus Klaissle, Danny Schwarz, Blanca Gimenez
Abstract Electrical power and efficiency are decisive factors to minimise payoff time of cogeneration units and thus increase their profitability. In the case of (small-scale) cogeneration engines, low-NOx operation and high engine efficiency are frequently achieved through lean burn operation. Whereas higher diluted mixture enables future emission standards to be met, it reduces engine power. It further leads to poor combustion phasing, reducing engine efficiency. In this work, an engine concept that improves the trade-off between engine efficiency, NOx emissions and engine power, was investigated numerically. It combines individual measures such as lean burn operation, overexpanded cycle as well as a power- and efficiency-optimised intake system. Miller and Atkinson valve timings were examined using a detailed 1D model (AVL BOOST). Indicated specific fuel consumption (ISFC) was improved while maintaining effective compression ratio constant. However, brake specific fuel consumption (BSFC) rises due to lower IMEP.
2014-11-10 ...
  • November 10-13, 2014 (3 Sessions) - Live Online
  • June 15-19, 2015 (3 Sessions) - Live Online
  • December 14-17, 2015 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Design Review Based on Failure Modes (DRBFM) is a methodology focused on change management and continuous improvement. It centers on early prevention and engineering knowledge, eliminating time spent debating ranking systems, waiting for lead engineers to document and list their concerns, identifying what types of concerns are open for discussion and resolution, and brainstorming without any actionable closure. This web seminar will explain all phases of the DRBFM methodology and provide details on how to accomplish the specific steps. With the Design Review Based on Failure Modes (DRBFM) and Design...
2014-11-10 ...
  • November 10-11, 2014 (8:30 a.m. - 4:30 p.m.) - Chennai, India
  • November 13-14, 2014 (8:30 a.m. - 4:30 p.m.) - Pune, India
  • April 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 22-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. Engines can and do experience failures in the field in a variety of equipment, vehicles, and applications. On occasion, a single vehicle type or equipment family will even experience multiple engine failures leading to the inevitable need to determine...
2014-10-28 ...
  • October 28-November 7, 2014 (6 Sessions) - Live Online
  • May 11-22, 2015 (6 Sessions) - Live Online
  • October 19-30, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions. This course will enable...
2014-10-23
Event
The EcoCAR 2: Plugging in to the Future student vehicle competition, sponsored by General Motors and the U.S. Department of Energy, tasks university teams with designing, implementing and refining advanced powertrains into a conventional midsize sedan. This session presents yearly results from teams in the competition, highlighting the entire EcoCAR vehicle development process.
2014-10-13
Technical Paper
2014-01-2558
Qiyou Deng, Richard Burke
Abstract Current turbocharger models are based on characteristic maps derived from experimental measurements taken under steady conditions on dedicated gas stand facility. Under these conditions heat transfer is ignored and consequently the predictive performances of the models are compromised, particularly under the part load and dynamic operating conditions that are representative of real powertrain operations. This paper proposes to apply a dynamic mathematical model that uses a polynomial structure, the Volterra Series, for the modelling of the turbocharger system. The model is calculated directly from measured performance data using an extended least squares regression. In this way, both compressor and turbine are modelled together based on data from dynamic experiments rather than steady flow data from a gas stand. The modelling approach has been applied to dynamic data taken from a physics based model, acting as a virtual test cell. Varying frequency sinusoidal signals were applied to the compressor and turbine pressure ratios and turbine inlet temperature to drive the physic model.
2014-10-13
Technical Paper
2014-01-2564
Andrew Smallbone, Amit Bhave, Peter Man
Abstract This paper demonstrates how the validation and verification phase of prototype development can be simplified through the application of the Model Development Suite (MoDS) software by integrating advanced statistical and numerical techniques. The authors have developed and present new numerical and software integration methods to support a) automated model parameter estimation (model calibration) with respect to experimental data and, b) automated global sensitivity analysis through using a High Dimensional Model Representation (HDMR). These methods are demonstrated at 1) a component level by performing systematic parameter estimation of various friction models for heavy-duty IC engine applications, 2) at a sub-component level by performing a parameter estimation for an engine performance model, and 3) at a system level for evaluating fuel efficiency losses (and CO2 sources) in a vehicle model over 160 ‘real-world’ and legislated drive cycles.
Viewing 1 to 30 of 7284

Filter

  • Range:
    to:
  • Year: