Criteria

Text:
Display:

Results

Viewing 1 to 30 of 7424
2015-06-22
Event
This session is dedicated to the tools and methodology involved in identifying, calculating and modifying various noise and vibration sources and paths in vehicles, aircraft and various consumer products and assist in the design and validation of noise and vibration targets
2015-06-22
Event
This session covers subjective testing and analysis related to automotive noise and vibration, usually referred to as sound quality and vibration quality. The focus is on both subjective and objective tools and methods that can be used either to design sound or vibration quality into the automotive product, or to characterize and eliminate undesired sounds or vibrations.
2015-06-22
Event
This session provides a good overview of recent innovations to SEA modeling techniques. SEA models can be used alone or together with hybrid analytical or experimental techniques to establish good comparative NVH predictions at the earliest stage of the vehicle design process. The papers of this session will describe recent advances and / or validations of SEA theory, applications, or use in conjunction with hybrid techniques for high- and mid-frequency NVH predictions.
2015-06-22
Event
This session covers the relationships between vibration and noise that can be generated throughout the vehicle. Included in this session are modal vibration studies related to noise, vibration transfer paths throughout the vehicle, and coupling of vibration and acoustical modes. Both experimental and analytical approaches are included in this session.
2015-06-15 ...
  • June 15-19, 2015 (3 Sessions) - Live Online
  • December 14-17, 2015 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Design Review Based on Failure Modes (DRBFM) is a methodology focused on change management and continuous improvement. It centers on early prevention and engineering knowledge, eliminating time spent debating ranking systems, waiting for lead engineers to document and list their concerns, identifying what types of concerns are open for discussion and resolution, and brainstorming without any actionable closure. This web seminar will explain all phases of the DRBFM methodology and provide details on how to accomplish the specific steps.
2015-05-13 ...
  • May 13-29, 2015 (6 Sessions) - Live Online
  • September 16-October 2, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Failure Modes and Effects Analysis (FMEA) is an integral part of product design activity applicable to any type of product or service. It is a quantitative and quantitative step-by-step approach for identifying and analyzing all actual and potential points of failure in a design, product or service. A successful team-based FMEA activity can use their collective experience with similar products to dramatically improve not only product performance but also reduce manufacturing issues at both a component and system and processing level. This web seminar introduces the five basic types of FMEAs with emphasis on constructing a Design FMEA.
2015-05-11 ...
  • May 11-22, 2015 (6 Sessions) - Live Online
  • October 19-30, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
2015-05-06 ...
  • May 6, 2015 (8:30 a.m. - 4:30 p.m.) - Tysons, Virginia
Training / Education Classroom Seminars
This seminar will include a review of statistical theory and present statistical methods, which are used to better select and/or analyze Tolerance Stack-ups. The Probability (RMS) Method, the Monte Carlo Simulation Technique and tolerance optimization techniques will be discussed along with guidelines on which method(s) to use in given situations. Attendees will also view a demonstration of a microcomputer Monte Carlo Simulation program that analyzes the effects of form and assembly variation on the quality of a finished product.
2015-04-23 ...
  • April 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 22-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. Engines can and do experience failures in the field in a variety of equipment, vehicles, and applications.
2015-04-23 ...
  • April 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • August 19-20, 2015 (8:30 a.m. - 4:30 p.m.) - Rosemont, Illinois
  • November 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. Failure Mode and Effects Analysis (FMEA) is a systematic method for preventing failure through the discovery and mitigation of potential failure modes and their cause mechanisms.
2015-04-22
Event
This series of sessions focuses on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry. Studies and discussions on innovative and improved fatigue theory/methods in will be discussed along with and engineering applications of CAE durability analysis.
2015-04-22
Event
This series of sessions focuses on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry. Studies and discussions on innovative and improved fatigue theory/methods in will be discussed along with and engineering applications of CAE durability analysis.
2015-04-22
Event
The focus of this session is the measurement and analysis of in-cylinder and port flows in research and production engines. Topics may including PIV, PTV, LDV, and fluorescent tracer measurements of velocity and turbulence characteristics and modeling analysis of engine flows.
2015-04-21
Event
This series of sessions focuses on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry. Studies and discussions on innovative and improved fatigue theory/methods in will be discussed along with and engineering applications of CAE durability analysis.
2015-04-21
Event
This series of sessions focuses on state-of-the-art fatigue theory and advanced development in fatigue testing, material behavior under cyclic loading, and fatigue analysis methodology & research in the ground vehicle industry. Studies and discussions on innovative and improved fatigue theory/methods in will be discussed along with and engineering applications of CAE durability analysis.
2015-04-14
Technical Paper
2015-01-1132
Jiaxing Zhan, Mohammad Fard
Preventing the backdriving and controlling the position stability of gearbox are critical tasks in some precision machineries and instruments. Consequently, many self-locking mechanisms have been developed to stabilize the rotation accuracy in gearing system. However, these assistant devices could enlarge the volume of gearbox, increase the complexity of transmission system and introduce more errors between gear pairs. Therefore, alternative methods are required to achieve design requirement without adding any extra electric or mechanical device. As a novel gear designed with anti-backdriving capacity, the self-locking gear has been of great interest to researchers and engineers to date. The self-locking gear can be used to prevent either the inertia driving, or backdriving, or both, when the driving torque is suddenly reduced as a result of power off, torsional vibration, power outage, or any mechanical failure at the transmission input side.
2015-04-14
Technical Paper
2015-01-0442
Sudhi Uppuluri, Ajay Naiknaware
Abstract: With increasing pressure to meet CAFE standards, various strategies are being developed to actively manage the vehicle drag and engine thermal performance to squeeze out additional fuel economy performance from existing vehicle. This paper develops on the previous work presented at this conference and discusses the sensitivity of key vehicle parameters that affect the engine thermal performance and fuel economy of the vehicle. The sensitivity analysis is based on a vehicle level system model that captures the entire engine thermal model and transient behavior of various key components such as the thermostat, the active grill shutter and accessory loads. Results discussed in this paper provides guidance on which variables have the most affect on fuel economy and which variables must be tightly controlled to improve the robustness and stability of the design.
2015-04-14
Technical Paper
2015-01-0803
Marko Jeftić, Jimi Tjong, Graham Reader, Meiping Wang, Ming Zheng
Experimental testing was done with a modern compression ignition engine to study the effect of the engine load and the effect of different fuels on the post injection characteristics. Two different fuels were utilized; ultra-low sulphur diesel and n-butanol. The results showed that a post injection can be an effective method for increasing the operating range of the engine load. Engine operation at high load can be limited by the peak cylinder pressure but the test results showed that an early post injection can increase the engine load without increasing the peak in-cylinder pressure. Neat butanol combustion may have a very high peak in-cylinder pressure and a very high peak pressure rise rate even at low load conditions. The test results showed that a butanol post injection can contribute to engine power without significantly affecting the peak pressure rise rate and the peak in-cylinder pressure.
2015-04-14
Technical Paper
2015-01-0669
Nagarjun Jawahar, Saharash Khare
Automotive OEM’s are looking for innovative solutions to capture the possible failure due to warpage and shrinkage of an insert molded part through virtual simulations with help of FEA tools, thereby saving the mold cost, material cost and time. This work demonstrates an approach to study and simulate the failure of an insert molded part which happened after few days of the part molding under idle condition. To simulate the above failure, an innovative approach coupling Moldflow and Abaqus software was derived. First, a flow simulation including phase change of plastic material was carried out with derived parameters, results of which were exported as input to the Abaqus structural solver. Secondly, a thermo-mechanical analysis of the model was then carried out considering the thermal and moisture effect on material property. A good correlation was achieved between the actual failure location and max stress location as predicted by said coupled approach.
2015-04-14
Technical Paper
2015-01-1121
Enrico Galvagno, Mauro Velardocchia, Alessandro Vigliani, Antonio Tota
In this paper the torsional dynamic behaviour of a Dual Mass Flywheel is investigated both experimentally and numerically. The study presents a mathematical description of the system both in time and frequency domain, using lumped parameter models. Concerning the frequency domain analysis, two types of excitation are applied and compared: sine sweep excitation (with different directions) and steady-state sinusoidal excitation. A square wave excitation is used to stimulate the model and the real system in the time domain. The unknown damping parameter has been identified and a sensitivity analysis is presented. Good correspondence between experimental and numerical results has been found.
2015-04-14
Technical Paper
2015-01-1751
Feng Yan, Wanhua Su
A theoretical–numerical analysis on the roles of initial charge temperature (Tin), initial pressure (Pin), equivalent ratio (Ф) and oxygen concentration ([O2]) on exergy loss events of n-heptane adiabatic constant volume combustion process by detailed chemical kinetics were explored in aspect of overall exergy loss rates, exergy loss rates of individual reactions, and loss distributions. The analysis is based on computing the various entropy generation terms among detailed kinetics controlled chemical reactions. Three apparent peaks of the overall exergy loss rate are observed so that the combustion process is classified as: Stage 1 (the process of large molecule fuels -> small molecule fuels), Stage 2 (the process of small molecule fuels -> H2O2 loop reactions -> CO) and Stage 3 (the oxidation processes of CO, H, and O to final products of CO2 and H2O).
2015-04-14
Technical Paper
2015-01-1698
Balamurugan Rathinam, Frederic Ravet, Cedric Servant, Laurent Delahaye, Upendra Naithani
Optimising the in-cylinder aerodynamics in Spark ignition (SI) engines is one of the most important contribution to improve the combustion efficiency and thus to save the fuel consumption and to limit CO and unburnt hydrocarbon emissions. The tumble motion originated near the Top Dead Centre (TDC) known as “Tumble Squeeze” is responsible for higher level of turbulence which is necessary to increase the turbulent flame velocity. Higher the flame velocity is, higher the combustion efficiency is. Experiments are conducted in an optical engine and the velocity fields are measured with the aid of advanced particle image velocimetry (PIV) measurement technique. The velocity fields are computed through simulation and compared with measurements. Then, the turbulence kinetic energy is also calculated from the velocity fields which are basically not possible to measure from the experiments. This study is performed for three different operating points with low and high tumble configurations.
2015-04-14
Technical Paper
2015-01-1493
Vinay L. Virupaksha, Stuart Brown
Research Council for Automotive Repairs (RCAR) has developed a bumper test at 10.5 km/h to assess the damageability and repairing cost during a low speed collusion. For minimum damage and minimum repairing cost during low speed collusion it is necessary to design a bumper beam which provides structural stiffness and reduced deflection. Often it is challenging to design a front bumper beam to meet all safety requirements including, RCAR, high speed offset barrier and pedestrian protection, since these requirements are not necessarily compatible with each other. Design changes in rails and packaging constraints add to this challenge. In this study, design of six sigma and finite element analysis is used to study the parameters that affect the stiffness and deflection of the front bumper beam.
Viewing 1 to 30 of 7424

Filter

  • Range:
    to:
  • Year: