Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3022
2015-05-11 ...
  • May 11-22, 2015 (6 Sessions) - Live Online
  • October 19-30, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
2015-04-14
Technical Paper
2015-01-0554
Rafaa Esmaael, Vernon fernandez
An accurate prediction of elasto-plastic cyclic deformation becomes extremely important in design optimization. Which lead to a more accurate fatigue life prediction and weight savings. In this project a two-step notch root prediction method based on interpolation between linear and Neuber’s notch strain amplitude solutions is proposed. The accuracy of this method is assessed by comparing the results with the results obtained from elasto-plastic finite element analysis. Different types of steels with different yield strengths were used in this study. Notch deformation behavior under cyclic loading conditions was monitored for a double notched flat plate and a circumference notched round bar to cover plain stress and plain strain conditions. Elastic as well as elasto-plastic finite element analyses are performed.
2015-04-14
Technical Paper
2015-01-0482
Naijia Xiao, Rafi L. Muhanna, Francesco Fedele, Robert L. Mullen
We present a new formulation for the analysis of extreme response of plane stress/strain problems with given uncertainties in load, material and geometry. The formulation is based on Interval Finite Element Method (IFEM), and uncertainties in the system are modeled by intervals. In order to reduce overestimation caused by dependency of interval variables, we propose new decomposition strategies for the stiffness matrix and the nodal equivalent load vector for the structure. We introduce Lagrangian multipliers into the energy functional to compute derived quantities simultaneously as primary quantities. In addition, we implement a new variant of iterative enclosure method to obtain the outer and inner solutions. Numerical examples show that the interval solution from the proposed method guarantees to enclose the exact extreme response.
2015-04-14
Technical Paper
2015-01-0484
Naijia Xiao, Rafi L. Muhanna, Francesco Fedele, Robert L. Mullen
We present a new interval finite element formulation for the response in the frequency domain of structural dynamic systems with uncertainties in load, material and geometry. Overestimation due to dependency is reduced using a new decomposition for the stiffness and mass matrices, as well as for the nodal equivalent load. In addition, primary and derived quantities are simultaneously obtained by means of Lagrangian multipliers that are introduced in the total energy of the system. The obtained interval equations are solved by means of a new variant of the iterative enclosure method resulting in guaranteed enclosures of relevant quantities. Several numerical examples show the accuracy and efficiency of the new formulation.
2015-04-14
Technical Paper
2015-01-0485
Mehdi Modares, Joshua Bergerson
In order to ensure the safety of a structure, adequate strength for structural elements must be provided. Moreover, the catastrophic deformations such as buckling must be prevented. In most buckling analyses, structural properties and applied loads are considered certain. Using the linear finite element method, the deterministic buckling analysis is done in two main steps. First, static analysis is performed using an arbitrary ordinate applied load. Using the obtained element axial forces, the geometric stiffness of the structure is assembled. Second, performing an eigenvalue problem between structure’s elastic and geometric stiffness matrices yields the structure’s critical buckling loads. However, these deterministic approaches do not consider uncertainty the structure’s material and geometric properties. In this work, a new method for finite element based buckling analysis of a structure with uncertainty is developed.
2015-04-14
Technical Paper
2015-01-0626
Adam C. Reid, Moustafa El-Gindy, Fredrik Oijer, David Philipps
The purpose of this research paper is to outline the methodology and procedure used for the development of a wide base rigid ring tire model. A rigid ring model is a mechanical representation of a tire model in which its in-plane and out-of-plane characteristics and behaviour can be captured. The FEA construction of the tire model is first completed to match all known information regarding the physical dimensions and material properties of the tire. For information that is unknown, an optimization-based parameter tuning algorithm is then run in order to solve for said parameters while matching any experimental data that is supplied. A series of virtual experiments are then conducted which replicate laboratory tests as well as some high speed maneuvers in order to isolate for specific tire dynamic parameters.
2015-04-14
Technical Paper
2015-01-0627
Xiaoguang Yang, Oluremi Olatunbosun, Daniel Garcia-Pozuelo, Emmanuel Bolarinwa
The development of intelligent tyre technology from concept to application covers multi-disciplinary fields. During its development course, computational method has a significant effect on understanding tyre behaviour, assisting design of intelligent tyre prototype system and developing tyre parameters estimation algorithm, etc. In this paper, finite element tyre model was adopted for developing strain-based intelligent tyre system. The finite element tyre model was created considering tyre composite structure and nonlinear material properties, which was also validated by fundamental test. It is used to study tyre strain characteristics by steady state simulation for straight line rolling, traction and braking, and cornering rolling. Tyre loading conditions were estimated by feature extraction and data fitting. This process forms the fundamentals for identifying tyre loadings from strain information on potential sensor locations.
2015-04-14
Technical Paper
2015-01-0568
Wenxin Qin
Simplified 3D Simulation Models to 2D Plane Strain Analytical Models in Automotive Structure Wenxin Qin (Chrysler Group, LLC, USA) Abstract In automotive chassis, body and powertrain finite element numerical analysis, more and more analysts and engineers like to adopt 3D complex FEA models along with improved computer hardware and software. The advantages of 3D FEA model are (1) looked like real model in vision; (2) simulation response is more vivid; (3) easily to discover the mistakes by watching simulation response. The drawbacks of 3D FEA model are (1) more pre/post process works and computation time; (2) numerical divergence is a challenging issue in nonlinear and contact situations and debug becomes difficulty; (3) sometimes accumulated numerical errors will cover the actual response. Therefore, it is necessary to explore what kinds of 3D FEA situations can be successfully converted by the simple 2D plan FEA models.
2015-04-14
Technical Paper
2015-01-0584
HaiYan Yu, JiaYi Shen, Gang He
The yield locus of a cold-rolled transformation-induced plasticity (TRIP780) steel sheet was investigated using cruciform biaxial tension. Effect of the key dimensions of the cruciform specimen on the calculation error and stress inhomogeneity was analyzed in detail using orthogonal test combined with finite element analysis. Scan electric metallography (SEM) observations of TRIP780 steel were performed. The theoretical yield curve of TRIP780 steel were calculated with Hill’48, Hill’93, Barlat’89, Gotoh and Hosford yield criteria. Experimental results indicate that none of the selected yield criteria can totally agree with the experimental curve. Among which, Hill’48 and Hosford yield criteria have the largest error while Barlat’89 yield criterion has the smallest error especially near the biaxial tension. Besides Barlat’89 criterion, Hill’93 and Gotoh anisotropic yield criteria are the second choices for TRIP780 steel.
2015-04-14
Technical Paper
2015-01-0578
Wei Li, Yi-Pen Cheng, Lisa Furton
Finite element dummy models have been more and more widely applied in virtual development of occupant protection system across the automotive industry due to their predictive capabilities. H305 dyna dummy model is a finite element representative of the Hybrid III small female dummy, which is designed to represent the lower extreme of the United States adult population. Lower extremities are the leading injured body region and the risk of lower limb injuries is significant in all front crash impacts. The tibia index is a very important injury criteria to be predicted during frontal impact occupant simulations for FMVSS 208 and IIHS. A common issue in application of the dummy model is that it often over predicts lower tibia loading (forces and/or moments) and in turn generate unrealistically higher tibia indices, when compared against corresponding physical tests. In this paper, a few factors are analyzed, which affect achieving good tibia loading predictions.
2015-04-14
Technical Paper
2015-01-1154
Benjamin Black, Tomohiro Morita, Yusuke Minami, David Farnia
Test and validation of control systems for hybrid vehicle power trains provide a unique set of challenges. Not only does the electronic control unit (ECU) or pair of ECUs need to smoothly coordinate power flow between two or more power plants, but it also must handle the power electronics’ high speed dynamics of with PWM signals frequently in the 10-20kHz range. The trend in testing all-electric and hybrid-electric ECUs has moved toward using field-programmable gate arrays (FPGAs) as the processing node for simulating inverter and electric motor dynamics in real time. Acting as a purpose-built processor co-located with analog and digital input and output, FPGAs make it possible for real-time simulation loop rates on the order of 1 microsecond.
2015-04-14
Technical Paper
2015-01-0553
Yu Zhang, Weiqin Tang, Dayong Li, Xuming Su, Shiyao Huang, Yandong Shi, Yinghong Peng
ABSTRACT – In theoretical formulas, coach peel (CP) specimen width is assumed to be wide enough and has no influence on stress intensity factor (SIF) value. However, SIF value around nugget changes in finite element simulation when specimen width is different. To investigate the relationship between specimen width and SIF value around nugget, a finite element model was built in this paper. In this model, a contour integral crack is used, and the area around the nugget is taken as crack tip. Results showed that when specimen width was below 50mm, SIF value decreased rapidly with the increase of specimen width. When specimen width was larger than 50mm, SIF value almost remained constant with the variation of specimen width. To further study the influences of nugget diameter and sheet thickness on the width-SIF curves, CP specimens with different nugget diameters (5mm, 6mm and 7mm) and sheet thickness (1.2mm, 1.6mm and 2.0mm) were built in ABAQUS.
2015-04-14
Technical Paper
2015-01-1345
Srinivas Kurna, Arpit Mathur, Sandeep sharma
In commercial vehicle, Leaf Spring design is an important milestone during product design and development. Leaf springs are the most popular designs having multiple leaves in contact with each other and show hysteresis behavior when loaded and unloaded. Commonly used methods for evaluation of leaf spring strength like endurance trials on field and Rig testing are time consuming and costly. On the other hand, virtual testing methods for strength and stiffness evaluation give useful information early in the design cycle and save considerable time and cost. They give flexibility to evaluate multiple design options and accommodate any design change early in development cycle. A study has been done in VECV to correlate rig result with FEA simulation result of Multi-stage Suspension Leaf Spring, entirely through Finite Element Analysis route. Virtual leaf spring with U-Clamps and Suspension brackets with revolute joints are modeled in FEA which is similar to rig test bed setup.
2015-04-14
Technical Paper
2015-01-0663
Ling Zheng, Zhanpeng Fang, Zhongcai Tang, Zhenfei Zhan, Jiang-hua FU
The design optimization of vehicle body structure is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is established and the response of sound pressure in frequency domain is obtained by using finite element method. The minimization of sound pressure near the driver’s right ear depends on the geometry of vehicle body structure and the layout of damping treatments. The panel participation analysis is performed to find out the key panels as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is utilized to optimize the vibro-acoustic properties of vehicle body structure instead of complex structural-acoustic coupling finite element model. Structural-acoustic problem is approximated by a series of quadratic polynomial using RSM. Geometric optimization problem of panels is described and solved to minimize the interior noise in vehicle.
2015-04-14
Technical Paper
2015-01-1148
Xi Li, weiguo zhang, Jinning Li, Ming Jiang, Yunqing Zhang
A simulation model of a single cone synchronizer is presented using the dynamic implicit algorithm with commercial Finite Element Analysis (FEA) software Abaqus.. The meshing components include sleeve gear, blocking ring, clutch gear and detent, which are all considered as deformation body. The processes mainly contain the contact between sleeve teeth and blocking teeth, meshing period and the impact of sleeve teeth and clutch gear teeth,and these nonlinear contact steps are realized with Abaqus. In addition, a shift force as the driving load derives from a synchronizer experiment for approximating to the true condition, and a moment is added to the clutch gear to realize the relative rotational speed. Based on the FEA model, the effects of the varied cone angle and the frictional coefficients between the cone surfaces of blocking ring and clutch gear on the synchronizer time and contact stress are discussed.
2015-03-16 ...
  • March 16-27, 2015 (6 Sessions) - Live Online
  • September 14-25, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
The Finite Element Analysis (FEA) has been widely implemented by automotive companies and is used by design engineers as a tool during the product development process. Design engineers analyze their own designs while they are still in the form of easily modifiable CAD models to allow for quick turnaround times and to ensure prompt implementation of analysis results in the design process.
2015-01-14
Technical Paper
2015-26-0123
Yogesh Surkutwar, Mahesh Anand Patwardhan, Nagesh Voderahobli Karanth, Atul Gaikwad
Abstract The work presented in this paper deals with the use of combined Computer Aided Engineering (CAE) and experimental testing approach for reducing engine noise. The paper describes a systematic approach for giving solutions to the structure borne engine noise related problems. Noise Source Identification (NSI) was carried out on diesel engine to identify noise radiating sources, ranking of noise sources was carried out and contribution of individual engine component in radiated Sound Power Level (SWL) was computed. Detailed Finite Element Model (FEM) of engine assembly was developed and model was correlated in terms of natural frequencies and transfer functions by performing modal testing. Correlated FEM was used for predicting surface vibration velocities under various engine speeds and loading conditions in frequency domain. Velocities so predicted in frequency domain were used as an input for SWL prediction using Boundary Element Method (BEM) approach.
2015-01-14
Technical Paper
2015-26-0150
Sanjay Chaudhuri, Vikram Saini
Abstract Special purpose, high payload carrying capacity, live gooseneck, multi axles, hydraulic suspension semi trailer is abinitio designed for transportation and tilting of heavy cargo from horizontal to vertical by hydraulically actuated mechanism integrated on the trailer. The chassis is levelled on hydraulic jacks followed by tilting of cargo. Hence the chassis experiences variable forces during tilting and estimated from kinematic model of tilting mechanism. These forces are input for finite element based structural design of chassis. Structural deflection of a step is made as initial condition for certain load cases of the analysis. Live gooseneck of this semi-trailer consists of hydraulically actuated mechanism, interconnected with multiple hydraulic suspensions in appropriate ratios. Estimation of Axles and fifth wheel force distributions of such trailer is complex. Mathematical modelling made to estimate these forces and applied as inputs for finite element analysis.
2015-01-14
Technical Paper
2015-26-0219
Sahil Kakria, IVN SriHarsha, Milind Wagh
Abstract Suspension and chassis play a vital role in the structural performance of an off-road vehicle. The paper focuses on Computer Aided Engineering (CAE) modeling and simulation study of an All Terrain Vehicle (ATV) structure to analyze its static and dynamic behavior. An integrated MBD-FEA approach used for analysis purpose has been presented. In the study, a Multi Body Dynamic (MBD) model of the ATV suspension system is built using ADAMS/Car. The effect of change in suspension hardpoints on suspension characteristics has been analyzed by carrying out Design of Experiment (DOE) study using ADAMS/Insight. This is done to minimize roll, camber and kingpin angle variation during vertical wheel travel, thus increasing stability of the vehicle under rough road conditions. This helps in optimizing the front and rear suspension geometry of ATV. The Finite Element (FE) model of ATV chassis is prepared to check its structural integrity.
2015-01-14
Technical Paper
2015-26-0215
T Sukumar, Murugan Subramanian, Sathish Kumar Subramaniyan, Nandakumar Subramanian
Abstract Reliable sealing solutions are extremely important in commercial vehicle industry because sealing failures can cause vehicle breakdown, damage of equipment or even accident, incurring expenses that are substantially higher than the costs of just replacing the damaged seals. Consequently, new seal designs must be experimentally verified and validated before they can be implemented. In this study, Mooney - Rivlin hyper elastic material model is used to simulate the sealing behavior during dynamic conditions. The seal under study is a large diameter lip seal made of Neoprene® rubber (NBR) A finite element model to study the response of the seal under dynamic conditions was developed. The analysis took into account the mating parts dimensions and the lip seal parameters. Three designs were proposed and verified. The seal design is optimized using non-linear FEA and validated. Results include contact pressure, deflection and strain experienced by the seal during actuation.
2015-01-14
Technical Paper
2015-26-0186
Mohitkumar R. Chauhan, Girish Kotwal, Abhijeet Majge
Abstract The major concern in design of wheel is their potentiality to bear impact loads. Therefore, wheel impact test is required to fulfill the safety requirement. In this study, there are two objectives; first, the simulation of impact test for wheel is developed according to SAE wheel impact test. Often when vehicle interacts with guardrails, bridge rails and curbs the interaction between roadside hardware and wheel causes wheel damage. The test setup consists of vertically acting striker of mass 480 kg and having prescribed velocity. Energy based approach and total plastic work concept of ductile fracture mechanics is used to predict wheel impact failure. Explicit finite element method is used to investigate stress and displacement distribution and to obtain strain energy density of wheel at impact. Design modification is applied to the wheel to improve its impact performance. Simulation results are compared with experimental results.
2015-01-14
Technical Paper
2015-26-0212
Neerav Karani, Aditya Malladi, Sridhar lingan Sr
Abstract In the current competitive automobile market, with growing knowledge and concern for occupant and vulnerable road user safety, design & engineering of passenger cars in stipulated time is a challenge. As front styling is a crucial factor, early involvement of Computer Aided Engineering (CAE) through front loading helps reduce the product development time considerably with a pedestrian friendly engineered design. The present paper explains how initial inputs are given to styling & engineering teams during early stages of product development where availability of Computer Aided Design (CAD) data is minimal. Critical load paths were identified and shape of the front end was modified accordingly. Various locations of hinge mechanism were evaluated to reduce the severity of injury in the head impact zone. Sufficient gaps between the exterior surfaces and interior hard points were worked upon to reduce the impact values.
2014-11-11
Technical Paper
2014-32-0023
Daniele Barbani, Niccolò Baldanzini, Marco Pierini
Abstract In the study of new solutions for motorcycle passive safety, FE models of full-scale crash tests play a strategic role. The most important issue in the development process of FE models is their reliability to reproduce real crash tests. To help the engineering in the validation phase, a sensitivity analysis of a FE model for motorcycle-car crash tests is carried-out. The aim of this study is to investigate the model response subjected to variations of specific input parameters. The DOE is performed generating a list of simulations (each one composed by a unique combination of 8 parameters) through Latin Hypercube Sampling. The outputs monitored are the Head Injury Criterion (HIC) and Neck Injury Criteria (Nij). The analysis of the results is performed using scatter plots and linear regression curves to identify the parameters that have major impact on the outputs and to assess the type of dependency (linear or non-linear).
2014-11-11
Journal Article
2014-32-0119
Diego Copiello, Ze Zhou, Gregory Lielens
Abstract This paper addresses the numerical simulation of motorcycle exhaust system noise using a transfer matrix method (TMM) supporting high order analytical acoustic modes representation combined with finite element method (FEM) included in the Actran software, R15. In the state-of-the-art of hybrid TMM/FEM approach the main assumption consists in a 1D plane wave acoustic propagation in the components connections which is intrinsically limiting the maximum frequency of the analysis. In motorcycle exhaust systems this limitation is even stronger because typical geometries exhibit strong curvatures and bends causing the scattering of the acoustic wave into higher order modes. Therefore, results might be erroneous even at frequencies at which only the plane wave is expected to be propagating. The improved transfer matrix method presented in this paper overcomes this limitation allowing to increase the range of applicability of this method.
2014-09-28
Technical Paper
2014-01-2516
Katsuhiro Uchiyama, Yuji Shishido
Abstract Last year, we presented the “spring - mass model” FEA simulation from stick-slip phenomenon standpoint for improvement of “creep groan”. “Creep groan” is one of representative groan of brake system for automobile and it is clarified by µ vs velocity (µ−V) property of friction material. This time, we will present our study for reduction of creep groan by pad shape parameter (chamfer and slot) with “advanced” spring - mass model” FEA simulation which used actual pad shape as mass model. In addition, this paper was revised based on oral presentation which we presented at SAE 2013.
2014-09-28
Journal Article
2014-01-2492
Sukumar T, Murugan Subramanian
Abstract This paper presents a systematic procedure for design and evaluation of snap fit for Quadruple System Protection Valve (QSPV) piston assembly. The QSPV piston is assembled with housing by means of snap joint. Snap joints are a very simple, economical and rapid way of joining two different components. All types of snap joints have in common the principle that a protruding part of one component, e.g., a hook, stud or bead is deflected briefly during the joining operation and catches in a depression (undercut) in the mating component. After the joining operation, the snap-fit features should return to a stress-free condition. The joint may be separable or inseparable depending on the shape of the undercut; the force required to separate the components varies greatly according to the design. It is particularly important to bear the following factors in mind when designing snap joints: Mechanical load during the assembly operation and force required for assembly.
2014-06-30
Technical Paper
2014-01-2083
Arnaud Caillet, Antoine Guellec, Denis Blanchet, Thomas Roy
Abstract Since the last decade, the automotive industry has expressed the need to better understand how the different trim parts interact together in a complete car up to 400 Hz for structureborne excitations. Classical FE methods in which the acoustic trim is represented as non-structural masses (NSM) and high damping or surface absorbers on the acoustic cavity can only be used at lower frequencies and do not provide insights into the interactions of the acoustic trims with the structure and the acoustic volume. It was demonstrated in several papers that modelling the acoustic components using the poroelastic finite element method (PEM) can yield accurate vibro-acoustic response such as transmission loss of a car component [1,2,3]. The increase of performance of today's computers and the further optimization of commercial simulation codes allow computations on full vehicle level [4,5,6] with adequate accuracy and computation times, which is essential for a car OEM.
2014-06-30
Technical Paper
2014-01-2067
Michael Klanner, Mathias Mair, Franz Diwoky, Oszkar Biro, Katrin Ellermann
Abstract The noise vibration and harshness (NVH) simulation of electric machines becomes increasingly important due to the use of electric machines in vehicles. This paper describes a method to reduce the calculation time and required memory of the finite element NVH simulation of electrical machines. The stator of a synchronous electrical machine is modeled as a two-dimensional problem to reduce investigation effort. The electromagnetic forces acting on the stator are determined by FE-simulation in advance. Since these forces need to be transferred from the electromagnetic model to the structural model, a coupling algorithm is necessary. In order to reduce the number of nodes, which are involved in the coupling between the electromagnetic and structural model, multipoint constraints (MPC) are used to connect several coupling nodes to one new coupling node. For the definition of the new coupling nodes, the acting load is analyzed with a 2D-FFT.
2014-06-30
Journal Article
2014-01-2081
Rainer Stelzer, Theophane Courtois, Ki-Sang Chae, Daewon SEO, Seok-Gil Hong
Abstract The assessment of the Transmission Loss (TL) of vehicle components at Low-Mid Frequencies generally raises difficulties associated to the physical mechanisms of the noise transmission through the automotive panel. As far as testing is concerned, it is common in the automotive industry to perform double room TL measurements of component baffled cut-outs, while numerical methods are rather applied when prototype or hardware variants are not available. Indeed, in the context of recent efforts for reduction of vehicle prototypes, the use of simulation is constantly challenged to deliver reliable means of decision during virtual design phase. While the Transfer matrix method is commonly and conveniently used at Mid-High frequencies for the calculation of a trimmed panel, the simulation of energy transfer at low frequencies must take into account modal interactions between the vehicle component and the acoustic environment.
2014-04-28
Technical Paper
2014-28-0035
Shiva Kumar Manoharan, Christoph Friedrich
Abstract Self-loosening of bolted connections is a crucial failure mode for joints under transverse dynamic load. For some years, three dimensional finite element analysis has been enabled for avoiding experimental investigations of self-loosening. The aim of this paper is to emphasize the effect of joint design on the self-loosening of bolted connections, which is important for product development in early design stage. Joints consisting of internally threaded nut components are often heavier and stiffer as compared with light weight designs consisting of a separate nut. The difference of self-loosening is significant between arrangements with nut thread component and separate nut, although the design versions only contain slight modifications. Hence it is necessary to evaluate the effect of light weight design on self-loosening.
Viewing 1 to 30 of 3022

Filter

  • Range:
    to:
  • Year: