Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3158
2016-12-05 ...
  • December 5-16, 2016 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
2016-11-08 ...
  • November 8-18, 2016 (6 Sessions) - Live Online
Training / Education Online Web Seminars
The Finite Element Analysis (FEA) has been widely implemented by automotive companies and is used by design engineers as a tool during the product development process. Design engineers analyze their own designs while they are still in the form of easily modifiable CAD models to allow for quick turnaround times and to ensure prompt implementation of analysis results in the design process.
2016-09-27
Technical Paper
2016-01-2126
Ali Mohamed Abdelhafeez, Sein Leung Soo, David Aspinwall, Anthony Dowson PhD, Dick Arnold
Despite the increasing use of carbon fibre reinforced plastic (CFRP) composites, titanium and aluminium alloys still constitute a significant proportion of modern civil aircraft structures, which are primarily assembled via mechanical joining techniques. Drilling of fastening holes is therefore a critical operation, which has to meet stringent geometric tolerance and integrity criteria. The paper details the development of a three-dimensional (3D) finite element (FE) model for drilling aerospace grade aluminium (AA7010-T7451 and AA2024-T351) and titanium (Ti-6Al-4V) alloys. The FE simulation employed a Coupled Eulerian Lagrangian (CEL) technique. The cutting tool was modelled according to a Lagrangian formulation in which the mesh follows the material displacement while the workpiece was represented by a non-translating and material deformation independent Eulerian mesh.
2016-09-27
Technical Paper
2016-01-8067
Suresh Kumar Kandreegula, Kamal Rohilla, Gaurav Paliwal, Naveen Sukumar, Naveen Pratap Tripathi
Three on the tree. Four on the Floor. The gear change mechanism is a component that is too often taken for granted but it is one of the more important features of the vehicle. It must be quick and smooth in action, efficient and totally reliable. Modern driving conditions demand that the driver makes frequent gear changes and a mechanism that is temperamental or inaccurate can be both frustrating and dangerous as well as physically tiring. The gear changing mechanism starts, quite obviously, with the gear lever. Most stem from the fact that a gear lever must move in two planes, forward and back and then from side to side to move across the gear "gate". A good many drivers think of gear changing as one simple action. This is more a tribute to the design of gear changing mechanisms than a reality.
2016-09-20
Technical Paper
2016-01-1999
Debabrata Pal, Frank Feng
Cooling of high current bus bars in aircraft power panels is performed by natural convection and radiation. Thermal analysis is done using Joule heating method where the heat dissipation in bus bar is computed based on current, specified resistivity, temperature coefficient of bus bar material and geometry of bus bar. In 3 phase AC application, there is additional heat dissipation due to skin effects and proximity effects. In addition, when the 3 phase AC is used to drive a motor at high frequency (1000-1400 Hz), this results in additional higher frequency harmonics, resulting in higher losses. In this paper a thermal and electrical FEA analysis is done for a bus bar system. For electrical loss model, Infolytica MAGNET is used to characterize losses in three parallel bus bars carrying AC at various frequencies. This loss analysis provided additional losses due to skin, proximity and higher frequency harmonics. Then this loss is incorporated the ICEPAK CFD thermal model.
2016-09-20
Technical Paper
2016-01-2061
Andrew S. Babel, Parag Kshirsagar, Suman Dwari
In aerospace actuator applications electric machines are demanded to produce large static and dynamic torque while being constrained with stringent weight and volume restrictions. Among various types of electrical machines, Permanent Magnet (PM) Machines with strong rare earth magnets, offer the highest torque and power density with low rotor inertia. This paper presents design and study of three high-density PM machine topologies from the perspective of aerospace actuator applications. The machine topologies are compared with three key metrics for the same current density: torque per unit mass, torque per unit squared rotational inertia, and torque per unit volume. Such thorough comparison of these three candidates PM machine topologies for aerospace actuator application is not reported in available publications. Key requirements of specific actuation application, such as torque density and active length, are taken into account for the design.
2016-09-18
Technical Paper
2016-01-1911
Philippe Dufrenoy
A multiscale model of a disc brake including material and surface heterogeneities Y. Waddad; V. Magnier; P. Dufrénoy* ; G de Saxcé University of Lille Cité scientifique Avenue Paul Langevin F-59655 Villeneuve d’Ascq Cedex * Corresponding author : philippe.dufrenoy@univ-lille1.fr During friction it is well known that the real contact area is much lower to the theoretical one and that it evolves constantly during braking. It influences drastically the system’s performance. Conversely the system behavior modifies the loading conditions and consequently the contact surface area. This interaction between scales is well-known for the problematic of vibrations induced by friction but also for the thermomechanical behavior. Indeed, it is necessary to develop models combining a fine description of the contact interface and a model of the whole brake system. This is the aim of the present work. The macroscopic model is obtained with Finite Element analysis.
2016-09-18
Technical Paper
2016-01-1931
Aaron Völpel, Georg Peter Ostermeyer
In today’s research and development of brake systems the model-based prediction of complex vibrations and NVH phenomena play an important role. Despite the efforts, the high dimensional computational simulation models only provide a limited part of the results gained through experimental measurements. Several reasons are discussed by the industry and academic research. One potential source of these inadequacies is the very simple formulation of the friction forces in the simulation models. Due to a significant shorter computation time (by orders of magnitude), the complex eigenvalue analysis has been established, in comparison to the transient analysis, as the standard method in the case of industrial research, where systems with more than one million degrees of freedom are simulated.
2016-09-18
Technical Paper
2016-01-1910
Philippe Dufrenoy
A methodology to identify the bulk properties of friction material from their formulation V. Magnier; I. Serrano; AL. Cristol ; P. Dufrénoy* University of Lille Cité scientifique Avenue Paul Langevin F-59655 Villeneuve d’Ascq Cedex * Corresponding author : philippe.dufrenoy@univ-lille1.fr Friction materials for braking applications are made of a high number of components leading to bulk properties which guarantee the performances. Development are mainly made by a trial-error methodology due to the misunderstanding of the relationship between formulation and process and properties. In this work we propose to identify this relationship by an experimental methodology combined with microstructural analysis. The first step is the description of the microstructure obtained by tomographic analysis leading to quantitative information about the morphology of the components, their distribution in the volume, orientations, etc.
2016-09-18
Technical Paper
2016-01-1958
Seungpyo Lee, Nahyon Lee, Jongkeun lim, Jungyang Park
Automotive Generation 3 wheel bearings play important roles including transmission of power and carrying vehicle weight and are designed to last the life of a vehicle without servicing. When mounted to the vehicle steering knuckle by bolts, distortion occurs to the outer ring, including the seal mounting location and raceways, which can affect this performance. In this paper, finite element methods using commercial software MSC.MARC is performed to analyze the outer ring distortion. Elasto-plastic and contact analyses are carried out to compute the clamping behavior of the outer ring, bolts, and the knuckle under various conditions. In particular, evaluating the effect of concavity of the outer ring flange to reduce outer ring deformation and ensure optimum bearing fatigue life performance is considered.
2016-09-16
Technical Paper
2016-01-9017
Dr Janka Cafolla, Derick Smart, Barry Warner
The lifting and excavating industry are not as advanced as automotive in the use of modern CAE tools in the early stages of design and development of heavy machinery. There is still a lack of confidence in the integrity of the results from FE simulations and optimisation and this becomes a barrier to the adoption of virtual prototyping for vehicle verification. R&D of Tata Steel has performed tests on two forklift truck overhead guards supplied by a major manufacturer. Based on the international standard for Falling Object Protective Structures (FOPS) as an initial input to the method of testing, the main aim of this study was to generate as much test data as possible to correlate the Finite Element (FE) simulations of two tests - a static and a dynamic test. The static test was developed to deform the overhead guard plastically in a slow controlled manner, so it would be easier to correlate the measured data to FE simulation.
2016-06-15
Technical Paper
2016-01-1813
Daniela Siano, Fabio Bozza
Abstract The characteristics of the intake system affect both engine power output and gas-dynamic noise emissions. The latter is particularly true in downsized VVA engines, where a less effective attenuation of the pressure waves is realized, due to the intake line de-throttling at part-load. For this engine architecture, a refined air-box design is hence requested. In this work, the Transmission Loss (TL) of the intake air-box of a commercial VVA engine is numerically computed through a 3D FEM approach. Results are compared with experimental data, showing a very good correlation. The validated model is then coupled to an external optimizer (ModeFRONTIERTM) to increase the TL parameter in a prefixed frequency range. The improvement of the acoustic attenuation is attained through a shape deformation of the inner structure of the base device, taking into account constraints related to the device installation inside the engine bay.
2016-06-15
Technical Paper
2016-01-1780
Francesca Ronzio, Theophane Courtois
Abstract In automotive acoustics, body NVH design is traditionally carried out without considering the acoustic trim parts. Nevertheless, the vibro-acoustic interaction of body structure and insulation trim cannot be neglected in the middle frequency range, where structure borne propagation might still be dominating and where classical statistical approaches are generally not able to represent the influence of local changes in stiffness and damping. This, together with the market requirement of lightweight and more efficient sound package solutions, is leading the CAE engineers to evaluate new design approaches dedicated to vehicle components such as dash or floor systems, for which the multi-physics interaction between damping, body stiffness and trim impedance is important.
2016-06-15
Technical Paper
2016-01-1857
Ettore Lappano, Frank Naets, Martijn Vermaut, Wim Desmet, Domenico Mundo
Abstract This paper proposes a specific parametric model order reduction (pMOR) scheme for the efficient evaluation of beam based structures. The model to be parameterized is a Finite Element (FE) model that represents a generic network of beams with a number of distinct cross-section types. The methodology considers geometrical parameters that describe the cross-section and the material properties of the beams as the design parameters of interest. An affine representation of the model is derived based on the description of the deformation of a uniform beam. This affine representation can be exploited for the hyper-reduction where the evaluation cost of the system matrices is reduced. The reduction of the system matrices is obtained through a projection based approach. For a given number of parameter combinations a modal basis is constructed. A global reduced order basis (ROB) is obtained through a principal component analysis of these local bases.
2016-06-15
Technical Paper
2016-01-1849
Arnaud Caillet, Luca Alimonti, Anton Golota
Abstract The need for the industry to simulate and optimize the acoustic trim parts has increased during the last decade. There are many approaches to integrate the effect of an acoustic trim in a finite element model. These approaches can be very simple and empirical like the classical non-structural mass (NSM) combined to a high acoustic damping value in the receiver cavity to much more detailed and complex approach like the Poro-Elastic Materials (PEM) method using the Biot parameters. The objective of this paper is to identify which approach is the most appropriate in given situations. This article will first make a review of the theory behind the different methods (NSM, Impedances, Transfer Matrix Method, PEM). Each of them will be investigated for the different typical trim families used in the automotive industry: absorber, spring/mass, spring/mass/absorber.
2016-06-15
Journal Article
2016-01-1777
Sebastian Oberst, Zhi Zhang, Joseph CS Lai
Abstract Despite significant progress made in the past 20 years in discovering some of the mechanisms of brake squeal, it remains difficult to predict the underlying friction-induced instabilities reliably. Most numerical analyses are based on linear deterministic analyses of structural vibrations such as the complex eigenvalue analysis (CEA). However, nonlinear multi-scale processes govern friction contact with high sensitivities to operating and/or environmental conditions. In addition, uncertainties in the material properties and boundary conditions such as contact and friction laws are rarely considered. Hence, it is quite common to underpredict or overpredict the number of instabilities and extensive brake noise dynamometer tests are still required in industry to ensure acceptable brake noise performance. In this paper, simplified finite element brake models are used to illustrate the role of nonlinearity in brake squeal.
2016-06-15
Journal Article
2016-01-1819
Antonio J. Torregrosa, Alberto Broatch, Vincent Raimbault, Jerome Migaud
Abstract Intake noise has become one the main concerns in the design of highly-supercharged downsized engines, which are expected to play a significant role in the upcoming years. Apart from the low frequencies associated with engine breathing, in these engines other frequency bands are also relevant which are related to the turbocharger operation, and which may radiate from the high-pressure side from the compressor outlet to the charge air cooler. Medium frequencies may be controlled with the use of different typologies of resonators, but these are not so effective for relatively high frequencies. In this paper, the potential of the use of multi-layer porous materials to control those high frequencies is explored. The material sheets are located in the side chamber of an otherwise conventional resonator, thus providing a compact, lightweight and convenient arrangement.
2016-04-05
Technical Paper
2016-01-1060
Arnab Ganguly, Niket Bhatia, Vikas Kumar Agarwal, Ulhas Mohite
Abstract With ride comfort in a motorcycle gaining significance, it is important to minimize vibration levels at the customer touch points. The reciprocating piston imparts rotary motion to the crankshaft which in turn induces unbalance forces and produces vibration in the vehicle, thus influencing the ride quality. Generally, the primary inertial forces are balanced by a combination of balancer body and crank web. However, being a commuter bike, a balancer body could not be accommodated due to cost and space constraints. In such scenario, the first order unbalance force cannot be completely eliminated but can only be redistributed by adding counterweight to the crankshaft. Proper distribution of these forces is required for optimum vibration levels at motorcycle touch sensitive points (TSP) such as handle bar, footrest etc.
2016-04-05
Technical Paper
2016-01-1352
Venkata Suresh Yaparala, B. S. Guru Prasad, Harsha Mottedoddi Puttaswamy
Abstract Residual stresses and thermal distortion are a common phenomenon observed in any welding method. This is a result of non-uniform stresses generated due to highly localized heating at the joint edges, which fuses the base material and leads to considerable amount of changes in mechanical properties. Thus, it is very important to evaluate these effects in any welded structural members before designing for actual loading condition. Therefore, accurate prediction of these stresses and distortion is of critical importance to ensure the in-service structural integrity of welded structures. The recent advancement in Computational simulation and numerical techniques helps in evaluating the weld distortion and residual stresses. The moving heat flux approach and Element birth/death method makes it easier to analyze the weld distortion. This is done with the use of ANSYS® Commercial FE software.
2016-04-05
Technical Paper
2016-01-1358
Jerry Lai, Youssef Ziada, Juhchin Yang
Abstract During the planetary gear assembly, staking is a widely-used method for affixing pinion shafts onto the position. A reliable staking process not only prevents the movement of shaft during transmission operation, but also minimizes the distortion of the assembly due to the staking process. The quality of staking operations is determined by the component designs, the process parameters, and the staking tool geometry. It would be extremely time-consuming and tedious to evaluate these factors empirically; not even mention the requirement of prototypes in the early stage of a new program. A Finite Element methodology is developed to simulate the complete staking process including shaft press in, staking, and after staking tool release. The critical process parameters, such as staking force, staking length, shaft and holes interference amount, etc., are then evaluated systematically.
2016-04-05
Technical Paper
2016-01-1371
Satish Jaju, Pritesh Jain, Gopal Musale
Abstract The unit analysis methodology can be used for designing component or product in a product development process. This method may be used for designing the crush can, bumper beam, crush can long member, B-frame or A-pillar in frontal impact analysis. Unit assembly model technique can be effectively used in many CAE load cases to evaluate CAE simulations such as pedestrian impact analysis (ECE R78 / ENCAP), interior trim related head impact simulations (FMVSS201U), under run protection simulation for commercial vehicles (Front Underrun Protection Device ECE R93, Rear Underrun Protection Device ECE R58, Side Underrun Protection Device ECE R73), airbag deployment optimization etc. These CAE analyses correlate better with actual test. This paper gives idea about how the cost of product design can be reduced by using unit analysis. To reduce time of vehicle development such as cost of prototype, testing cost, optimization cost unit analysis is more economical.
2016-04-05
Technical Paper
2016-01-1366
Sivanandi Rajadurai, Guru Prasad Mani
Abstract Tube bends are critical in an exhaust system. The acceptability of tube bends is based on the induced level of shape imperfections considered. An analysis is presented for the performance tuning of the genetic algorithm including the importance of raw material selection, ovality and elongation property. This study is an attempt to analyze the ovality effect of STAC 60/60 material. CAE tools are essential to exploit the design of experiments and find out the optimum values of the design parameters in comparison with full factorial designs. Especially the effects of materials, dimensions and geometry shape of the ultimate strength were discussed by both CAE and experiments. The ultimate strength of steel tube was evaluated at least 20-30% as a local strain independent of the materials. The dependency of ultimate bending angle on original centre angle of the tube bend was clarified.
2016-04-05
Technical Paper
2016-01-1381
Jiaqi Li, Jimin Ni, Xiuyong Shi
Abstract Sealing system is an important subsystem of modern high-performance engine. Sealing system reliability directly affects the engine operating conditions. Cylinder head gaskets(CHG) sealing system is of the most importance to the engine sealing system, which is not only responsible for sealing chamber, the cooling fluid and lubricating oil passage, for preventing gas leakage, water leakage and oil leakage, but also responsible for force transferring between cylinder head and cylinder body. Basing on nonlinear solution method, the sealing performance of multi-layer-steel cylinder head gaskets to a gasoline engine is studied with the finite element software ABAQUS. The deformations of the cylinder liners and engine block are also considered.
2016-04-05
Technical Paper
2016-01-1301
Shishuo Sun, David W. Herrin, John Baker
Abstract One of the more useful metrics to characterize the high frequency performance of an isolator is insertion loss. Insertion loss is defined as the difference in transmitted vibration in decibels between the non-isolated and isolated cases. Insertion loss takes into account the compliance on the source and receiver sides. Accordingly, it has some advantages over transmissibility especially at higher frequencies. In the current work, the transfer matrix of a spring isolator is determined using finite element simulation. A static analysis is performed first to preload the isolator so that stress stiffening is accounted for. This is followed by modal and forced response analyses to identify the transfer matrix of the isolator. In this paper, the insertion loss of spring isolators is examined as a function of several geometric parameters including the spring diameter, wire diameter, and number of active coils.
2016-04-05
Technical Paper
2016-01-1559
Francesco Vinattieri, Tim Wright, Renzo Capitani, Claudio Annicchiarico, Giacomo Danisi
Abstract The adoption of Electrical Power Steering (EPS) systems has greatly opened up the possibilities to control the steering wheel torque, which is a critical parameter in the subjective and objective evaluation of a new vehicle. Therefore, the tuning of the EPS controller is not only becoming increasing complicated, containing dozens of parameters and maps, but it is crucial in defining the basic DNA of the steering feeling characteristics. The largely subjective nature of the steering feeling assessment means that EPS tuning consists primarily of subjective tests on running prototypes. On account of that, this paper presents an alternative test bench for steering feeling simulation and evaluation. It combines a static driving simulator with a physical EPS assisted steering rack. The end goal is to more accurately reproduce the tactile feedback to the driver by including a physical hardware in lieu of complicated and difficult to obtain software models.
2016-04-05
Technical Paper
2016-01-1535
Linli Tian, Yunkai Gao
Abstract Based on equivalent static loads method (ESL), a nonlinear dynamic topology optimization is carried out to optimize an automotive body in white (BIW) subjected to representative legislative crash loads, including frontal impact, side barrier impact, roof crush and rear impact. To meet the crashworthiness performances, two evaluation indexes are defined to convert the practical engineering problems into mathematic optimization problems. The strain energy is treated as the stiffness evaluation index of the BIW and the relative displacement is employed as the compliance index of the components and parts.
2016-04-05
Technical Paper
2016-01-1534
Rudolf Reichert, Pradeep Mohan, Dhafer Marzougui, Cing-Dao Kan, Daniel Brown
Abstract A detailed finite element model of a 2012 Toyota Camry was developed by reverse engineering. The model consists of 2.25M elements representing the geometry, thicknesses, material characteristics, and connections of relevant structural, suspension, and interior components of the mid-size sedan. This paper describes the level of detail of the simulation model, the validation process, and how it performs in various crash configurations, when compared to full scale test results. Under contract with the National Highway Traffic Safety Administration (NHTSA) and the Federal Highway Administration (FHWA), the Center for Collision Safety and Analysis (CCSA) team at the George Mason University has developed a fleet of vehicle models which has been made publicly available. The updated model presented is the latest finite element vehicle model with a high level of detail using state of the art modeling techniques.
2016-04-05
Technical Paper
2016-01-1575
Federico Ballo, Roberto Frizzi, Gianpiero Mastinu, Donato Mastroberti, Giorgio Previati, Claudio Sorlini
Abstract In this paper the lightweight design and construction of road vehicle aluminum wheels is dealt with, referring particularly to safety. Dedicated experimental tests aimed at assessing the fatigue life behavior of aluminum alloy A356 - T6 have been performed. Cylindrical specimens have been extracted from three different locations in the wheel. Fully reversed strain-controlled and load-controlled fatigue tests have been performed and the stress/strain-life curves on the three areas of the wheel have been computed and compared. The constant amplitude rotary bending fatigue test of the wheel has been simulated by means of Finite Element method. The FE model has been validated by measuring the strain at several points of the wheel during the actual test. From the FE model, the stress tensor time history on the whole wheel over a loading cycle has been extracted.
2016-04-05
Technical Paper
2016-01-0286
Changsheng Wang, Haijiang Liu, Tao Zhang, Zhiyong Zhu, Liang Liu
Abstract With the increasing development in automotive industry, finite element (FE) analysis with model bias prediction has been used more and more widely in the fields of chassis design, body weight reduction optimization and some components development, which reduced the development cycles and enhanced analysis accuracy significantly. However, in the simulation process of plastic fuel tank system, there is few study of model validation or verification, which results that non-risky design decisions cannot be enhanced due to too much consuming time. In this study, to correct the discrepancy and uncertainty of the simulated finite element model, Bayesian inference-based method is employed, to quantify model uncertainty and evaluate the simulated results based on collected data from real mechanical tests of plastic fuel tanks and FE simulations under the same boundary conditions.
2016-04-05
Technical Paper
2016-01-0379
Gilles Robert, Olivier Moulinjeune, Benoit Bidaine
Abstract Short glass fiber reinforced polyamides (SFRPs) are a choice material for automotive industry, especially for in the engine compartment. To develop their application field to more and more complex hydrothermal and mechanical environments, reliable or even predictive simulation technologies are necessary. Integrative simulation takes into account the forming process during final Finite Elements Analysis (FEA). For SFRPs, injection molding is taken into account by computing glass fibers orientation. It is further used to compute a specific anisotropic constitutive model on each integration point of FEA model. A wide variety of models is now available. Integrative simulation using Digimat has been proved very efficient for static and dynamic loadings.
Viewing 1 to 30 of 3158

Filter

  • Range:
    to:
  • Year: