Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3064
2015-10-19 ...
  • October 19-30, 2015 (6 Sessions) - Live Online
  • May 23-June 3, 2016 (6 Sessions) - Live Online
  • December 5-16, 2016 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
2015-09-29
Technical Paper
2015-01-2869
Sumit Sharma, Sandeep sharma, Umashanker Gupta, Ravi Joshi, shailesh pawar
Buses are one of the main and favorite sources of public transit in India. Thousands of people die or injure severely every year due to Bus accidents. Passenger injury in Bus accidents can be due to high stiff seat structures. Most of the occupants seated in the second row or further back were injured by hitting the seat back in the row in front of them. AIS023 (AUTOMOTIVE INDUSTRY STANDARDS) is one of the several mandatory standards from CMVR (CENTRAL MOTOR VEHICLES RULES) to ensure the safety during crash. As per AIS-023 passenger seat of bus should not cause injury because of high stiffness, on the other hand seat should also be able to carry the passenger force during accidents. With this mechanism AIS023 specifies minimum and maximum range deformations of seat back to minimize the passenger injury. This study includes the FE (Finite Element) analysis and design of Bus seat as per AIS023 test setup with LS-Dyna explicit tool.
2015-09-29
Technical Paper
2015-01-2873
Sumit Sharma, Sandeep sharma, Sanjay Tiwari, Umashanker Gupta
Years ago the main purpose of heavy duty truck is to carrying the loads, in the current scenario cabin comfort and safety is also equally important. With the improved infrastructure quality the average speed of these types of vehicle has also been increased. With the higher average speed, the chances of getting crash have also been increased. In order to provide safety to the driver, all the safety parameters should be considered in advance at the time of design and development of cabin. Sufficient survival space must be present at the time of crash. In order to provide optimum ride comfort, fully suspended cab was designed. The main aim of this study is to develop detailed 3D finite element (FE) model of fully suspended heavy duty truck cabin with detailed suspensions system and simulate crash test scenario presented in regulation ECE-R29 using LS-Dyna explicit solver.
2015-09-15
Technical Paper
2015-01-2460
Melissa Arras, Giuliano Coppotelli, Piergiovanni Marzocca, Antonio Simone Mezzapesa
In this paper the finite element model of an Unmanned Aerial Vehicle is updated by using experimental data coming from a standard ground vibration test in order to improve the numerical-experimental correlation. A sensitivity-based updating methodology that iteratively minimizes a residual vector defined on the modal parameters, that is natural frequencies and mode shapes, is considered to identify the unknown values of the updating parameters. The structure under investigation is the Clarkson University Golden Eagle UAV. The preliminary numerical model of the structure is obtained by assembling the updated individual components (wings, fuselage, horizontal tail, vertical tails and tail booms), in order to focus the updating on the joints that could not be modeled accurately.
2015-09-15
Technical Paper
2015-01-2621
Douglas Leicht
Aviation regulations requires that engine mounts, and other flight structures located in designated fire zones must be constructed of fireproof material so that they are capable of withstanding the effects of fire. Historically, steel is defined as being inherently fireproof, however, titanium was not. Therefore, a fireproof test was conducted using 6AL-4V titanium structure for the attachment of the propulsion system on a mid-size business jet to satisfy FAA Federal Aviation Requirement 25.865. To determine if the titanium structure would be able to support normal operating loads during the fire event, finite element analysis was performed on the titanium structure simulating the fire test. The fire test simulates a fire on the aircraft from the propulsion system by using a burner with jet fuel exposing the component to a 2000 deg F flame. The 2000 deg F Flame is calibrated based on FAA Advisory Circular AC20-135.
2015-09-15
Technical Paper
2015-01-2625
Anthony Cheruet, Robert Schmitz
In the research of lightweighting solutions, the use of CFRP has dramatically increased during the last two decades to represent today about 50 percent of the materials used in the recent commercial aircrafts. However designers are still facing the challenge to accelerate the insertion of new materials for applications. One of the main challenge concerns the reduction of the material certification time which relies only on experimental procedure. Globally speaking, there is a need for a material definition and certification in a numerical form to meet platform requirement and that allows to reduce cost and development time of new material by replacing manual tests with advanced simulation. A comprehensive simulation process is then proposed and will be described. This process allows to define a complete test matrix in order to generate B-basis allowable for a material system given. Several aspects have to be considered.
2015-09-14 ...
  • September 14-25, 2015 (6 Sessions) - Live Online
  • May 9-20, 2016 (6 Sessions) - Live Online
  • October 17-28, 2016 (6 Sessions) - Live Online
Training / Education Online Web Seminars
The Finite Element Analysis (FEA) has been widely implemented by automotive companies and is used by design engineers as a tool during the product development process. Design engineers analyze their own designs while they are still in the form of easily modifiable CAD models to allow for quick turnaround times and to ensure prompt implementation of analysis results in the design process.
2015-06-15
Journal Article
2015-01-2349
Jiantie Zhen, David Copley, Niranjan Londhe, Scott Fredrickson
Abstract Structure-borne inputs to hybrid FEA/SEA models could have significant effects on the model prediction accuracy. The purpose of this work was to obtain the structure-borne noise (SBN) inputs using a simplified transfer path analysis (TPA) and identify the significance of the structure-borne and airborne contributions to the spectator sound power of an engine with enclosure for future modeling references. Force inputs to the enclosure from the engine were obtained and used as inputs to a hybrid engine enclosure model for sound prediction.
2015-06-15
Technical Paper
2015-01-2194
Giorgio Bartolozzi, Marco Danti, Guido Nierop, Andrea Camia
Abstract Within the automotive industry, a typical way to account for tires in a roadnoise mission simulation is to use the “modal model” supplied by tire manufacturers. Even though this kind of models is certified by the suppliers and is very simple to use, it has the drawback to be disconnected from the physical description of the tire. This reflects in limiting the carmaker company to be able only to request certain modal characteristics to the supplier. The aim of this paper is to present an accurate, yet easy to use, methodology to develop an FE model of a tire, to be used in a full-vehicle simulation. The determined model must be connected to the tire physical properties. These properties are not measured directly, but determined by tuning a properly created geometric FE model to the measured point inertances of the inflated tire. This allows creating the model only by using an optimization algorithm to tune such properties.
2015-06-15
Technical Paper
2015-01-2135
Martin Schulz, Michael Sinapius
Abstract A designer of a new mechanical ice protection system for airplanes needs to know how much and in which way he has to deform the surface to break off the ice. The ice adhesion strength is often used as a design value. Several methods have been published to measure the adhesive strength of ice. This paper analyzes the interface stresses created by those methods and discusses the way the adhesion strength is derived. A finite element method tool is used to provide insight into the stress state for different load cases. The implication of these illustrations is that equations which use only ultimate force and total interfacial area to calculate adhesion strength miss local stress concentrations and crack nucleation. Hence, the derived adhesion strength may not be comparable within different testing methods, because each testing procedure neglects different parameters like specimen size, substrate thickness and stiffness.
2015-06-15
Technical Paper
2015-01-2233
Hudson P Vijayakumar, V Shivaraj, T Sukumar, Suresh Gaikwad
Abstract Generally the brake system products are mounted on chassis with brackets which are subjected to dynamic loads due to road undulations. Exhaust brake is used to restrict the engine exhaust flow passage and thereby creates a back pressure in the engine for reducing the engine speed. This in turn reduces the vehicle speed. This is widely used in the vehicles operating in the hilly areas. This product is mounted on the exhaust passage and the air cylinder sub-assembly which actuates the exhaust brake is mounted on a bracket. Automotive industries perform durability tests on vehicles to reduce the failure on end-user environment. An assembly which has cleared the durability test got failed on addition of a spring into the assembly. The inclusion of spring is for enhancing the performance of the overall assembly.
2015-06-15
Technical Paper
2015-01-2236
Parimal Tathavadekar, Ricardo O. de Alba Alvarez, Michael Sanderson, Rabah Hadjit
Abstract Finite element analysis (FEA) is commonly used in the automotive industry to predict low frequency NVH behavior (<150 Hz) of structures. Also, statistical energy analysis (SEA) framework is used to predict high frequency (>400 Hz) noise transmission from the source space to the receiver space. A comprehensive approach addressing the entire spectrum (>20 Hz) by taking into account structure-borne and air-borne paths is not commonplace. In the works leading up to this paper a hybrid methodology was employed to predict structure-borne and air-borne transfer functions up to 1000 Hz by combining FEA and SEA. The dash panel was represented by FE structural subsystems and the noise control treatments (NCTs) and the pass-throughs were characterized via testing to limit uncertainty in modeling. The rest of the structure and the fluid spaces were characterized as SEA subsystems.
2015-06-15
Technical Paper
2015-01-2237
Nickolas Vlahopoulos, Sergey Medyanik
In the Energy Finite element Analysis (EFEA) method, the governing differential equations are formulated for an energy variable that has been spatially averaged over a wavelength and time averaged over a period. A finite element approach is used for solving the differential equations numerically. Therefore, a library of elements is necessary for modeling the various wave bearing domains that are present in a structural-acoustic system. Discontinuities between wave bearing domains always exist due to the geometry, from a change in material properties, from multiple components being connected together, or from different media interfacing with each other. Therefore, a library of joints is also necessary for modeling the various types of physical connections which can be encountered in a structural-acoustic system.
2015-06-15
Technical Paper
2015-01-2287
Yaqiong Deng, Yanjing Zhao, Xiandi Zeng
Abstract Among the lower frequency vehicle NVH problems, booming noise is one of the most concerned issues. One of the most common booming noise sources is the torsional vibration of the powertrain and driveline for rear-wheel drive and four-wheel drive vehicles. The solutions for this problem are either to use a torsional dynamic absorber or to use a lower stiffness clutch. Both solutions require the modal frequency of the torsional vibration mode of the powertrain and driveline. At early design stages, vehicle prototype is not available for measuring this frequency. Analytical method is usually used to calculate this frequency. Currently, mostly used method is the so-called 1D method in which the whole powertrain and driveline are represented by one-dimensionally connected disks (lumped inertia) and shaft (lumped stiffness). However, those lumped parameters are not always available at early design stage. In this paper, a method using finite element models is presented.
2015-06-15
Technical Paper
2015-01-2294
Kodali Ajay Krishna, Pankaj Bhardwaj, Sanjeevgouda Patil, Mansinh Kumbhar
Abstract One of the primary excitation sources in a passenger car comes from the powertrain [1]. Refinement of powertrain induced noise is the most critical tasks during a vehicle refinement. Due to ever increasing demand for reduced design and development cycle, most critical decisions have to be made at the concept stage. Powertrain radiated noise is one of the most important performance factor that must be evaluated during the concept stage. Solution time for calculating the radiated noise using the existing acoustic solvers is very high and requires very expensive resources like software and hardware. Arriving the optimal design with conventional method is very tedious job. A new method has been adopted for identifying the critical areas and coming up with the optimal design modifications within a short span of time. Powertrain radiated noise has been calculated with the help of acoustic solver.
2015-06-15
Technical Paper
2015-01-2306
John G. Cherng, Weiwei Wu, Peiran Ding, Mike Hebbes, Henry Zhang
Abstract This study presents an efficient process to optimize the transmission loss of a vehicle muffler by using both experimental and analytical methods. Two production mufflers were selected for this study. Both mufflers have complex partitions and one of them was filled with absorbent fiberglass. CAD files of the mufflers were established for developing FEA models in ANSYS and another commercial software program (CFEA). FEA models were validated by experimental measurements using a two-source method. After the models were verified, sensitivity studies of design parameters were performed to optimize the transmission loss (TL) of both mufflers. The sensitivity study includes the perforated hole variations, partition variations and absorbent material insertion. The experimental and sensitivity analysis results are included in the paper.
2015-06-15
Journal Article
2015-01-2356
Huangxing Chen, David W. Herrin
Abstract The insertion loss of louvered terminations positioned at the end of a rectangular duct is determined using acoustic finite element analysis. Insertion loss was determined by taking the difference between the sound power with and without the louvers at the termination. Analyses were conducted in the plane wave regime and the acoustic source was anechoic eliminating any reflections from the source. The effect of different louver configurations on insertion loss was examined. Parameters investigated included louver length, angle, and spacing between louvers. Based on the analyses, equations were developed for the insertion loss of unlined louvers.
2015-06-15
Journal Article
2015-01-2357
Hiromichi Tsuji, Kimihiko Nakano
This paper presents a new technique to estimate the coherent operational forces, with respect to the evaluation location, at the connections of separated passive substructures with reciprocity. Since transfer path analysis is conducted with respect to the evaluation location, the forces applied onto the substructures are, therefore, also required to estimate the coherent operational forces. In order to estimate the forces, the coherent impedance matrix, which is the projection of the impedance matrix onto the subspace with respect to the evaluation location, is estimated without measuring it directly. The acceleration responses at the connections of the passive substructure are measured by the excitation at the evaluation location with reciprocity. The technique decomposes the acceleration responses into the output and input element vectors on the subspace. With those vectors, the coherent impedance matrix is constructed.
2015-05-13
Technical Paper
2015-36-0020
Carlos Abílio Passos Travaglia, Adan Araujo Rodrigues, Luiz Carlos Rolim Lopes
Abstract In engineering development, simulation methods are frequently used to perform thermal and mechanical stress components analysis. In brake systems, where the components are exposed to mechanical and thermal loads, the numerical analysis is very helpful. Once a numerical model for brake assembly is available, it will be possible to understand the effects of successive brake applications on the temperature distribution in drum brake's friction materials. This is a fundamental aspect to determine, for instance, the thermal stress distribution which is related to the warming and cooling of the brakes. In this work, an analytical solution to calculate stabilized temperature was used to establish a heat flux through a pneumatic S cam drum brake's friction material applied to a numerical model in a finite element analysis.
2015-04-14
Technical Paper
2015-01-1486
Craig A. Markusic, Ram Songade
Abstract Simplified Side Impact Finite Element Model (SSM) merged the complex side crash model parameters used in LS-DYNA4; the same sophisticated software employed by finite element (FE)2 analysts, and the user-friendly custom graphical user interface (GUI)1 to allow users having little to no simulation software knowledge the ability to conduct a full vehicle representative crash simulation. Prior to SSM development a literature search was carried to try and identify similar CAE tools for side impact. We did not find any tool that would cater specifically to side impact. During the testing phase, SSM demonstrated that one model analysis run can be completed in fewer than thirty (30) minutes, a radical efficiency increase because previous procedures require several days of effort from a highly skilled FE2 analyst to set up, execute, and analyze.
2015-04-14
Technical Paper
2015-01-0451
Hao Zhu, Yumei Hu, Changlong Li, Biwen Zhou, Xi Tan
Abstract The serpentine belt's multi-scale problems in geometric size, which gives rise to a very large number of element and deeply low calculating efficiency, always bring obstacles when predicting the dynamic response of a serpentine belt driving system using three-dimensional finite element model (FEM). In this paper, a simplified finite element model is built which can accurately present the original serpentine belt's geometric characteristics such as cross-area and moment of inertia, as well as material characteristics such as stiffness and damping, etc. This simplified model is then used in a three-dimensional belt-drive model to simulate the dynamic characteristics of the belt-drive system. The results show that the tension fluctuation for the original serpentine belt and the simplified belt are in good agreement with each other which confirms that the simplified belt model can be used to predict the engine front end accessory drive system (EFEADS)'s dynamic characteristics.
2015-04-14
Journal Article
2015-01-0449
Libo Cao, Kai Zhang, Xin Lv, Lingbo Yan
Abstract The public Hybrid III family finite element models have been used in simulation of automotive safety research widely. The validity of an ATD finite element model is largely dependent on the accuracy of model structure and accurate material property parameters especially for the soft material. For Hybrid III 50th percentile male dummy model, the femur load is a vital parameter for evaluating the injury risks of lower limbs, so the importance of accuracy of knee subcomponent model is obvious. The objective of this work was to evaluate the accuracy of knee subcomponent model and improve the validity of it. Comparisons between knee physical model and knee finite element model were conducted for both structure and property of material. The inaccuracy of structure and the material model of the published model were observed.
2015-04-14
Technical Paper
2015-01-0663
Ling Zheng, Zhanpeng Fang, Zhongcai Tang, Zhenfei Zhan, Jiang-hua Fu
Abstract The design optimization of vehicle body structure is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is developed by using finite element method. The frequency response of structural-acoustic system is computed by modal analysis method. The optimization problem is constructed to minimize the sound pressure level in the right ear of the driver. The sensitivity analysis is carried out to find the key panels to be optimized as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is utilized to develop the surrogate model and optimize the vehicle Noise Vehicle and Harshness (NVH) behavior. A 9dB reduction of sound pressure level (SPL) in the right era of the driver is obtained through geometric optimization for panels. Furthermore, the topology optimization model is developed to search the optimal layout of constrained layer damping treatments in the front floor.
2015-04-14
Technical Paper
2015-01-0676
Oday Ibraheem Abdullah, Wassan Abd Al-Sahb, Abdullah Al-Shabibi
Abstract The high thermal stresses generated between the contacting surfaces of a multi-disc clutch system (pressure plate, clutch discs, plate separators and piston) due to the frictional heating generated during the slipping, is considered to be one of the main reasons of clutch failure for contact surfaces. A finite element technique has been used to study the transient thermoelastic phenomena of a multi-disc dry clutch. The results present the contact pressure distribution, the temperature evaluation and the heat flux generated along the frictional surfaces. Analysis has been completed using two-dimensional axisymmetric model to simulate the multi-disc clutch. ANSYS software has been used to perform the numerical calculation in this paper.
2015-04-14
Technical Paper
2015-01-0688
Wassan Abd Al-Sahb, Oday Ibraheem Abdullah
Abstract This paper presents three-dimensional thermal model, performed transient thermal analysis for the grooved dry friction clutches. A finite element technique has been used to study the effect of radial and /or circumferential grooves (classic models) on the temperature distribution for dry friction clutch during a single engagement. The friction clutch has been discretised using 20-noded brick elements. The effect of the groove area ratio (G.R=groove area / total contact area), number of grooves and their location are investigated. Furthermore, new groove shapes have been suggested, e.g., curved groove. The response of the new suggested groove has been compared to the already existing shapes. The commercial ANSYS13 has been used to perform the numerical computations in this paper.
2015-04-14
Journal Article
2015-01-0578
Wei Li, Yi-Pen Cheng, Lisa Furton
Abstract Finite element dummy models have been more and more widely applied in virtual development of occupant protection systems across the automotive industry due to their predictive capabilities. H350 dyna dummy model [1] is a finite element representation of the Hybrid III male dummy [2], which is designed to represent the average of the United States adult male population. Lower extremity injuries continue to occur in front crash accidents despite increasing improvement of vehicle crashworthiness and occupant restraint system. It is therefore desirable to predict lower tibia injury numbers in front occupant simulations. Though lower tibia loading/index predictions are not studied as much as the FMVSS 208 regulated injury numbers, the tibia indices are injury criteria that need to be assessed during IIHS and Euro NCAP frontal offset occupant simulations.
2015-04-14
Technical Paper
2015-01-0584
HaiYan Yu, JiaYi Shen, Gang He
Abstract The yield locus of a cold-rolled transformation-induced plasticity (TRIP780) steel sheet was investigated using a biaxial tensile test on a cruciform specimen. The effect of the key dimensions of the cruciform specimen on the calculation error and stress inhomogeneity was analyzed in detail using an orthogonal test combined with a finite element analysis. Scanning electron metallography (SEM) observations of the TRIP780 steel were performed. The yield curve of the TRIP780 steel was also calculated using the Von Mises, Hill '48, Hill '93, Barlat '89, Gotoh and Hosford yield criteria. The experimental results indicate that none of the selected yield criteria completely agree with the experimental curve. The Hill '48 and Hosford yield criteria have the largest error while the Hill '93 and Gotoh yield criteria have the smallest error.
2015-04-14
Technical Paper
2015-01-0553
Yu Zhang, Weiqin Tang, Dayong Li, Xuming Su, Shiyao Huang, Yandong Shi, Yinghong Peng
SIF value around weld nugget changes when specimen width is different. To investigate the influence of specimen width on SIF value around weld nugget of coach peel specimen (CP), a finite element model was established in this paper. In this model, a contour integral crack was used, and the area around the nugget was treated as crack tip. Results indicated that when specimen width was below 50mm, SIF decreased rapidly with the increase of specimen width. When specimen width was larger than 50mm, SIF almost remained constant with the variation of specimen width. To further study the influences of nugget diameter and sheet thickness on the Width-SIF curves, CP specimens with different nugget diameters (5mm, 6mm and 7mm) and sheet thicknesses (1.2mm, 1.6mm and 2.0mm) were established in ABAQUS. Simulation results of all CP specimens showed a similar relationship between specimen width and SIF.
2015-04-14
Technical Paper
2015-01-0554
Rafaa Esmaael, Vernon Fernandez
An accurate prediction of elasto-plastic cyclic deformation becomes extremely important in design optimization. It also leads to more accurate fatigue life prediction and hence weight savings. In paper presents a two-stage notch root prediction method. This is based on a correction expression to Neuber's rule notch strain amplitude as the first stage, and a linear interpolation scheme as the second stage. The accuracy of this method is assessed by comparing the predicted results with the results obtained from elasto-plastic finite element analysis. Various types of steels with different yield strengths were used in this study. Notch deformation behavior under cyclic variable amplitude loading conditions was monitored for a double notched flat plate and a circumference notched round bar to cover plain stress and plain strain conditions. Elastic as well as elasto-plastic finite element analyses are performed.
2015-04-14
Technical Paper
2015-01-0618
Zhihong Dong, Ying Sun, Guitao Zhu, Shihu Wang, Jian Zeng, Yuliang Yang
Abstract Based on the modal frequency response theory and experiment, the installation layout evaluation and structural optimization method for SIS(side impact sensors) installation position is studied. Establish the finite element model including B-pillar, roof and floor with local constraint. Than study the key parameter's influence on the frequency response analysis results, and the simulation results are correlated by experiment. In view of the installation layout requirements of side impact sensors, the structure optimization method for installation position of side impact sensor is put forward. The optimal scheme is confirmed by the finite element analysis, and a final experimental verification was implemented by a real vehicle test.
Viewing 1 to 30 of 3064

Filter

  • Range:
    to:
  • Year: