Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2486
Training / Education
2015-08-06
Design reviews are required for ISO 9001:2000 compliance and compatible automotive and aerospace specifications. They are becoming increasingly important in product liability litigation and are accepted as a cost-effective best practice and an effective application of knowledge management, valuable for accelerating the maturity of new products. This seminar describes how formal design reviews can improve products by uncovering potential problems before they are discovered at a later stage of development or application, when the costs of correction are much higher. A broad range of effective techniques for organizing and conducting design reviews will be presented.
Training / Education
2015-07-27
Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes. Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes. In this two-day seminar, you will not only learn the Boothroyd Dewhurst Method, you will actually apply it to your own product design! This seminar will include information on how DFM+A fits in with QFD, concurrent engineering, robust engineering, and other disciplines.
Event
2015-06-04
Event
2015-05-27
Event
2015-05-07
Training / Education
2015-05-06
This seminar will include a review of statistical theory and present statistical methods, which are used to better select and/or analyze Tolerance Stack-ups. The Probability (RMS) Method, the Monte Carlo Simulation Technique and tolerance optimization techniques will be discussed along with guidelines on which method(s) to use in given situations. Attendees will also view a demonstration of a microcomputer Monte Carlo Simulation program that analyzes the effects of form and assembly variation on the quality of a finished product. This seminar will provide an overview of Design of Experiments (DOE) methods, which enable effective analysis of critical product dimensions and tolerances.
Event
2015-04-27
Event
2015-04-24
Event
2015-04-09
Event
2015-03-13
Training / Education
2015-02-17
Today's transportation industries are facing multi-disciplinary challenges. The product design and development process challenges often contradict each other, for example cost, weight, quality and performance. A central challenge is the need for cost and mass reduction to compete in the global market, while continuing to meet all new and existing requirements for quality and performance. Accelerated Concept to Product (ACP) Process is a performance-driven, holistic, product design development method intended to create a balance between structure and strength, synchronizing the individual facets of the product development process.
Training / Education
2015-01-21
Today's transportation industries are facing multi-disciplinary challenges. The product design and development process challenges often contradict each other, for example cost, weight, quality and performance. A central challenge is the need for cost and mass reduction to compete in the global market, while continuing to meet all new and existing requirements for quality and performance. Accelerated Concept to Product (ACP) Process is a performance-driven, holistic, product design development method intended to create a balance between structure and strength, synchronizing the individual facets of the product development process.
Training / Education
2014-12-02
Failure Mode and Effects Analysis (FMEA) is a systematic method for preventing failure through the discovery and mitigation of potential failure modes and their cause mechanisms. Actions are developed in a team environment and address each high: severity, occurrence or detection ranking indicated by the analysis. Completed FMEA actions result in improved product performance, reduced warranty and increased product quality. This course assists FMEA team members to apply severity, occurrence and detection rankings consistently and efficiently and explores, in detail, the linkage of the Design FMEA and the Process FMEA through special characteristics development and product and process design collaboration.
Training / Education
2014-11-20
Engineers are taught to create designs that meet customer specifications. When creating these designs, the focus is usually on the nominal values rather than variation. Robustness refers to creating designs that are insensitive to variability in the inputs. Much of the literature on robustness is dedicated to experimental techniques, particularly Taguchi techniques, which advocate using experiments with replications to estimate variation. This course presents mathematical formulas based on derivatives to determine system variation based on input variation and knowledge of the engineering function.
Book
2014-11-07
Gijs Mom
This book covers one and a quarter century of the automobile, conceived as a cultural history of its technology, aimed at engineering students and all those who wish to have a concise introduction into the basics of automotive technology and its long-term development . Its approach is systemic and includes the behavior of drivers, producers, nonusers, victims, and other "stakeholders" as well as the discourse around mobility. Nowadays, students of innovation prefer the term co-evolution, emphasizing the parallel and mutually dependent development of technology and society. This acknowledges the importance of contingency and of the impact of the past upon the present, the very reason why The Evolution of Automotive Technology: A Handbook looks at car technology from a long-term perspective. Often we will conclude that the innovation was in the (re)arrangement of existing technologies. Since its beginnings, car manufacturers have brought a total of 1 billion automobiles to the market. We are currently witnessing an explosion toward the second billion.
Event
2014-10-08
This session will address processes, strategies and techniques for the aerodynamic design and development of commercial vehicles and components with a view toward improving efficiency and reducing emissions. This topic includes aerocoustics and aerothermodynamics including underhood and cooling flows. Technical papers on the challenges and limitations of current design studies, tools, methods and processes are desired.
Training / Education
2014-10-02
Design of Experiments (DOE) is a methodology that can be effective for general problem-solving, as well as for improving or optimizing product design and manufacturing processes. Specific applications of DOE include identifying proper design dimensions and tolerances, achieving robust designs, generating predictive math models that describe physical system behavior, and determining ideal manufacturing settings. This seminar utilizes hands-on activities to help you learn the criteria for running a DOE, the requirements and pre-work necessary prior to DOE execution, and how to select the appropriate designed experiment type to run.
Technical Paper
2014-09-30
Jon Dickson, Matthew Ellis, Tony Rousseau, Jeff Smith
Abstract Fuel efficiency for tractor/trailer combinations continues to be a key area of focus for manufacturers and suppliers in the commercial vehicle industry. Improved fuel economy of vehicles in transit can be achieved through reductions in aerodynamic drag, tire rolling resistance, and driveline losses. Fuel economy can also be increased by improving the efficiency of the thermal to mechanical energy conversion of the engine. One specific approach to improving the thermal efficiency of the engine is to implement a waste heat recovery (WHR) system that captures engine exhaust heat and converts this heat into useful mechanical power through use of a power fluid turbine expander. Several heat exchangers are required for this Rankine-based WHR system to collect and reject the waste heat before and after the turbine expander. The WHR condenser, which is the heat rejection component of this system, can be an additional part of the front-end cooling module. Packaging this WHR condenser as part of the front-end cooling module can be an engineering challenge given the tight underhood environment where the current powertrain cooling components are already near system-capable thermal limits.
Technical Paper
2014-09-30
Armin Förg, Moritz Wolter, Matthias Kreimeyer, Markus Lienkamp
Abstract This paper focuses on the manufacturer's conflict in the conceptual design of commercial vehicles between highly customized special vehicles and the greatest possible degree of standardization. Modularity and standardization are crucial success factors for realizing high variance at the best cost efficiency in development and production as well for achieving the highest quality standards at reduced efforts for technical validation. The presented virtual design approach for commercial vehicle concepts allows for purposeful design and integration of new concepts and technologies on the component level in an existing product portfolio - not neglecting manufacture's portfolio requirements concerning standardization and modularity. The integrated tool chain helps to bring trade-offs to a head that exist in balancing between dedicated vehicles with best customer-relevant characteristics and standardized vehicles with the highest degree of commonality. For this, one core aspect is KPI-based portfolio assessment which is presented in the focus of this paper.
Technical Paper
2014-09-30
Shaoyun Sun, Yin-ping Chang, Qiang Fu, Jing Zhao, Long Ma, Shijie Fan, Bo Li, Andrea Shestopalov, Paul Stewart, Heinz Friz
Abstract In the development of an FAW SUV, one of the goals is to achieve a state of the art drag level. In order to achieve such an aggressive target, feedback from aerodynamics has to be included in the early stage of the design decision process. The aerodynamic performance evaluation and improvement is mostly based on CFD simulation in combination with some wind tunnel testing for verification of the simulation results. As a first step in this process, a fully detailed simulation model is built. The styling surface is combined with engine room and underbody detailed geometry from a similar size existing vehicle. From a detailed analysis of the flow field potential areas for improvement are identified and five design parameters for modifying overall shape features of the upper body are derived. In a second step, a response surface method involving design of experiments and adaptive sampling techniques are applied for characterizing the effects of the design changes. The characterization is followed by an optimization step to find the best possible drag improvement from these design changes.
Technical Paper
2014-09-30
Anatoliy Dubrovskiy, Sergei Aliukov, Yuriy Rozhdestvenskiy, Olesya Dubrovskaya, Sergei Dubrovskiy
Abstract We have developed a fundamentally new design of adaptive suspension systems of vehicles. Their technical characteristics and functional abilities are far better than the existing designs of suspensions. We have developed the following main suspension components of vehicles: a lockable adaptive shock absorber with an ultra-wide range of control performance, implementing “lockout” mode by means of blocking adaptive shock absorber, and an elastic element with progressive non-linear characteristic and automatic optimization of localization of work areas. Our patents confirm the novelty and efficiency of our major design decisions. Advantages of our developments in the vehicle suspensions are the following. Firstly, it should be noted that when the vehicle is in a wide range of speeds in a so-called “comfort zone”, we were able, by applying the non-linear elastic element, to reduce significantly the stiffness of the elastic suspension elements in compare with the regular structures - at least in two times.
Technical Paper
2014-09-16
Michele Trancossi, Antonio Dumas, Carlos Xisto, Jose Pascoa, Andrea Andrisani
Abstract Rotocycloid propulsion presents interesting performance as a possible long-term alternative to helicopters in a far future. It will lead to increase the energy efficiency of VTOL vehicles. This paper focuses on optimization of an airship with the possibility up to 2000 h/year of photovoltaic propelled flight at a cruise speed about 20 m/s. This paper demonstrates the feasibility of this airship concept and presents a full dimensioning according to the CDE (Constructal Design for Efficiency) developed at University of Modena and Reggio Emilia. The proposed solution has been deeply analyzed and the analysis of performances has been presented. The results allow thinking to a novel class of vehicles designed specifically to take the maximum advantage by this propulsion method.
Technical Paper
2014-09-16
Tim C. O'Connell, Kevin McCarthy, Andrew Paquette, David McCormick, Paul Pigg, Peter T. Lamm
Abstract Validation is a critical component of model-based design (MBD). Without it, regardless of the level of model verification, neither the accuracy nor the domain of applicability of the models is known. Thus, it is risky to base design decisions on the predictions of unvalidated models. The Integrated Vehicle Energy Technology (INVENT) program is planning a series of hardware experiments that will be used to validate a large set of unit-, subsystem-, and system-level models. Although validating such a large number of interacting models is a large task, it provides an excellent opportunity to test the limits of MBD. For INVENT, a Verification and Validation Plan (VVP) has been created to implement many relevant aspects of both verification and validation: it describes several methods and approaches, identifies roles and responsibilities for the diverse group of team members, specifies the process flow to be followed by the team, provides reporting standards for each step in the process flow, and suggests ways to determine the level of model validation required depending on the model purpose.
Technical Paper
2014-09-16
Ross James Thomas Montgomery, Stuart Galloway
Abstract The More Electric Aircraft (MEA) concept coupled with recent advances in power electronics has seen an increasing number of on-board tasks being facilitated by electrical power, as opposed to more conventional hydraulic, mechanical and pneumatic power systems. The migration to a predominantly electrical power system is expected to bring significant cost and performance benefits; however, the devices used to facilitate this change have led to an increasingly complicated electrical power system with heightened levels of system sophistication and interdependence. These developments have the potential to drastically alter the solution space of all feasible aircraft Electrical Power System (EPS) designs. The technological advancements facilitating the MEA progression have allowed for a broader range of design solutions to exist that increase the size of the solution space. Meanwhile increasing system sophistication has led to an increasingly non-linear and complex solution space. Optimal solutions in this setting are unlikely to be formed by simply modifying legacy designs.
Technical Paper
2014-09-16
Darcy Allison, Edward Alyanak
Abstract For the design process of the class of aircraft known as an efficient supersonic air vehicle, particular attention must be paid to the propulsion system design as a whole including installation effects integrated into a vehicle performance model. The propulsion system assumed for the efficient supersonic air vehicle considered in this paper is a three-stream variable cycle engine. A computational model has been built with the Numerical Propulsion System Simulation (NPSS) software to analyze this engine. This engine model was based on the generic adaptive turbine engine model developed at the turbine engines division of the US Air Force Research Laboratory. Along with this variable cycle NPSS model, a three-ramp external compression inlet model meant for conceptual design has been developed. This model will be used to capture inlet installation effects, including those attributable to angle of attack changes at supersonic Mach numbers. These models have been integrated into the Service ORiented Computing EnviRonment (SORCER), which enables parallel execution of the installed NPSS model to rapidly evaluate a full flight envelope.
Technical Paper
2014-09-16
Kevin McCarthy, Patrick McCarthy, Ning Wu, Andrew Alleyne, Justin Koeln, Soumya Patnaik, Stephen Emo, Joshua Cory
Abstract As the cost and complexity of modern aircraft systems advance, emphasis has been placed on model-based design as a means for cost effective subsystem optimization. The success of the model-based design process is contingent on accurate prediction of the system response prior to hardware fabrication, but the level of fidelity necessary to achieve this objective is often called into question. Identifying the key benefits and limitations of model fidelity along with the key parameters that drive model accuracy will help improve the model-based design process enabling low cost, optimized solutions for current and future programs. In this effort, the accuracy and capability of a vapor cycle system (VCS) model were considered from a model fidelity and parameter accuracy standpoint. A range of model fidelity was evaluated in terms of accuracy, capability, simulation speed, and development time. Inability to implement control strategies and reliance on external sources for operating assumptions were seen as significant limitations of the lower fidelity models.
Technical Paper
2014-09-16
Clément Hamel, Ruxandra Botez, Margaux Ruby
Abstract An airplane model is usually obtained from preliminary wind tunnel experiments and CFD analysis. These models are then tuned from flight test measurements using system identification, and are used for airplane stability assessment and control design. However, sometimes no or little preliminary data and documentation are available and flight test identification is the main mean to obtain the model needed for control system design. If so, the purpose of this paper is to identify the grey-box model of an airplane without initial data using a combination of the least square and output error estimation methods. A grey-box model identification is preferred because it gives aerodynamic parameter estimations of the airplane. Before flight test data are available, this method was applied to the Cessna Citation X business airplane's high fidelity simulations and carried out with human-in-the-loop on a professional level D flight dynamics simulator designed and manufactured by CAE Inc. More than 1,000 flight simulations were made for different airplane configurations in speeds (140 to 240 kt), altitudes (10,000 to 46,300 ft), masses (24,000 to 33,000 lb) and longitudinal center of gravity positions (17 to 34% of the mean aerodynamic chord).
Viewing 1 to 30 of 2486

Filter

  • Range:
    to:
  • Year: