Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2953
2018-07-16 ...
  • July 16-17, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Engineers are taught to create designs that meet customer specifications. When creating these designs, the focus is usually on the nominal values rather than variation. Robustness refers to creating designs that are insensitive to variability in the inputs. Much of the literature on robustness is dedicated to experimental techniques, particularly Taguchi techniques, which advocate using experiments with replications to estimate variation. This course presents mathematical formulas based on derivatives to determine system variation based on input variation and knowledge of the engineering function.
2018-06-27 ...
  • June 27-28, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Design for Manufacturing and Assembly (DFM+A), pioneered by Boothroyd and Dewhurst, has been used by many companies around the world to develop creative product designs that use optimal manufacturing and assembly processes. Correctly applied, DFM+A analysis leads to significant reductions in production cost, without compromising product time-to-market goals, functionality, quality, serviceability, or other attributes. In this two-day seminar, you will not only learn the Boothroyd Dewhurst Method, you will actually apply it to your own product design!
2018-06-20
Event
2018-06-07
Event
2018-05-30
Event
2018-05-17
Event
2018-05-09
Event
2018-05-01 ...
  • May 1-2, 2018 (8:30 a.m. - 4:30 p.m.) - Livonia, Michigan
Training / Education Classroom Seminars
Providing you have a basic understanding of mechanical drawings, this course teaches how to use engineering drawings that use the International Standards Organization (ISO) standards. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, this course will teach you to recognize what is required on a standard-compliant drawing and recognize geometrical tolerances based on the ISO standards. The course combines information from dozens of ISO standards into a logical understandable topic. Newly acquired learning is reinforced throughout the class with more than 150 practice problems.
2018-04-30
Event
2018-04-19
Event
2018-04-12 ...
  • April 12-13, 2018 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
Training / Education Classroom Seminars
Failure Mode and Effects Analysis (FMEA) is a systematic method for preventing failure through the discovery and mitigation of potential failure modes and their cause mechanisms. Actions are developed in a team environment and address each high: severity, occurrence or detection ranking indicated by the analysis. Completed FMEA actions result in improved product performance, reduced warranty and increased product quality.
2018-04-06
Event
2018-03-09
Event
2017-12-07 ...
  • December 7-8, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • June 25-26, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Design of Experiments (DOE) is a methodology that can be effective for general problem-solving, as well as for improving or optimizing product design and manufacturing processes. Specific applications of DOE include identifying proper design dimensions and tolerances, achieving robust designs, generating predictive math models that describe physical system behavior, and determining ideal manufacturing settings. This seminar utilizes hands-on activities to help you learn the criteria for running a DOE, the requirements and pre-work necessary prior to DOE execution, and how to select the appropriate designed experiment type to run.
2017-10-31
White Paper
WP-0003
Actuators are the key to sophisticated machines that can perform complex tasks previously done by humans.
2017-10-13
Technical Paper
2017-01-5018
Subhash Hanmant Bhosale, Manohar Goud Kalal, Ashish Kumar Sahu
Abstract In today’s cost-competitive automotive market, use of finite element simulations and optimization tools has become crucial to deliver durable and reliable products. Simulation driven design is the key to reduce number of physical prototypes, design iterations, cost and time to market. However, simulation driven design optimization tools have struggled to find global acceptance and are typically underutilized in many applications; especially in situations where the algorithms have to compete with existing know-how decision making processes. In this study, systematic multi-phase approach for optimization driven design is presented. Approach includes three optimization phases. In first phase, topology optimization is performed on concept BIW design volume to identify critical load paths. Architectural inputs from topology are used to design base CAD.
2017-10-08
Technical Paper
2017-01-2301
Hongli Gao, Fujun Zhang, Wenwen Zeng, Tianpu Dong, Zhengkai Wang
Abstract The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
2017-10-08
Technical Paper
2017-01-2422
Na Li, Fenlian Huang, Yuhua Bi, Yueqiang Xu, Lizhong Shen, Dewen Jia
Abstract The assembly of con rod bearing and crankpin is a key friction pair which offers an important guarantee for stable operation of diesel engine. Specific to the non-road 2-cylinder diesel engine developed independently and based on the theory of thermoelastohydrodynamic lubrication as well as multi-body dynamics, this paper establishes a multi-body dynamics model for con rod big end bearings of the 2D25 horizontal diesel engine and makes a research on the influence of bearing width, bearing clearance, and oil inlet position and diameter upon lubrication of con rod bearing, taking into consideration that of the surface appearance of bearing bush and the elastic deformation of bearing bush and axle journal upon the same. Research results show that bearing width and bearing clearance are the major factors that influence lubrication characteristics of con rod bearing while oil inlet position and diameter only have a small influence on such characteristics.
2017-10-08
Technical Paper
2017-01-2450
Chao Xu, Fuyuan Yang, Jinyu Zhang
Abstract Power-split configuration is highlighted as the most popular concept for full hybrid electric vehicles (HEV). However, the energy management and design of power-split heavy duty truck under Chinese driving conditions still need to be investigated. In this paper, the parametric design, a rule-based control strategy and an equivalent consumption minimization strategy (ECMS) for the power-split heavy duty truck are presented. Besides, the influence of a penalty factor also discussed under ECMS algorithm. Meanwhile, two different methods to search the engine operation point have been proposed and the reason of different economy performance is presented by using energy flow chart. And the simulation results show both fuel consumption can satisfy the second phase fuel consumption standard and the third phase fuel consumption standard which will be implemented in 2020, under C-WTVC (Chinese-World Transient Vehicle Cycle).
2017-10-06
Video
ICYMI: View the entire announcement from Boeing on the new GoFly Challenge
2017-09-25
Book
Mohamed El-Sayed
Fundamentals of Integrated Vehicle Realization is a unique and solid contribution to the subject of product development, centered on the automotive industry. Automotive manufacturers and suppliers are under pressure to transform themselves and deliver a higher level of product refinement coupled with more functionality. This could lead to the sprouting of organizational structures not in alignment with the required product development phases. Consequently, many product development initiatives may be cancelled or dropped at later stages despite all the efforts and financial investments. Therefore, it is vital that organizational unity be always intact during any transformation. A highly effective organization should always act as one cohesive entity dedicated to serving the customer with creative aptitude, integrative skills, analytical thinking, and synergistic management. Written by Dr.
2017-09-19
Technical Paper
2017-01-2039
Michael Sielemann, Changsoo Lee, Victor-Marie LeBrun, Chiwoo Ahn, Arnaud Colleoni, Dongkyu Lee, JeongSeok Lee, Anh Nguyen, Katrin Proelss, Hyon Min Yoon
Abstract Thermal management on aircraft has been an important discipline for several decades. However, with the recent generations of high performance aircraft, thermal management has evolved more and more into a critical performance and capability constraint on the whole aircraft level. Fuel continues to be the most important heat sink on high performance aircraft, and consequently the requirements on thermal models of fuel systems are expanding. As the scope of modeling and simulation is widened in general, it is not meaningful to introduce a new isolated modeling and simulation capability. Instead, thermal models must be derived from existing model assets and eventually enable integration across several physical domains. This paper describes such an integrated approach based on the Modelica Fuel System Library and the 3DExperience Platform.
2017-09-19
Technical Paper
2017-01-2058
Francesco Noziglia, Paolo Rigato, Enrico Cestino, Giacomo Frulla, Alfredo Arias-Montano
Abstract Innovative aircraft design studies have noted that uncertainty effects could become significant and greatly emphasized during the conceptual design phases due to the scarcity of information about the new aero-structure being designed. The introduction of these effects in design methodologies are strongly recommended in order to perform a consistent evaluation of structural integrity. The benefit to run a Robust Optimization is the opportunity to take into account uncertainties inside the optimization process obtaining a set of robust solutions. A major drawback of performing Robust Multi-Objective Optimization is the computational time required. The proposed research focus on the reduction of the computational time using mathematic and computational techniques. In the paper, a generalized approach to operate a Robust Multi-Objective Optimization (RMOO) for Aerospace structure using MSC software Patran/Nastran to evaluate the Objectives Function, is proposed.
2017-09-19
Technical Paper
2017-01-2110
Ashutosh Kumar Jha, Prakash Choudhary
Abstract The complexity of software development is increasing unprecedentedly with every next generation of aircraft systems. This requires to adopt new techniques of software design and verification that could optimize the time and cost of software development. At the same time these techniques need to ensure high quality of software design and safety compliance to regulatory guidelines like DO-178C [1] and its supplements DO-330[2] and DO-331[3]. To arrive at new technologies one has to evaluate the alternate methods available for software design by developing models, integration of models, auto-code generation, auto test generation and also the performance parameters like time, effort, reuse and presentation needs to be evaluated. We have made an attempt to present summary of alternate design concept study, and edge of MBD over other design techniques.
2017-09-19
Technical Paper
2017-01-2118
Prashant S Vadgaonkar, Diptar banik
Abstract Avionics industry is moving towards more electric & lightweight aircrafts. Electromagnetic effects becomes significantly challenging as materials starts moving towards composite type. Traditional methods for controlling EMC will not be sufficient. This shift increases the complexity of in-flight hardware elements for EMI/EMC control. This paper discusses the need for EMI/EMC Control and brings out the analysis & applicability of various EMI/EMC standards in aerospace, commercial and industrial electronic products, provides comparative study with respect to levels. The study include various sections of DO-160 and applicable guidelines for controlling EMI/EMC with respect to LRU (Line Replaceable Unit) & wire/cable harnesses. Also presents guidelines with respect to shielding of components, selection of components, grounding schemes, filter topologies and layout considerations.
2017-09-19
Technical Paper
2017-01-2059
Enrico Cestino, Giacomo Frulla, Renzo Duella, Paolo Piana, Francesco Pennella, Francesco Danzi
Abstract Future generations of civil aircrafts and unconventional unmanned configurations demand for innovative structural concepts to improve the structural performance, and thus reduce the structural weight, but also to allow possible material couplings to be made. Static and dynamic aeroelastic stability can be altered by these couplings. It is therefore necessary to use an accurate and computationally efficient beam model during the preliminary design phase. A stiffened box, made of isotropic material, but with the stiffeners oriented so that they originate the expected bending/torsion coupling, is considered in the present work. The overall equivalent bending, torsional and coupled stiffness is derived by means of homogenization of the shell skin and of the stiffener plate stiffness. A new equivalent homogeneous orthotropic material is determined and introduced into the equivalent plate configuration.
2017-09-19
Technical Paper
2017-01-2064
Parvez Alam M, Dinesh Manoharan, Satheesh Chandramohan, Sabarish Chakkath, Sunil MAURYA
Abstract In the present market, multiple sophisticate and expensive Thrust Test Rigs for Brushless Motors (BLDC Motor) are available making it impossible to conduct such thrust analysis on a regular and cost effective basis. Moreover the present test rigs are incapable to measure high Thrust values. This needs specialized thrust testing rig which is more expensive. This paper aims at Design & Development of the Small Scale Test Rig Setup for measurement of the thrust of any Brushless DC motor and helps in refining the Selection of motor and propeller. This is a set up based on cost efficiency factor to implement such rigs, test and for comparing the static thrust produced by the BLDC motor. The fairly simple construction contains a weighing machine, a Tachometer and a Wattmeter to measure the Thrust, RPM and the Current Drawn respectively, and provide comprehensive, accurate and efficient data coming from the BLDC Motor including the Propeller and Electronic Speed Control (ESC).
2017-09-19
Technical Paper
2017-01-2115
Gilberto Burgio, Leonardo Mangeruca, Alberto Ferrari, Marco Carloni, Virgilio Valdivia-Guerrero, Laura Albiol-Tendillo, Parithi Govindaraju, Marcel Gottschall, Olaf Oelsner, Sören Reglitz, Jann-Eve Stavesand, Andreas Himmler, Lionel Yapi
Abstract Multi-physics interactions between structural, electrical, thermal, or hydraulic components and the high level of system integration, characteristic of new aircraft designs, is increasing the complexity of both design and verification processes. Therefore the availability of tools, supporting integrated modelling, simulation, optimization and testing across all stages of aircraft design remains a critical challenge. This paper presents some results of the project MISSION (Modelling and Simulation Tools for Systems Integration on Aircraft). It is a collaborative task being developed under the European Union Clean Sky 2 Program, which is a public-private partnership bringing together aeronautics industrial leaders and public research organizations based in Europe. The first levels of integration of different models and tools proposed in the MISSION framework will be presented, along with simulation results.
Viewing 1 to 30 of 2953

Filter

  • Range:
    to:
  • Year: