Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2778
2016-11-14
Training / Education
Failure Mode and Effects Analysis (FMEA) is a systematic method for preventing failure through the discovery and mitigation of potential failure modes and their cause mechanisms. Actions are developed in a team environment and address each high: severity, occurrence or detection ranking indicated by the analysis. Completed FMEA actions result in improved product performance, reduced warranty and increased product quality.
2016-10-20
Training / Education
Providing you have a basic understanding of geometric dimensioning and tolerancing fundamentals, this course teaches an introduction to how to inspect GD&T requirements. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, this course offers an explanation of the geometric symbols, rules, and concepts, the datum system, and how to inspect GD&T requirements using tools from the four categories of inspection tools (CMM; comparison instruments and fixed gages; hand tools and open set up; and production gaging systems). Newly acquired learning is reinforced throughout the class with numerous practice problems.
2016-10-18
Training / Education
Providing you have an understanding of GD&T fundamentals, this course teaches the thought processes involved in assigning GD&T to components. It will change the way many engineers think about part tolerancing. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, the course focuses on what constitutes good and poor drawing practices, common dimensioning methods used in industry, using GD&T to communicate system functions on component dimensions, and the logic of how to apply GD&T to components.
2016-10-04
Event
Topics Include: Product Design and Manufacturing Integration Integrated Production Systems Software Simulation Virtual Manufacturing Direct Digital Manufacturing Analysis and Modeling Tools RFID Structural Health Monitoring/Management Advanced Metrology
2016-09-30
Training / Education
Providing you have a basic understanding of geometric dimensioning and tolerancing fundamentals, this course teaches the significant revisions, additions, and deletions prescribed in the new ASME Y14.5-2009 Standard. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, the course offers an in-depth explanation of new features in the 2009 standard and compares them to the 1994 Standard. Newly acquired learning is reinforced throughout the class with numerous practice problems, and a set of comprehensive comparison charts that highlight itemized changes in the standard are included in the workshop price.
2016-09-27
Technical Paper
2016-01-2090
Sergey Lupuleac, Margarita Petukhova, Julia Shinder, Alexander Smirnov, Mariia Stefanova, Nadezhda Zaitseva, Tatiana Pogarskaia, Elodie Bonhomme
Perspective way of solving the problem of aircraft assembly optimization is global simulation of junction process using efficient numerical algorithms. Specialized software complex [1] was developed within the framework of cooperation between Airbus SAS and Saint Petersburg Polytechnic University. This tool allows engineers to simulate the aircraft assembly process and solve the number of tasks: • Calculation of resulting gap under given initial disposition of riveted parts and distribution of fastening elements; • Determination of fastening element pattern that provides sufficient quality of assembly; • Shimming prediction; • Evaluation of stresses caused by assembly. The tool is based on special approach that necessitates solving contact problem arising when aircraft parts are being joined. This problem can be described by several simplifying assumptions such as ommiting tangential displacements and friction from consideration and creating substructure for junction area.
2016-09-27
Technical Paper
2016-01-8067
Suresh Kumar Kandreegula, Kamal Rohilla, Gaurav Paliwal, Naveen Sukumar, Naveen Pratap Tripathi
Three on the tree. Four on the Floor. The gear change mechanism is a component that is too often taken for granted but it is one of the more important features of the vehicle. It must be quick and smooth in action, efficient and totally reliable. Modern driving conditions demand that the driver makes frequent gear changes and a mechanism that is temperamental or inaccurate can be both frustrating and dangerous as well as physically tiring. The gear changing mechanism starts, quite obviously, with the gear lever. Most stem from the fact that a gear lever must move in two planes, forward and back and then from side to side to move across the gear "gate". A good many drivers think of gear changing as one simple action. This is more a tribute to the design of gear changing mechanisms than a reality.
2016-09-27
Technical Paper
2016-01-2124
Sara Nilsson, Jonas Jensen, Mats Björkman, Erik Sundin
For the aerospace industry carbon fiber reinforced plastics (CFRP) is one of the fastest developing materials right now. The material has a strength-to-weight ratio that is several times higher than aluminium and steel, which makes it a great fit for applications where a low weight is crucial while maintaining strength and stiffness. It is specifically CFRP in pre-impregnated form, so called pre-preg, which has made its way into the aircrafts. Pre-preg is an anisotropic material that lets the designer control its properties to a high level of detail. Analogously to the material becoming used more widely in the aerospace industry the costs have decreased as the manufacturing methods have developed to follow the demands. However, how material and manufacturing method change the requirements and affect a product's design and performance can be hard to determine.
2016-09-27
Technical Paper
2016-01-2123
Matthias Busch
The integration of omega stringers to panels made of carbon fiber reinforced plastic (CFRP) by adhesive bonding, which are joined together in an autoclave, must be subject to high quality standards. Defects such as porosity, kissing bonds, voids or inclusion must be detected safely to guaranty the functionality of the component. Therefore, an inspection system is required to verify these bonds and detect different kinds of defects. In this contribution, the advantages of a robotic inspection system, which will be achieved through continuous testing, will be introduced. The testing method is the active thermography. The active thermography has major advantages compared with other non-destructive testing methods. Compared to testing with ultrasonic there is no coupling medium necessary, thus testing will be significantly enhanced.
2016-09-27
Technical Paper
2016-01-8109
Daniel Aceituna
When specifying an embedded system-to-be, a key consideration is how the embedded system will interact with its operating environment. Of particular concern, is the system's vulnerability to Off-Nominal Behaviors (ONB) from human interaction. ONB vulnerability can result in human operators placing the system in an undesired state through an unforeseen sequence of events. This, in turn, can have an adverse effect on the system’s quality. Reducing ONB vulnerability can be challenging because human behavior can be unpredictable and stakeholders have a natural tendency to assume the system will be used in a predictable, nominal, manner. One approach to reducing ONB vulnerability is to specify the system as "fool-proof" as possible, during the requirements phase, where access to domain experts is at its most convenient.
2016-09-27
Technical Paper
2016-01-8132
Sanket Pawar
Reliability engineering methods are used to assess risk and eliminate hazards by estimation, elimination and management of risks of failures. ISO 26262 functional safety standard gives detailed guidance on reliability engineering methods like Failure Mode Effects Analysis (FMEA), Fault Tree Analysis (FTA) etc. While, there are many methods available for reliability engineering; no single method is full proof for securing safety by eliminating hazards completely. Out of these methods, FMEA is widely being used as an integral part of product development life cycle. In this method, failure modes of individual components are analyzed considering one failure at a time. FMEA is efficient method for analyzing failures in simple systems. For complex systems, FMEA becomes impractical. It is also difficult to consider variables in FMEA. FMEA provides fairly detailed recommended actions to avoid failures and eliminate hazards in average working conditions.
2016-09-27
Technical Paper
2016-01-8062
Jham Kunwar Tikoliya, Ram Krishna Kumar Singh, Ramesh Kumar, Suresh Kumar Kandreegula
The existing head cover is having external oil and blow by separation unit, which is not only costlier but also complex and leads to increase the overall height of engine which was difficult to integrate in new variants of vehicles. Existing head cover sealing system was also not foolproof and with slight variation in part dimensions, there were high chances of leakage. A new head cover has been designed with internal baffle type oil and blow by separation system to ensure efficient separation and proper packaging of the system in new varients.The new system has been finalized after 26 DOEs of different wire mesh sizes and different baffle plate size and positions. The final system has two bowl shaped separation unit with wire mesh with two cup type oil separation passages and one baffle plate for separating blow by. The system works on condensation and gravity method. The blow by is guided through a well-defined passage integrated in aluminum cylinder head cover itself.
2016-09-27
Technical Paper
2016-01-8091
Shuanlu Zhang, ZhenFeng Zhao, Changlu Zhao, Fujun Zhang, Yuhang Liu
A new method for driving the hydraulic free piston engine is proposed. This method achieves the compression stroke automatically rather than special recovery system. Principle of hydraulic differential drive free-piston engine is analyzed and the control strategy of this novel hydraulic driving engine is also introduced. Then energy balance method is used to design the main parameters of the novel engine. High pressure and secondary high pressure of the hydraulic system are constrained by the combustion parameters and therefore parameters are analyzed. In order to verify the effectiveness of energy balance method, the mathematical model is established based on the piston force analysis and engine working principle. The transient results of dynamics are obtained through simulation. In addition, the effectiveness of the simulation is proofed by dimensionless analysis. It indicates that energy balance method realizes the basic performance of hydraulic free piston engine.
Training / Education
Providing you have a basic understanding of mechanical drawings, this course teaches how to use engineering drawings that use the International Standards Organization (ISO) standards. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, this course will teach you to recognize what is required on a standard-compliant drawing and recognize geometrical tolerances based on the ISO standards. The course combines information from dozens of ISO standards into a logical understandable topic. Newly acquired learning is reinforced throughout the class with more than 150 practice problems.
2016-09-20
Technical Paper
2016-01-2010
Nandeesh Hiremath, Dhwanil Shukla, Narayanan Komerath
The design of advanced rotorcraft hinges on knowledge of the flowfield and loads on the rotor blade at extreme advance ratios (ratios of the forward flight speed to rotor tip speed). In this domain, strong vortices form above and below the rotor, and their evolution has a sharp influence on the aerodynamics loads experienced by the rotor, particularly the loads experienced at pitch links. To capture the load distribution, the surface pressure distribution must be captured. This has posed a severe problem in wind tunnel experiments. A 2-bladed teetering rotor with collective and cyclic pitch controls is used in a 2.74m wind tunnel, under conditions of dynamic stall and then in reverse flow. Stereoscopic particle image velocimetry us used. Recently we have shown that the accuracy of stereoscopic particle image velocimetry has reached the point where velocity measurements can be converted to pressure both at and away from the blade surface.
2016-09-20
Technical Paper
2016-01-1989
Qiong Wang, Rolando Burgos, Xuning Zhang, Dushan Boroyevich, Adam White, Mustansir Kheraluwala
In modern aircraft power systems active power converters have been increasingly adopted to replace passive (diode-based) rectifiers seeking to increase the power-density and specific-weight of these units. These converters represent a significant challenge from a design standpoint due to the added degrees of freedom they offer, which have been further expanded by the adoption of wide-bandgap (WBG) power semiconductors. As such, their design requires the formulation of complex multi-disciplinary, multi-loop design procedures to ensure that they are built to fully exploit their power processing capabilities, while meeting the operational requirements of aircraft applications; including electromagnetic interference (EMI) standards, power quality standards, form factor and weight constraints, efficiency, and other relevant figures of merit.
2016-09-20
Technical Paper
2016-01-2031
Michal Sztykiel, Steven Fletcher, Patrick Norman, Stuart Galloway, Graeme Burt
There is a well-recognized need for robust simulation tools to support the design and evaluation of future More-Electric Engine and Aircraft (MEE/MEA) design concepts. Design options for these systems are increasingly complex, and normally include multiple power electronics converter topologies and machine drive units. In order to identify the most promising set of system configurations, large number of existing technology variants need to be rapidly evaluated. This paper will describe a method of MEE/MEA system design with the use of a newly developed transient modelling, simulation and testing tool aimed at accelerating the identification process of optimal components, testing novel technologies and finding key solutions at an early development stage. The developed tool is a Matlab/Simulink library consisting of functional sub-system units, which can be rapidly integrated to build complex system architectures.
2016-09-20
Technical Paper
2016-01-2009
Natasha Barbely, Narayanan Komerath, Nandeesh Hiremath
Coaxial rotors are finding use in advanced rotorcraft concepts. Combined with lift offset rotor technology, they offer a solution to the problems of dynamic stall and reverse flow that often limit single rotor edgewise forward flight speeds. Lower tip speed means reduced high speed impulsive noise. The need for an anti-torque tail rotor is eliminated, a major boon during operation in confined areas. However, the operation of two counter-rotating rotors in close proximity generates many possibilities for aerodynamic interactions between rotor blades, blades and vortices, and between vortices. The parameter design space is very large, and requires efficient computations as well as basic experiments to explore important physics determines performance, loads, and acoustics. Computations are done on the classic Harrington/Dingeldein rotor test case from the 1950s using the ROTUNS Navier Stokes code as well as the NASA OVERFLOW and/or HELIOS codes.
2016-09-20
Technical Paper
2016-01-1995
Patrick McCarthy, Nicholas Niedbalski, Kevin McCarthy, Eric Walters, Joshua Cory, Soumya Patnaik
As the cost and complexity of modern aircraft systems increases, emphasis has been placed on model-based design as a means for reducing development cost and optimizing performance. To facilitate this, an appropriate modeling environment is required that allows developers to rapidly explore a wider design space than can cost effectively be considered through hardware construction and testing. This wide design space can then yield solutions that are far more energy efficient than previous generation designs. In addition, non-intuitive cross-coupled subsystem behavior can also be explored to ensure integrated system stability prior to hardware fabrication and testing. In recent years, optimization of control strategies between coupled subsystems has necessitated the understanding of the integrated system dynamics.
2016-09-20
Technical Paper
2016-01-1996
David R. Markham, J. Michael Cutbirth
High-speed screw compressors are a common refrigeration compressor because they are highly reliable, compact, and have a high turndown ratio. For modern aviation and mobile platforms screw compressors are advantageous because they can achieve high cooling capacities within a compact package. This present study describes the performance results of a custom asymmetric screw compressor that can meet strict size, weight, and power (SWaP) requirements. Compressor testing was performed to validate the design, modeling, and fabrication processes. The compressor, with a nominal cooling capacity of 50 kW, was tested over a range of saturated suction conditions, pressure ratios, rotational speeds, and oil lubrication conditions.
2016-09-20
Technical Paper
2016-01-2061
Andrew S. Babel, Parag Kshirsagar, Suman Dwari
In aerospace actuator applications electric machines are demanded to produce large static and dynamic torque while being constrained with stringent weight and volume restrictions. Among various types of electrical machines, Permanent Magnet (PM) Machines with strong rare earth magnets, offer the highest torque and power density with low rotor inertia. This paper presents design and study of three high-density PM machine topologies from the perspective of aerospace actuator applications. The machine topologies are compared with three key metrics for the same current density: torque per unit mass, torque per unit squared rotational inertia, and torque per unit volume. Such thorough comparison of these three candidates PM machine topologies for aerospace actuator application is not reported in available publications. Key requirements of specific actuation application, such as torque density and active length, are taken into account for the design.
2016-09-20
Technical Paper
2016-01-2055
Koji Muraoka, Daisuke Hirabayashi, Masayuki Sato, Yoshihisa Aoki
We have been conducting a research on a future commercial tilt wing VTOL transport under JAXA(Japan Aerospace Exploration Agency)'s "Sky Frontier" Program aiming to develop technologies for aircraft innovation. The research focuses on the QTW (Quad Tilt Wing) civil VTOL transport, which features tandem tilt wings with propellers mounted at the mid-span of each wing. Unlike current and previous tail rotors and twin-engine tilt wings, the quad tilt wing configuration does not require a tail rotor or a main rotor mechanism and would have advantages in cruise performance and payload carrying performances over them. In our previous research, we had developed fundamental technologies of the QTW aircraft such as tandem tilt wing design procedure, flight mechanics modeling, transition flight controllers and so on.
2016-09-18
Technical Paper
2016-01-1950
Guirong Zhuo, Subin Zhang, Kun Xiong
As is known to all, structure of the chassis has been greatly simplified as the application of in-wheel motor in electric vehicle (EV) and distributed control is allowed. The micro EV can alleviate traffic jams, reduce the demand for motor and battery capacity due to its small size and light weight and accordingly solve the problem that in-wheel motor is limited by inner space of wheel hub. As a result, this type of micro EV is easy to be recognized by the market. In the micro EV above, two seats are side by side and the battery is placed in the middle of the chassis. Besides, in-wheel motors are mounted on rear axle and only front axle retains traditional hydraulic braking system. Based on this driving/braking system, distribution of braking torque, system reliability and braking intensity is analyzed in this paper.
2016-09-18
Technical Paper
2016-01-1956
Robert G. Sutherlin, Douglas Reed
Noise from contaminant ingress is one of the largest durability issues for wheel bearings at higher mileage and higher vehicle exposure. Protecting the bearings seals from splash is a key step in extending seal life. Benchmarking has shown a variety of different corner designs to protect the bearing from splash. This study examines the effect of factors such as the radial gap between CVJ slinger and the knuckle, knuckle labyrinth height, and different slinger designs to minimize the amount of splash to the bearing inboard seal. The study reviews the different spray methods that were applied to confirm the robustness of the various designs.
Training / Education
Providing you have a basic understanding of geometric dimensioning and tolerancing fundamentals, this course teaches the advanced concepts of GD&T as prescribed in the ASME Y14.5M-1994 Standard. Utilizing the expertise of world-renowned GD&T expert Alex Krulikowski, this course offers an in-depth explanation of advanced GD&T topics like composite tolerancing, tolerance analysis, datum selection, non-rigid part dimensioning, and many more key dimensioning topics, including the system approach for part dimensioning. Newly acquired learning is reinforced throughout the class with more than 150 practice problems.
Viewing 1 to 30 of 2778

Filter

  • Range:
    to:
  • Year: