Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4274
Training / Education
2015-06-08
The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems. This seminar begins by introducing the highly mathematical field of control systems focusing on what the classical control system tools do and how they can be applied to automotive systems.
Event
2014-12-11
With the integration of many subsystems, modeling, simulation and systems engineering take on a more important role in the design/development of new vehicle technology
Event
2014-12-11
Power electronics, especially advanced technologies such as GaN, GAAs, and SiC, offer great advantages in increasing the overall system efficiency of xEV systems. This session will explore various technologies and the benefits/challenges facing them.
Training / Education
2014-10-14
This highly interactive seminar - featuring microcontroller hands-on lab projects - will help you learn fundamental concepts needed to design, implement, and calibrate control functions for an embedded microcontroller system. The seminar introduces the system elements: control system architecture; control algorithms; sensors; actuators; wiring; electromagnetic compatibility; microcontroller; software; diagnostics and calibration, wireless networks and shows how all elements are connected. While most examples and exercises focus on automotive, the materials presented are relevant to many industries including commercial vehicle, off-road, aerospace, rail, communication networks, appliances, and more.
Event
2014-10-09
Early exhaust valve opening (EEVO) is a strategy to increase turbine out temperatures (TOT) for exhaust aftertreatment thermal management; however, it also results in an increase in the required fueling to maintain a particular brake torque. This study outlines experimental results of the impact of EEVO on exhaust temperature (measured at the turbine outlet) and required fueling. Several EEVO sweeps were performed on a diesel engine using a fully-flexible variable valve actuation (VVA) system. Experimental data was taken at three speed/load conditions with varied fuel injection and air handling parameters. EEVO was studied for nominal exhaust valve opening (EVO) timing to 90 crank angles early. The results show that TOT is observed to increase by 30C to 80C. However, brake thermal efficiency (BTE) reductions observed are between 10-20% from the BTE at nominal valve timing. It is shown that while EEVO negatively affects the power output during the expansion stroke, at a constant brake torque (with additional fueling), EEVO has no significant effect on the gross indicated power.
Event
2014-10-09
Cylinder deactivation (CDA) at idle conditions results in a reduction in air-to-fuel ratio, and heat transfer surface area. This enables an increase in exhaust temperature for aftertreatment thermal management, and an increase in efficiency via reduced pumping and heat transfer losses. This study focuses on the impact of 3-cylinder CDA on exhaust temperature and efficiency at both loaded and unloaded idle conditions. At the loaded condition, deactivating 3 cylinders provides an increase in exhaust temperature from about 200C (6-cylinders) to approximately 300C (3-cylinders), with no fuel economy penalty. Additionally, at the unloaded condition, CDA provides an increase in exhaust temperature of about 20C, from about 117C to about 135C, with a fuel consumption reduction of 15%-26%.
Event
2014-10-09
This session covers advanced technologies and analysis/design/testing techniques related to powertrain performance, emissions, and electronic controls. It includes both system-level and component-level contents such as engine system design and integration optimization. Typical topics include emissions, fuel economy, combustion, air charging, EGR systems, fuel systems, valvetrains, engine brakes, waste heat recovery, calibration, steady-state and transient performance, engine/powertrain/drivetrain controls, model-based controls, sensors, OBD, and HIL. The topics of engine applications cover on-road, off-road, heavy-duty, and light-duty.
Event
2014-10-09
This session covers advanced technologies and analysis/design/testing techniques related to powertrain performance, emissions, and electronic controls. It includes both system-level and component-level contents such as engine system design and integration optimization. Typical topics include emissions, fuel economy, combustion, air charging, EGR systems, fuel systems, valvetrains, engine brakes, waste heat recovery, calibration, steady-state and transient performance, engine/powertrain/drivetrain controls, model-based controls, sensors, OBD, and HIL. The topics of engine applications cover on-road, off-road, heavy-duty, and light-duty.
Event
2014-10-09
This session covers advanced technologies and analysis/design/testing techniques related to powertrain performance, emissions, and electronic controls. It includes both system-level and component-level contents such as engine system design and integration optimization. Typical topics include emissions, fuel economy, combustion, air charging, EGR systems, fuel systems, valvetrains, engine brakes, waste heat recovery, calibration, steady-state and transient performance, engine/powertrain/drivetrain controls, model-based controls, sensors, OBD, and HIL. The topics of engine applications cover on-road, off-road, heavy-duty, and light-duty.
Technical Paper
2014-09-30
Harry Dwyer, Seungju Yoon, David Quiros, Mark Burnitzki, Roelof Riemersma, Donald Chernich, John Collins, Jorn Herner
A novel ambient dilution wind tunnel has been designed, tested and used to measure the emissions from “Active Parked Regenerations” of Diesel Particulate Filters (DPFs) for 2007 and 2010 certified heavy duty diesel trucks (HDDTs). The HDDT exhaust was routed to the wind tunnel entrance, and a mixing plate was employed to induce rapid mixing with the ambient air inflow. The tunnel geometry consisted of a 4’ by 4’ cross-section, and the tunnel length was 30’. An induction fan created a flow of 9000 ft3/min (CFM), and velocity and temperature traverses indicated that the mixture of exhaust gases and ambient air was homogeneous at the emission sampling location. The sampling probe was located near the exit of the tunnel, and withdrew 6 CFM from the tunnel centerline for PM measurements. A wide variety of emissions measurements and instrumentation was used in the investigation, which included the following: (1) Engine out On-board diagnostics; (2) Exhaust flow PEMS; (3) Tunnel temperature, CO2, mixture dilution ratio, and relative humidity; (4) Real-time PM instrumentation: EEPS, SMPS, DustTrak, and Dekati Mass Monitor; and (5) Gravimetric filter media.
Technical Paper
2014-09-30
Christopher Atkinson
Pending GHG emissions reduction legislation for medium and heavy duty vehicles will require the development of engines and powertrains with significantly increased mechanical and electronic complexity. Increasing powertrain efficiency will require the simulation, control and calibration of an expanding number of highly interdependent air, fuel, exhaust, combustion and energy transfer subsystems. As a result, engine and powertrain control is becoming significantly more sophisticated to develop and difficult to optimize. The high cost of developing engines and powertrain systems that demonstrate greater fuel efficiency and emissions benefits than the engines of today, is undeniable. The increased calibration burden and the complexity of optimization require the development and adoption of entirely new methods for transient engine calibration and optimization to achieve maximum vehicle fuel efficiency and lowest regulated emissions. Model-based rapid transient calibration offers significant advantages over traditional testing-intensive methods of calibration.
Technical Paper
2014-09-30
Daofei Li, Huanxiang Xu, Lei Wang, Zhipeng Fan, Wenbo Dou, Xiaoli Yu
Internal combustion engine is expected to be the major power unit to propel vehicles for decades from now on. Therefore, the advanced technologies to improve energy efficiency and to reduce emissions of engine should be continually encouraged and emphasized. For normal driving conditions, nearly half energy of the consumed fuel of engine is wasted, in the form of exhaust heat and coolant heat. In order to recovery the waste heat generated in normal thermodynamic cycle of internal combustion engine, a novel hybrid pneumatic engine concept is proposed, which uses compressed air and fuel as dual energy. During the expansion stroke, additional compressed air is injected, with carefully optimized timing, into the cylinder to absorb the heat released by the fuel, and then the compressed air can do further expansion work. The ideal thermodynamic model of the hybrid pneumatic engine cycle is established and explored, and is used to analyze the influences of the main design parameters on the cycle performance.
Technical Paper
2014-09-30
Hanlong Yang
Adaptive estimation approach for air-path controls in Turbocharged Diesel Engines Due to more stringent emission regulations as well as the customer requirements on performance improvement, the model-based controls in diesel engines are becoming more and more common and necessary. In fact, as diesel engine systems become more complicated with additional hardware, such as throttle, EGR, VVT, VGT, the dynamics of the systems with more freedom of multiple actuators become much more sophisticated. The advanced model-based and coordinated controls become almost the only effective way to improve the system performance. In most of the model based approaches, feedback controls and estimation methods based on real-time dynamics are the key techniques. However since the system has sensors and actuators which have parts-to-parts variations as well as degradation over useful life, therefore any identification of those slow changes and compensation of the controls over the system life cycle is critical for long term control performance, system reliability and diagnostic monitoring.
Technical Paper
2014-09-30
Philipp Scherer, Marcus Geimer
It was investigated how the energy efficiency of heavy equipment can be determined and evaluated. The wide range of applicability of heavy equipment, as well as the existence of one or more power take-offs require, a special approach for evaluating the energy efficiency of these machines. Therefore, different types of heavy equipment vehicles were equipped with sensors and measurement instrumentation throughout the whole powertrain. With these vehicles, field tests were realised in order to receive perception about the life cycles and the exact kinematic paths of these vehicles as well as to observe the power- and energy flows throughout the powertrain. Parameters were varied in order to receive information about the impact of environmental effects on the energetic- and temporal shares of the kinematic paths. For the analyzation of these measurements a software package has been developed. This package provides features to analyze the kinematic paths of the performed field tests. Furthermore it is possible to show the energy flows within the powertrain for selected time periods.
Technical Paper
2014-09-30
Jennifer Wheeler, Joshua Stein, Gary Hunter
Recent advances in natural gas recovery technologies and availability have sparked a renewed interest in using natural gas as a fuel for commercial vehicles. Natural gas can potentially provide for both reduced operating cost and reductions in CO2 emissions. Commercial natural gas vehicles, depending on application and region, will have different performance and fuel consumption targets and are subject to various emissions regulations. Therefore, different applications may require different combustion strategies to achieve specific targets and regulations. This paper summarizes an evaluation of combustion strategies and parameters available to meet these requirements while using natural gas. One combustion strategy that was evaluated was stoichiometric combustion with exhaust gas recirculation (EGR), while the other strategy tested was based on lean-burn combustion. Testing consisted of parametric variations to quantify the effects of swirl ratio, compression ratio, and dilution ratio, either via EGR or excess air, on the operating limits, engine out emissions, and fuel efficiency of spark-ignited natural engines operating in conditions typical for heavy-duty vehicle applications.
Technical Paper
2014-09-30
Antoine Delorme, Jason L. Robert, William Eli Hollowell, Andre M. Strobel, Jason T. Krajewski
Abstract In the recent years, Automated Manual Transmissions have become more popular for class 8 heavy trucks. Besides the benefits of smoother gear changes and reduced driver fatigue, AMTs can also greatly reduce fuel consumption by using optimized shifting strategies and advanced controls. The Detroit DT12 AMT demonstrated its ability to save fuel over a standard AMT, due in part to its eCoast feature. eCoast relies on intelligent and advanced electronic controls to safely allow the vehicle to coast on downgrades. While the engine is idling, the drag parasitic energy losses are decreased and the vehicle can fully use its momentum to travel further up and down hill. As one could expect, the type of route profile can greatly affect the fuel savings due to eCoast, since more hilly terrains might offer more opportunities to activate eCoast than flatter roads. In addition, when combined with different vehicle and driving parameters such as vehicle weight and driver desired cruise set speed, the fuel consumption reduction of eCoast is always there, but becomes a more complicated function.
Technical Paper
2014-09-30
Michael Sprengel, Monika Ivantysynova
Abstract A novel Blended Hydraulic Hybrid transmission architecture is presented in this paper with benefits over conventional designs. This novel configuration combines elements of a hydrostatic transmission, a parallel hybrid, and a selectively connectable high pressure accumulator using passive and actively controlled logic elements. Losses are reduced compared to existing series hybrid transmissions by enabling the units to operate efficiently at pressures below the current high pressure accumulator's pressure. A selective connection to the high pressure accumulator also allows for higher system precharge which increases regenerative braking torque and energy capture with little determent to system efficiency. Finally operating as a hydrostatic transmission increases transmission stiffness (i.e. driver response) and may improve driver feel in certain situations when compared to a conventional series hybrid transmission. To explore the novel blended hybrid architecture six transmissions were modeled and simulated.
Technical Paper
2014-09-30
Massimiliano Ruggeri, Carlo Ferraresi, Luca Dariz, Giorgio Malaguti
Abstract Functional safety requirements and solutions are more expensive when it comes to lower cost machines with less power but same functionalities with respect to big machines. The paper will show a real Electronic Control Unit (ECU) design of a machine controller, controlling both engine working point, transmission, and other utilities like PTO, 4WD, brakes and Differential Lock; the ECU was designed in accordance to ISO 25119 regulation, to meet AgPL = C or even D for some functionalities. The unit is a fully redundant electronic control unit with two CAN networks and some special safe state oriented mechanism, that allow the Performance Level C with less software analysis requirements compared with traditional solutions. All safety critical sensors are redounded and singularly diagnosable, all command effects are directly observable and most of commands are directly diagnosable. With a minimum extra-cost the hardware category for the most critical controls was brought to the category 4, thus theoretically allowing the Performance Level D achievement.
Technical Paper
2014-09-28
Chendi Sun, Xiaofei Pei
Abstract This paper presents how hardware-in-the-loop (HIL) simulations have been used for testing during the development of ABS (Anti-lock Braking System). The Labcar system of ETAS is a popular tool for HIL tests. The vehicle model which is built in Matlab/Simulink is downloaded to run in RTPC (Real-time PC). The Labcar software, Integration Platform (IP), can configure boards which is a link between the model and ABS ECU. In this paper, a classical logic threshold control algorithm is adopted in ABS ECU. Through Labcar Experiment Environment (EE) various parameters can be monitored and modified conveniently. The HIL test of ABS ECU is implemented on high or low - adhesion road respectively. The results show that, although response lag exists in the hydraulic braking system, the curves of velocity and pressure in wheel cylinders can be close to those on real road with proper adjustment of control parameters. So HIL simulations are invaluable, when considering the short development time required in the automotive industry.
Technical Paper
2014-09-28
Gunn Hwang, Axel Freiwald, Hyun-Sik Ahn
Abstract Currently major investments by Tier1 and vehicle manufacturers are made to implement and optimize safety critical automotive systems according to the ISO standard 26262 “Road vehicles functional safety”. The ISO 26262 standard describes methods to detect the safety critical faults of a system designed according to the rules of functional safety, but it does not describe how an actual implementation shall look like. Development of ISO 26262 standard compliant systems concentrates on optimizing and improving cost and performance in a competitive environment. More competitive and practical implementations use fewer additional hardware and software resources for safety control and error detection and have higher performance with less overhead. Microcontrollers already have implemented many safety related hardware functions, so called safety mechanisms to mitigate safety critical risks. Depending on how these safety mechanisms are used, functional safety compliant system can get optimized for cost and performance.
Technical Paper
2014-09-16
Shweta Sanjeev, Goutham Selvaraj, Patrick Franks, Kaushik Rajashekara
Abstract The transition towards More Electric Aircraft (MEA) architectures has challenges relating to integration of power electronics with the starter generator system for on-engine application. To efficiently operate the power electronics in the hostile engine environment at high switching frequency and for better thermal management, use of silicon carbide (SiC) power devices for a bi-directional power converter is examined. In this paper, development of a 50 kVA bi-directional converter operating at an ambient temperature of about 2000C is presented. The design and operation of the converter with details of control algorithm implementation and cooling chamber design are also discussed.
Technical Paper
2014-09-16
Fei Gao, Serhiy Bozhko, Greg Asher
Abstract Stability is a great concern for the Electrical Power System (EPS) in the More Electric Aircraft (MEA). It is known that tightly controlled power electronic converters and motor drives may behave as constant power loads (CPLs) which may produce oscillations and cause instability. The paper investigates the stability boundaries for dc multi-source EPS under different power sharing strategies. For each possible strategy the corresponding reduced-order models are derived. The impedance criterion is then applied to study the EPS stability margins and investigates how these margins are influenced by different parameters, such as main bus capacitance, generator/converter control dynamics, cabling arrangements etc. These results are also illustrated by the root contours of reduced-order EPS models. Theoretical results achieved in the paper are confirmed by the time-domain simulations.
Technical Paper
2014-09-16
Jon Zumberge, John Mersch
Cost and performance requirements are driving military and commercial systems to highly integrated, optimized systems which require more sophisticated, highly complex controls. To realize benefits and make confident decisions, the validation of both plant and control models becomes critical. To quickly develop controls for these systems, it is beneficial to develop models and determine the uncertainty of those models so as to predict performance and stability. A process of model validation for a boost circuit based on acceptance sampling is presented here. The validation process described in this paper includes the steps of defining requirements, performing a screening and exploration of the system, completing a system and parameter identification, and finally executing a validation test. To minimize the cost of experimentation and simulation, design of experiments is used extensively to limit the amount of data taken without losing information. One key contribution in this paper is the use of tolerance intervals as an estimation of model accuracy.
Technical Paper
2014-09-16
Jennifer C. Shaw, Patrick Norman, Stuart Galloway, Graeme Burt
Abstract Radical new electrically propelled aircraft are being considered to meet strict future performance goals. One concept design proposed is a Turboelectric Distributed Propulsion (TeDP) aircraft that utilises a number of electrically driven propulsors. Such concepts place a new and significant reliance on an aircraft's electrical system for safe and efficient flight. Accordingly, in addition to providing certainty that supply reliability targets are being met, a contingency analysis, evaluating the probability of component failure within the electrical network and the impact of that failure upon the available thrust must also be undertaken for architecture designs. Solutions that meet specified thrust requirements at a minimum associated weight are desired as these will likely achieve the greatest performance against the proposed emissions targets. This paper presents a Fault Tree Analysis (FTA) based design approach for the electrical system and thrust reliability analysis of TeDP aircraft architectures.
Technical Paper
2014-09-16
Brian C. Raczkowski, Benjamin Loop, Jason Wells, Eric Walters, Oleg Wasynczuk, Sean Field, Jason Gousy
Abstract Future more electric aircraft (MEA) architectures that improve electrical power system's (EPS's) source and load utilization will require advance stability analysis capabilities. Systems are becoming more complex with bidirectional flows from power regeneration, multiple sources per channel and higher peak to average power ratios. Unknown load profiles with large transients complicate common stability analysis techniques. Advancements in analysis are critical for providing useful feedback to the system integrator and designers of multi-source, multi-load power systems. Overall, a framework for evaluating stability with large displacement events has been developed. Within this framework, voltage transient bounds are obtained by identifying the worst case load profile. The results can be used by system designers or integrators to provide specifications or limits to suppliers. Subsystem suppliers can test and evaluate their design prior to integration and hardware development. By identifying concerns during the design phase, a more streamlined approach to hardware development can save on rework, integration delays and cost.
Viewing 1 to 30 of 4274

Filter

  • Range:
    to:
  • Year: