Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4398
2016-10-24
Event
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2016-10-03 ...
  • October 3-4, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems.
2016-05-01
Book
Richard Walter, Eric Walter
Modern vehicles have electronic control units (ECUs) to control various subsystems such as the engine, brakes, steering, air conditioning, and infotainment. These ECUs (or simply ‘controllers’) are networked together to share information, and output directly measured and calculated data to each other. This in-vehicle network is a data goldmine for improved maintenance, measuring vehicle performance and its subsystems, fleet management, warranty and legal issues, reliability, durability, and accident reconstruction. The focus of Data Acquisition from HD Vehicles Using J1939 CAN Bus is to guide the reader on how to acquire and correctly interpret data from the in-vehicle network of heavy-duty (HD) vehicles. The reader will learn how to convert messages to scaled engineering parameters, and how to determine the available parameters on HD vehicles, along with their accuracy and update rate. Written by two specialists in this field, Richard (Rick) P. Walter and Eric P.
2016-05-01
Journal Article
2015-01-9145
Abdullah AL-Refai, Osamah Rawashdeh, Rami Abousleiman
Abstract Lithium-Ion batteries are the standard portable power solution to many consumers and industrial applications. These batteries are commonly used in laptop computers, heavy duty devices, unmanned vehicles, electric and hybrid vehicles, cell phones, and many other applications. Charging these batteries is a delicate process because it depends on numerous factors such as temperature, cell capacity, and, most importantly, the power and energy limits of the battery cells. Charging capacity, charging time and battery pack temperature variations are highly dependent on the charging method used. These three factors can be of special importance in applications with strict charging time requirements or with limited thermal management capabilities. In this paper, three common charging methods are experimentally studied and analyzed. Constant-current constant-voltage, the time pulsed charging method, and the multistage constant current charging methods were considered.
2016-04-14
WIP Standard
J1859
This SAE Recommended Practice establishes uniform test procedures for determining input-output characteristics for those pilot-operated and mechanically actuated, modulating-type valves and through-type valves used in the service brake control system.
2016-04-14
Event
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2016-04-14
Event
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2016-04-13
Event
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2016-04-12
Event
Powertrain Electronics play a key role in meeting today's complex emissions and performance requirements, on-board diagnostics, legislated regulations, and product flexibility. This session explores the challenges and future prospects for powertrain controls, including on-board diagnostics, integration with transmissions, flash programming, service, software design and development, unit and system test, and electronics architecture today and in the future.
2016-04-08
Magazine
Software's role continues to expand Design teams use different technologies to create new software and link systems together. Emissions regulations and engine complexity With the European Commission announcing a Stage V criteria emissions regulation for off-highway, scheduled to phase-in as earlly as 2019, there will be an end to a brief era of harmonized new-vehicle regulations. Will this affect an already complex engine development process? Evaluating thermal design of construction vehicles CFD simulation is used to evaluate two critical areas that address challenging thermal issues: electronic control units and hot air recirculation.
2016-04-05
Technical Paper
2016-01-1218
Tsuyoshi Iguchi
Abstract Conventionally, it has not been possible to evaluate current and temperature in power control units (PCU) for hybrid electric vehicles (HEV) during vehicle operation without using an actual permanent magnet synchronous motor (PMSM). The research discussed in this paper developed a motor emulator to take the place of an actual motor, making it possible to conduct tests for the evaluation of current and temperature in PCU during vehicle operation without the need to use a motor. The motor emulator is provided with a hardware-in-the-loop (HIL) simulator that calculates motor models at high speed using a field programmable gate array (FPGA). The developed system models the motor in detail via the HIL simulator, while a 3-phase current generator accurately reproduces the transient current in the PCU during vehicle operation.
2016-04-05
Journal Article
2016-01-1221
Kiyoshi Ito, Takumi Shibata, Takashi Kawasaki
Abstract Driving motors for hybrid vehicles and electric vehicles require magnet wires that can endure use at high voltages of 650 V or more. The magnet wire is a main motor component with the electromagnetic steel sheets and magnets. Conventional motors generally assure insulation by using the two parts of the magnet wire and insulate paper. But this increases the motor space factor and hinders weight reduction. A new magnet wire with high insulation performance was used by forming thermoplastic resin onto an enameled layer in order to reduce the number of insulating parts and enhance motor performance. The magnet wire (High-Voltage Wire: HVW) composed of polyetheretherketone (PEEK) resin . HVW can withstand the forming load during motor manufacture, secures durability for the automobile motor operating environment (Automatic Transmission Fluid: ATF), high temperatures) and can maintain high-voltage characteristics.
2016-04-05
Technical Paper
2016-01-1220
Sinisa Jurkovic, Khwaja M. Rahman, Peter Savagian, Robert Dawsey
Abstract The Cadillac CT6 plug-in hybrid electric vehicle (PHEV) power-split transmission architecture utilizes two motors. One is an induction motor type while the other is a permanent magnet AC (PMAC) motor type referred to as motor A and motor B respectively. Bar-wound stator construction is utilized for both motors. Induction motor-A winding is connected in delta and PMAC motor-B winding is connected in wye. Overall, the choice of induction for motor A and permanent magnet for motor B is well supported by the choice of hybrid system architecture and the relative usage profiles of the machines. This selection criteria along with the design optimization of electric motors, their electrical and thermal performances, as well as the noise, vibration, and harshness (NVH) performance are discussed in detail. It is absolutely crucial that high performance electric machines are coupled with high performance control algorithms to enable maximum system efficiency and performance.
2016-04-05
Technical Paper
2016-01-1223
Yukiya Kashimura, Yuki Negoro
Abstract A second-generation power control unit (PCU) for a two-motor hybrid system is proposed. An optimally designed power module, which is a key component of the PCU, is applied to increase heat-resistant temperature, while the basic structure of the first generation is retained and the power semiconductor chip is directly cooled from the single side. In addition to the optimum design, by decreasing the power loss as well as increasing the heat-resistant temperature of the power semiconductors (IGBT: Insulated Gate Bipolar Transistor and FWD: Free Wheeling Diode), the proposed PCU has attained 25% higher power density and 23% smaller size compared to first-generation units, maintaining PCU efficiency (fuel economy). To achieve a high yield rate in the power module assembly process, a new screening technology is adopted at the initial stage of power module manufacturing.
2016-04-05
Technical Paper
2016-01-1224
Yosuke Osanai, Masaki Wasekura, Hideo Yamawaki, Yusuke Shindo
Abstract Reducing the loss of the power control unit (PCU) in a hybrid vehicle (HV) is an important part of improving HV fuel efficiency. Furthermore the loss of power devices (insulated gate bipolar transistors (IGBTs) and diodes) used in the PCU must be reduced since this amounts to approximately 20% of the total electrical loss in an HV. One of the issues for reducing loss is the trade-off relationship with reducing voltage surge. To restrict voltage surge, it is necessary to slow down the switching speed of the IGBT. In contrast, the loss reduction requires the high speed switching. One widely known method to improve this trade-off relationship is to increase the gate voltage in two stages. However, accurate and high-speed operation of the IGBT gate control circuit is difficult to accomplish. This research clarifies a better condition of the two-stage control and designed a circuit that improves this trade-off relationship by increasing the speed of feedback control.
2016-04-05
Technical Paper
2016-01-1229
Douglas Cesiel, Charles Zhu
Abstract The electric vehicle on-board charger (OBC) is responsible for converting AC grid energy to DC energy to charge the battery pack. This paper describes the development of GM’s second generation OBC used in the 2016 Chevrolet Volt. The second generation OBC provides significant improvements in efficiency, size, and mass compared to the first generation. Reduced component count supports goals of improved reliability and lower cost. Complexity reduction of the hardware and diagnostic software was undertaken to eliminate potential failures.
2016-04-05
Technical Paper
2016-01-1638
Eunhyek Joa, Kyongsu Yi, Kilsoo Kim
Abstract This paper presents the integrated chassis control(ICC) of four-wheel drive(4WD), electronic stability control(ESC), electronic control suspension(ECS), and active roll stabilizer(ARS) for limit handling. The ICC consists of three layers: 1) a supervisor determines target vehicle states; 2) upper level controller calculates generalized forces; 3) lower level controller, which is contributed in this paper, optimally allocates the generalized force to chassis modules. The lower level controller consists of two integrated parts, 1) longitudinal force control part (4WD/ESC) and 2) vertical force control part (ECS/ARS). The principal concept of both algorithms is optimally utilizing the capability of the each tire by monitoring tire saturation, with tire combined slip. By monitoring tire saturation, 4WD/ESC integrated system minimizes the sum of the tire saturation, and ECS/ARS integrated system minimizes the variance of the tire saturation.
2016-04-05
Journal Article
2016-01-1653
Zhenhai Gao, Jun Wang, Hongyu Hu, Dazhi Wang
Abstract Vehicle Longitudinal Control (VLC) algorithm is the basis function of automotive Cruise Control system. The main task of VLC is to achieve a longitudinal acceleration tracking controller, performance requirements of which include fast response and high tracking accuracy. At present, many control methods are used to implement vehicle longitudinal control. However, the existing methods are need to be improved because these methods need a high accurate vehicle dynamic model or a number of experiments to calibrate the parameters of controller, which are time consuming and costly. To overcome the difficulties of controller parameters calibration and accurate vehicle dynamic modeling, a vehicle longitudinal control algorithm based on iterative learning control (ILC) is proposed in this paper. The algorithm works based on the information of input and output of the system, so the method does not require a vehicle dynamics model.
2016-04-05
Journal Article
2016-01-0091
Hikaru Watanabe, Tsutomu Segawa, Takumi Okuhira, Hiroki Mima, Norishige Hoshikawa
Abstract This paper presents a custom integrated circuit (IC) on which circuit functions necessary for “Active Hydraulic Brake (AHB) system” are integrated, and its key component, “Current-to-Digital Converter” for solenoid current measurement. The AHB system, which realizes a seamless brake feeling for Antilock Brake System (ABS) and Regenerative Brake Cooperative Control of Hybrid Vehicle, and the custom IC are installed in the 4th-generation Prius released in 2015. In the AHB system, as linear solenoid valves are used for hydraulic brake pressure control, high-resolution and high-speed sensing of solenoid current with ripple components due to pulse width modulation (PWM) is one of the key technologies. The proposed current-to-digital converter directly samples the drain-source voltage of the sensing DMOS (double-diffused MOSFET) with an analog-to-digital (A/D) converter (ADC) on the IC, and digitizes it.
2016-04-05
Technical Paper
2016-01-0093
Haizhen Liu, Rui He, Jian Wu, Wenlong Sun, Bing Zhu
Abstract With the development of modern vehicle chassis control systems, such as Anti-Lock Brake System (ABS), Acceleration Slip Regulation (ASR), Electronic Stability Control (ESC), and Regenerative Braking System (RBS) for EVs, etc., there comes a new requirement for the vehicle brake system that is the precise control of the wheel brake pressure. The Electro-Hydraulic Brake system (EHB), which owns an ability to adjust four wheels’ brake pressure independently, can be a good match with these systems. However, the traditional control logic of EHB is based on the PWM (Pulse-Width Modulation), which has a low control accuracy of linear electromagnetic valves. Therefore, this paper presents a research of the linear electro-magnetic valve characteristic analysis, and proposes a precise pressure control algorithm of the EHB system with a feed forward and a PID control of linear electro-magnetic valves.
2016-04-05
Technical Paper
2016-01-0110
Mohammad Huq, Douglas McConnell
Abstract Adaptive Cruise Control (ACC) runs with a set of parameters that determine how the ACC performs. Some of these parameters are tunable to some degree through HMI and the rest are pre-determined. The proposed Behavior Trainable ACC (BTACC) is able to learn all these parameters from driving behavior of the driver. To develop BTACC adapted to the driver’s driving behavior, the ACC keeps collecting driving data such as set speed, acceleration, deceleration, headway settings, etc., of the vehicle over time and keeps updating the related parameters. After training is over, the driver is able to drive the vehicle in BTACC mode, when the vehicle would drive itself according to driving behavior of the driver, young or elderly, and thus, provide the drivers with a higher level of safety and comfort. BTACC can be embedded with an existing ACC module so that the drivers may choose either ACC or BTACC.
2016-04-05
Technical Paper
2016-01-0108
Jihas Khan
Abstract Advanced driver assistance features like Advanced Emergency Brake Assist, Adaptive Cruise Control, Blind Spot Monitoring, Stop and Go, Pedestrian Detection, Obstacle Detection and Collision Detection are becoming mandatory in many countries. This is because of the promising results received in reducing 75% of fatalities related to road accidents. All these features use RADAR in detecting the range, speed and even direction of multiple targets using complex signal processing algorithm. Testing such ECUs is becoming too difficult considering the fact that the RADAR is integrated in the PCB of ECU. Hence the simulation of RADAR sensor for emulation of various real world scenarios is not a preferred solution for OEMs. Furthermore, Tier ones are not interested in a testing solution where the real RADAR sensor is bypassed. This paper discusses such issues which include the validation of the most modern Electronic Scanning RADARs.
2016-04-05
Technical Paper
2016-01-0126
Philip Daian, Shinichi Shiraishi, Akihito Iwai, Bhargava Manja, Grigore Rosu
The Runtime Verification ECU (RV-ECU) is a new development platform for checking and enforcing the safety of automotive bus communications and software systems. RV-ECU uses runtime verification, a formal analysis subfield geared at validating and verifying systems as they run, to ensure that all manufacturer and third-party safety specifications are complied with during the operation of the vehicle. By compiling formal safety properties into code using a certifying compiler, the RV-ECU executes only provably correct code that checks for safety violations as the system runs. RV-ECU can also recover from violations of these properties, either by itself in simple cases or together with safe message-sending libraries implementable on third-party control units on the bus. RV-ECU can be updated with new specifications after a vehicle is released, enhancing the safety of vehicles that have already been sold and deployed.
2016-04-05
Technical Paper
2016-01-0266
Greg K. Caswell, James McLeish
The use of Micro Electro-Mechanical Systems (MEMS) for measuring accelerations, pressure, gyroscopic yaw rate and humidity in engine controls, inflatable restraint, braking, stability and other safety critical vehicle systems is increasing. Their use in these safety critical systems in high stress automotive environments makes ensuring their reliability and durability essential tasks, especially as the Vehicle System Functional Safety requirements of ISO-26262 are being implemented across the industry. A Design for Reliability (DfR) approach that applies Physics of Failure methods to evaluate and eliminate or mitigate susceptibilities to failure modes of a device during the design of a product is the most effective and efficient way to achieve Functional Safety levels of reliability-durability. MEMS packages exhibit several failure modes that can be predicted as a device is designed using modern Computer Aided Engineering (CAE) software tools.
2016-04-05
Technical Paper
2016-01-0611
Dejan Kihas, Daniel Pachner, Lubomir Baramov, Michael Uchanski, Priya Naik, Nassim Khaled
Abstract The interest for NOx estimators (also known as virtual sensors or inferential sensors) has increased over the recent years due to benefits attributed to cost and performance. NOx estimators are typically installed to improve On-Board Diagnostics (OBD) monitors or to lower bill of material costs by replacing physical NOx sensors. This paper presents initial development results of a virtual engine-out NOx estimator planned for the implementation on an ECM. The presented estimator consists of an airpath observer and a NOx combustion model. The role of the airpath observer is to provide input values for the NOx combustion model such as the states of the gas at the intake and exhaust manifolds. It contains a nonlinear mean-value model of the airpath suitably transformed for an efficient and robust implementation on an ECM. The airpath model uses available sensory information in the vehicle to correct predictions of the gas states.
2016-04-05
Technical Paper
2016-01-0614
Donald V. Johnson, Gregory Roth, Andrew Fedewa, Jeremy Kraenzlein, Xiaojian Yang
Abstract Delphi is developing a new combustion technology called Gasoline Direct-injection Compression Ignition (GDCI), which has shown promise for substantially improving fuel economy. This new technology is able to reuse some of the controls common to traditional spark ignition (SI) engines; however, it also requires several new sensors and actuators, some of which are not common to traditional SI engines. Since this is new technology development, the required hardware set has continued to evolve over the course of the project. In order to support this development work, a highly capable and flexible electronic control system is necessary. Integrating all of the necessary functions into a single controller, or two, would require significant up-front controller hardware development, and would limit the adaptability of the electronic controls to the evolving requirements for GDCI.
2016-04-05
Technical Paper
2016-01-0634
Kai-Lukas Bauer, Frank Gauterin
Abstract Optimization-based strategy planning for predictive optimal cruise control has the potential for significant improvements in passenger comfort and fuel efficiency. It is, however, associated with a high computational complexity that complicates its implementation in an electronic control unit. When implementing predictive cruise control, real-time capability must be ensured while maintaining optimal control performance in the presence of disturbance and model uncertainty. Real-time capability can be achieved either by a significant simplification of the optimization problem or by a layered control approach, combining the strategy planner with a low-level controller. Both approaches, however, are prone to deteriorate optimal control performance, particularly in the presence of disturbance. We present a model-predictive controller structure that extends the layered control approach by using the same optimization algorithm on two layers.
2016-04-05
Journal Article
2016-01-0319
David E. Verbitsky
Abstract Failure analysis (FA) and accelerated testing are essential tools used in mobility electronics. Yet, FA’s role is underestimated and underutilized. Its administration lacks standardization and support, esp., during multi-stress accelerated reliability testing (ART). Proposed three-stage systemic early FA (SEFA) methodology provides feedback using conventional and original systematic hierarchical complementary multidisciplinary comparative tools and methods focusing on prevalent early failures (EF). Subject matter result-oriented technical root-cause FA (RCFA) is a vital past of SEFA. This paper outlines three-phase RCFA methodology along with specific methods, tools, and examples related to ART. Presented EF classifications interpret EFs’ symptoms, mechanisms, and causes and propose corrective actions. Suitable RCFA-SEFA improve products and ART by precluding-resolving prevalent EF.
Viewing 1 to 30 of 4398

Filter

  • Range:
    to:
  • Year: