Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 15695
2017-04-04
Event
This session focuses on technologies such as advanced and partially mixed combustion, cooled EGR boosting, ignition and direct injection technologies, pressure boosting, intelligent combustion, thermal efficiency, fully variable valvetrains, and other new and developing technologies. Papers focused on waste heat recovery technologies should be submitted to HX102/103.
2017-04-04
Event
Separate sub-sessions cover powertrain control, calibration, and system-level optimization processes related to achieving stringent market fuel economy, emissions, performance, reliability, and quality demands. Topics include the control, calibration, and diagnostics of the engine, powertrain, and subsystems related to energy management in conventional and hybrid operation, considering the simultaneous optimization of hardware design parameters and control software calibration parameters.
2017-04-04
Event
Sub-sessions cover emissions measuring techniques and testing regimes. This includes new analysis techniques and the novel application of existing techniques, the comparison of existing and proposed testing regimes with real world experience, including modeling.
2017-04-04
Event
Papers are invited for this session on particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Papers are also invited on the topics of the environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This includes particulate emissions from both gasoline and diesel engines.
2017-04-04
Event
Papers are invited for this session on the general topics of combustion engine gaseous emissions (regulated and non-regulated). This includes papers discussing well-to-wheels CO2 production for alternative technologies, fuel economy and all greenhouse gas emission research with their primary focus on engine, emissions, fuels, control or related components or sub-components within. It also includes hydrocarbon species and specific NOx species production over aftertreatment devices as a result of changes in fuel specification and the inclusion of bio-derived components and consideration of secondary emissions production (slip) as a result of aftertreatment. (Papers focusing on vehicle-system approach on fuel economy should be directed to PFL370.)
2017-04-04
Event
Papers are invited on technology developments and the integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in sensors and control systems will also be considered.
2017-04-04
Event
Papers on the following exhaust emissions control topics will be considered: System integration and durability, advances in catalyst substrates, advances in particulate filter substrates, advances in NOx reduction technology, and on-board measurement and control.
2017-04-04
Event
Papers cover exhaust aftertreatment system models, as well as their validation and application. Technologies encompassed include DOC, HC Trap, DPF, GPF, LNT, TWC, SCR, SCRF, ammonia oxidation catalysts, hybrid or combined catalysts, urea-water solution spray dynamics, and mixture non-uniformity. Modeling aspects range from fundamental, 3D models of individual components to system level simulation, optimization, variation, degradation, and control.
2016-11-30 ...
  • November 30-December 2, 2016 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2016-11-17
Event
Papers in this session pertain to studies of exhaust emission control and the emission effects from fuels, engine controls, engine design, combuston quality, catalytic converters, diesel particulate filters, and other aftertreatment. The focus of the session is on reducing emissions and meeting international emission standards.
2016-11-17
Event
This session includes papers focused on the gaseous and particulate emissions performance from operating small engines, both diesel and gasoline on oxygenated fuel blends.
2016-11-16
Event
Papers in this session pertain to studies of exhaust emission control and the emission effects from fuels, engine controls, engine design, combuston quality, catalytic converters, diesel particulate filters, and other aftertreatment. The focus of the session is on reducing emissions and meeting international emission standards.
2016-11-16
Event
Papers in this session pertain to studies of exhaust emission control and the emission effects from fuels, engine controls, engine design, combuston quality, catalytic converters, diesel particulate filters, and other aftertreatment. The focus of the session is on reducing emissions and meeting international emission standards.
2016-11-16
Event
Papers in this session pertain to studies of exhaust emission control and the emission effects from fuels, engine controls, engine design, combuston quality, catalytic converters, diesel particulate filters, and other aftertreatment. The focus of the session is on reducing emissions and meeting international emission standards.
2016-11-16 ...
  • November 16-18, 2016 (8:30 a.m. - 4:30 p.m.) - Tysons, Virginia
Training / Education Classroom Seminars
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
2016-11-08
Technical Paper
2016-32-0065
Yoshinori Nakao, Yota Sakurai, Atsushi Hisano, Masahito Saitou, Masahide Kazari, Takahito Murase, Kozo Suzuki
Euro5 is a new regulation on exhaust gases from motorcycles and will be implemented in 2020. Total Hydrocarbon (THC) is among the regulated exhaust gases. This paper is focused on the emission behavior of THC. In the transient state at engine start, port injection from the upstream makes it difficult to control the amount of cylinder fuel supply for each cycle. This is one of the main reasons for THC emission. In this study, changing the fuel injection specifications could lead to THC emission reduction. The THC emission behavior was investigated. A change in the position of injection from upstream to downstream could determine the amount of the cylinder fuel supply at the engine start. This change could eliminate misfire, thereby reducing THC emission. However, the diameters of the sprayed particles that flow directly into the cylinders are large. Hence, only changing the injection position to downstream could have a negative effect at engine start.
2016-11-08
Technical Paper
2016-32-0072
Fino Scholl, Paul Gerisch, Denis Neher, Maurice Kettner, Thorsten Langhorst, Thomas Koch, Markus Klaissle
One promising alternative for meeting stringent NOx limits while attaining high engine efficiency in lean-burn operation are NOx storage catalysts (NSC), an established technology in passenger car aftertreatment systems. For this reason, a NSC system for a stationary single-cylinder CHP gas engine with a rated electric power of 5.5 kW comprising series automotive parts was developed. Main aim of the work presented in this paper was maximising NOx conversion performance and determining the overall potential of NSC aftertreatment with regard to min-NOx operation. The experiments showed that both NOx storage and reduction are highly sensitive to exhaust gas temperature and purge time. While NOx adsorption rate peaks at a NSC inlet temperature of around 290 °C, higher temperatures are beneficial for a fast desorption during the regeneration phase. Combining a relatively large catalyst (1.9 l) with a small exhaust gas mass flow leads to a low space velocity inside the NSC.
2016-11-08
Technical Paper
2016-32-0076
Rahul Sharma, Srikanth setlur
The effect of ethanol blended gasoline fuels on Vehicular emissions was investigated in a spark ignited single cylinder carbureted vehicle meeting BSIII emission norms. The effect of fuel blended with 10(E10) & 20(E20) by percentage ethanol by volume; was studied on Type 1 vehicular mass emissions in World Harmonized Motorcycle Test Cycle (WMTC) as well as Indian drive cycle (IDC). These cycles are simulation of real driving conditions. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and increases leaning effect. It has been observed that in IDC, addition of ethanol reduces CO up to 41%, while THC emissions decreases by 9%. Tail pipe NOx reduces up to 12%. In WMTC Cycle, the CO reduction is up to 32%, THC emission is increased by 30%. NOx emissions on WMTC cycle decrease with the use of E10 by 6% while increase with the use of E20 by 7%. The blended fuels decrease fuel economy by 6~8% on these cycles owing to their lower calorific value
2016-11-08
Technical Paper
2016-32-0070
Toyofumi Tsuda, Kazuya Miura, Akio Hikasa, Keiji Hosoi, Fumikazu Kimata
Automotive catalyst has to have good durability, i.e. has to keep sufficient catalytic performance even after thermal degradation, therefore large amounts of PGMs such as Pt, Pd, and Rh, should be loaded on the catalyst substrate. Exhaust gas heat deteriorates catalyst due to sintering of the PGM particles and decrease of the active surface area. It is important to reduce PGM load, therefore many researchers have investigated to satisfy both PGM  load reduction and enough durability by using metal / support interactions, or controlling the nano-structure of metal particles. We found that Pt ions form platinum-hydrate cluster in hexahydroxyplatinate(IV) (Pt(OH)6・H2O) nitric acid solution, and the Pt-hydrate cluster size can be controlled by Pt and nitric acid concentration, and solution temperature.
2016-11-08
Technical Paper
2016-32-0075
Srikanth setlur, Satish vemuri, C Subramoniam, Rahul Sharma
In a diverse country like India, quality of fuel varies from one region to another region. This study explores the effect of various ethanol fuel mix on a single cylinder Closed loop fuel injected SI vehicle which is EuroIII complaint. Fuels blended with 10(E10) & 20(E20) percentage of ethanol by volume; were taken up to study their effect on vehicular mass emissions in World Harmonized Motorcycle Test Cycle (WMTC).The cycle is a simulation to real world driving conditions. In WMTC Cycle, maximum CO emissions were obtained with E10 fuel which showed an increase of 13%. THC emissions decreased by 10% & NOx emissions remained the same when the ethanol percentage increases. Fuel economy decreases by 5% with use of E20 on the cycle. Further this paper investigates the various factors like AFR, CAT light off etc, which are responsible for change in tail pipe emissions.
2016-11-08
Technical Paper
2016-32-0055
Carlos Alberto Romero, Luz Adriana Mejia, Yamid Carranza
A Design of experiments methodology was carried out to investigate the effects of compression ratio, cylinder head material, and fuel composition on the engine speed, fuel consumption, warm-up time, and emissions of a carbureted single cylinder air-cooled spark ignited engine. The work presented here is aimed at finding out the sensitivity of engine responses, as well as the optimal combination among the aforementioned parameters. To accomplish this task two cylinder heads, one made of aluminum and the second one of cast iron, were manufactured; an antechamber-type adapter for the spark plug to modify the combustion chamber volume was used, and two ethanol/gasoline blends containing 10 and 20 volume percent ethanol were prepared. Engine performance was evaluated based on the changes in engine speed at idle conditions. Regarding the exhaust gas emissions, the concentrations of CO2, CO, and HC were recorded.
2016-11-08
Technical Paper
2016-32-0066
P A Lakshminarayanan, S. Aswin
ABSTRACT Particulates from diesel engine consisting of particles of carbon, sulphates, oil, fuel and water are measured by filtering a sample diluted in a partial or full flow tunnel according to strict standards and weighing them. However, these methods suffer from high initial and running costs. On the other hand, filter smoke meters measure the light reflected from a filter paper through which a known volume of exhaust gas is passed and Opacity meters measure light absorbed by a standard column of exhaust. They measure visible black smoke easily at reasonable expenditure. Today, these simple instruments are highly developed to control measurement noise, resolution and repeatability, and can be used to estimate carbon soot precisely.
2016-11-08
Technical Paper
2016-32-0067
Akira Miyamoto, Kenji Inaba, Yukie Ishizawa, Manami Sato, Rei Komuro, Masashi Sato, Ryo Sato, Patrick Bonnaud, Ryuji Miura, Ai Suzuki, Naoto Miyamoto, Nozomu Hatakeyama, Masanori Hariyama
On the basis of extensive experimental works about heterogeneous catalysts, the authors have tried to develop a variety of software for the design of automotive catalysts such as ultra-accelerated quantum molecular dynamics (UA-QCMD) which is 10,000,000 times faster than the conventional first principles molecular dynamics(1-3), mesoscopic modeling software for supported catalysts(POCO2), and mesoscopic sintering simulator SINTA(4,5) to calculate sintering behavior of both precious metal such as Pt, Pd, Rh and support such as Al2O3, ZrO2, CeO2, or CeO2-ZrO2 We also have integrated these softwares to develop multiscale, multiphysics simulator for the design of automotive catalysts. The method was confirmed to be effective for a variety of important catalytic reactions in the automotive emission control.
2016-11-08
Technical Paper
2016-32-0068
FNU Joel Prince Lobo, James Howard Lee, Eric Oswald, Spenser Lionetti, Robert Garrick
The performance and exhaust emissions of a commercially available, propane fueled, air cooled engine with Electronic Fuel Injection (EFI) were investigated by varying relative Air to Fuel Ratio (λ), spark timing, and Compression Ratio (CR). Varying λ and spark timing was accomplished by modifying the EFI system using TechniCAL Industries’ engine development software. The CR was varied through using pistons with different bowl sizes. Strong relationships were recorded between λ and spark timing and the resulting effect these parameters have on engine performance and emissions. Lean operation (λ > 1) has the potential to significantly reduce NOx production (3,000 PPM down to 300 PPM). Unfortunately, it also reduces engine performance by up to an order of magnitude (31 Nm down to 3 Nm).
Viewing 1 to 30 of 15695

Filter

  • Range:
    to:
  • Year: