Viewing 1 to 30 of 15975
2017-12-18 ...
  • December 18-20, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
2017-11-13 ...
  • November 13-15, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
2017-10-10 ...
  • October 10-11, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
All gasoline powered vehicles and equipment create exhaust and evaporative and refueling emissions. Unlike exhaust emissions, which occur only when the engine is operating, evaporative emissions (evap emissions) occur all the time. Controlling evap emissions to PZEV levels is as challenging as controlling exhaust emissions. It becomes even more important in the case of plug-in hybrid electric vehicles (PHEV) and extended range electric vehicles (EREV) which generate evaporative fuel vapors, but have no place to burn/consume the vapors when the engine does not operate for extended periods of time.
2017-10-06 ...
  • October 6, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Designing more efficient and robust emission control components and exhaust systems results in more efficient performance, reduced backpressure and fuel penalty, and higher conversion efficiency. This course will help you to understand the motion of exhaust flow in both gasoline and diesel emission control components including flow-through and wall-flow devices such as catalytic converters, NOx adsorbers, diesel oxidation catalysts, diesel particulate filters as well as flow through the overall exhaust system.
2017-09-25 ...
  • September 25, 2017 (8:30 a.m. - 4:30 p.m.) - Garden Grove, California
Training / Education Classroom Seminars
On-board diagnostics, required by governmental regulations, provide a means for reducing harmful pollutants into the environment. Since being mandated in 1996, the regulations have continued to evolve and require engineers to design systems that meet strict guidelines. This one day seminar is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
2017-09-11 ...
  • September 11-12, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Meeting the requirements of heavy-duty engine emissions regulations is a challenge for all engine manufacturers. Since the introduction of Exhaust Gas Recirculation (EGR) in medium and heavy-duty diesel engines, these systems have become more sophisticated and tightly integrated with emission control systems. This 2-day seminar will explore the advantages and disadvantages of EGR and the most effective implementation of various EGR systems. This seminar will begin by defining EGR and why it is used in diesel engines, along with an explanation of the mechanisms by which EGR is able to reduce NOx.
2017-08-15 ...
  • August 15-16, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Stringent requirements of reduced NOx emission limits in the US have presented engineers and technical staff with numerous challenges. Several in-cylinder technical solutions have been developed for diesel engines to meet 2010 emission standards. These technologies have been optimized and have yielded impressive engine-out results in their ability to reduce emissions to extremely low levels. However, current and state-of-the-art in-cylinder solutions have fallen short of achieving the limits imposed on diesel emissions for 2010.
Technical Paper
Alberto Boretti
The contribution analyses the Volkswagen emission scandal and the impacts on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based mobility. The operation of the United States Environmental Protection Agency, Volkswagen and the United States prosecutor sparked by the action of the International Council on Clean Transportation is forcing the Original Equipment Manufacturers towards an everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) flavor and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.
Technical Paper
Tushar Narendra Puri lng, Lalitkumar Ramujagir Soni lng, Sourabh Deshpande
The infliction of rigorous emission norms across the world has made the automobile industry to focus and dwell upon researches to reduce the engine emissions of diesel engine. Variation in injection timing has better influence on reduction of engine emissions. This paper deal with numerical simulation of 4-stroke, single cylinder, naturally aspirated, direct injection diesel engine running at 1640 RPM using CONVERGE_STUDIO CFD tool. As the piston and bowl geometry considered in this work is symmetric only 45 degree sector engine model considered for simulation over 360 degree complete engine model. To study the combustion and inside flow physics taking place inside engine cylinder more accurately and to reduce computational time, simulation from 20 bTDC during compression stroke up to 140 aTDC in the power stroke is considered as available in the literature.
2017-06-06 ...
  • June 6-8, 2017 (2 Sessions) - Live Online
  • November 14-16, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
Technical Paper
Jobin Puthuparampil, Henry Pong, Pierre Sullivan
Abstract Large-scale emergency or off-grid power generation is typically achieved through diesel or natural gas generators. To meet governmental emission requirements, emission control systems (ECS) are required. In operation, effective control over the generator’s acoustic emission is also necessary, and can be accomplished within the ECS system. Plug flow mufflers are commonly used, as they provide a sufficient level of noise attenuation in a compact structure. The key design parameter is the transmission loss of the muffler, as this dictates the level of attenuation at a given frequency. This work implements an analytically decoupled solution, using multiple perforate impedance models, through the transfer matrix method (TMM) to predict the transmission loss based on the muffler geometry. An equivalent finite element model is implemented for numerical simulation. The analytical results and numerical results are then evaluated against experimental data from literature.
Technical Paper
Jiri Navratil, Warren Seeley, Peng Wang, Shriram Siravara
Abstract The ability to accurately predict exhaust system acoustics, including transmission loss (TL) and tailpipe noise, based on CAD geometry has long been a requirement of most OEM’s and Tier 1 exhaust suppliers. Correlation to measurement data has been problematic under various operating conditions, including flow. This study was undertaken to develop robust modelling technique, ensuring sensible correlation between the 1-D models and test data. Ford use Ricardo WAVE as one of their 1-D NVH tools, which was chosen for the purpose of this benchmark study. The most commonly used metrics for evaluating the acoustical performance of mufflers are insertion loss (IL), TL, and noise reduction (NR). TL is often the first step of analysis, since it represents the inherent capability of the muffler to attenuate sound if both the source and termination are assumed to be anechoic. It can also be reliably measured and numerically simulated without having to connect to an engine.
WIP Standard
SAE J1979/ISO 15031-5 set includes the communication between the vehicle's OBD systems and test equipment implemented across vehicles within the scope of the legislated emissions-related OBD.
Viewing 1 to 30 of 15975


  • Range:
  • Year: