Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 16117
2017-12-18 ...
  • December 18-20, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
2017-11-14 ...
  • November 14-16, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2017-11-13 ...
  • November 13-15, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
2017-10-24
Journal Article
2017-01-9378
Eric Kurtz, Christopher J. Polonowski
Abstract The design of modern diesel-powered vehicles involves optimization and balancing of trade-offs for fuel efficiency, emissions, and noise. To meet increasingly stringent emission regulations, diesel powertrains employ aftertreatment devices to control nitrogen oxides, hydrocarbons, carbon monoxide, and particulate matter emissions and use active exhaust warm-up strategies to ensure those devices are active as quickly as possible. A typical strategy for exhaust warm-up is to operate with retarded combustion phasing, limited by combustion stability and HC emissions. The amount of exhaust enthalpy available for catalyst light-off is limited by the extent to which combustion phasing can be retarded. Diesel cetane number (CN), a measure of fuel ignition quality, has an influence on combustion stability at retarded combustion phasing. Diesel fuel in the United States tends to have a lower CN (both minimum required and average in market) than other countries.
2017-10-24
Journal Article
2017-01-9377
Senthil Ramalingam, Silambarasan Rajendran
Abstract Biodiesel as an alternative diesel fuel prepared from vegetable oils or animal fats has attracted more and more attention because of its renewable and environmental friendly nature. Many recent studies shows that 20% proportion of biodiesel-diesel blend (B20) can substantially reduce the hydrocarbon (HC), carbon monoxide (CO) and smoke emissions. However, there is a slight increase in NOx emission for B20 than that of diesel and it was a barrier to market expansion. The addition of antioxidant additives was the most effective method to mitigate the NOx emission. Hence, in this paper experimental investigation has been carried out to mitigate the NOx emission in Annona biodiesel (A20) operated diesel by addition of antioxidant additives. The antioxidant additives such as p-phenylenediamine, A-tocopherol acetate and L-ascorbic acid were used in the present investigation. In recent years Annona biodiesel has been considered as potential novel renewable energy source in India.
2017-10-10 ...
  • October 10-11, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
All gasoline powered vehicles and equipment create exhaust and evaporative and refueling emissions. Unlike exhaust emissions, which occur only when the engine is operating, evaporative emissions (evap emissions) occur all the time. Controlling evap emissions to PZEV levels is as challenging as controlling exhaust emissions. It becomes even more important in the case of plug-in hybrid electric vehicles (PHEV) and extended range electric vehicles (EREV) which generate evaporative fuel vapors, but have no place to burn/consume the vapors when the engine does not operate for extended periods of time.
2017-10-08
Technical Paper
2017-01-2405
Christophe Chaillou, Alexandre Bouet, Arnaud Frobert, Florence Duffour
Fuels from crude oil are the main energy vectors used in the transport sector but these fuels associated to CI engines are nowadays often criticized. Nevertheless, engine and fuel co-research is one of the main leverage to reduce both CO2 footprint and criteria pollutants. CI engines, with gasoline-like fuels, are a promising way for NOx and particulates emission abatement while keeping lower CO2 emission. To introduce a new fuel/engine technology, investigations of pollutants are mandatory. Previous work [1] already studied the behavior of low RON gasoline soot generated with a CI engine. The aim of this paper is to assess the impact of such fuel/engine technology on the HC emissions and on the DOC behavior. HC speciation is performed upstream and downstream DOC. Warm-up and efficiency are also tested for different operating conditions. Then, exothermal capacities are considered to ensure high level of temperature for DPF regeneration.
2017-10-08
Technical Paper
2017-01-2369
Prakash Arunachalam, Martin Tuner, Per Tunestal, Marcus Thern
Humid air motor (HAM) is an engine operated with humidified inlet charge. System simulations study on HAM showed the waste heat recovery potential over a conventional system. An HAM setup was constructed, to comprehend the potential benefits in real-time, the HAM setup was built around a 13-litre six cylinder Volvo diesel engine. The HAM engine process is explained in detail in this paper. Emission analysis is also performed for all three modes of operation. The experiments were carried out at part load operating point of the engine to understand the effects of humidified charge on combustion, efficiency, and emissions. Experiments were conducted without EGR, with EGR, and with humidified inlet charge. These three modes of operation provided the potential benefits of each system. Exhaust heat was used for partial humidification process. Results show that HAM operation, without compromising on efficiency, reduces NOx and soot significantly over the engine operated without EGR.
2017-10-08
Technical Paper
2017-01-2384
Ijhar H. Rusli, Svetlana Aleksandrova, Humberto Medina, Stephen F. Benjamin
The effect of the residual swirl from the turbocharger turbine on the catalyst flow distribution has been investigated experimentally and numerically. A swirling flow rig with a moving-block swirl generator was used to generate swirling flow in a sudden expansion diffuser with a wash-coated diesel oxidation catalyst (DOC) downstream. Hot-wire anemometry (HWA) was used to measure the axial and tangential velocities of the swirling flow upstream of the diffuser expansion and the axial velocity downstream the monolith. Pressure along the diffuser wall was measured using Scanivalve pressure scanners. With no swirl, the results show that the flow is highly non-uniform in the catalyst monolith with maximum velocities near the diffuser axis. High non-uniformity is also exhibited at high swirl levels with highest velocities near the diffuser wall. An intermediate swirl level exists where the flow is uniform.
2017-10-08
Technical Paper
2017-01-2249
Chen Wang, Tianyou Wang, Kai Sun, Zhen Lu, Yong Gui
Clean combustion is critical for marine engines to meet the Tier III emission regulation. In this paper, the effects of EGR and injection strategies (including injection pressure, injection timing as well as multiple injection technology) on the performance and emissions of a 2-stroke, low speed marine diesel engine were investigated by using computational fluid dynamics (CFD) simulations to reach the IMO Tier III NOx emissions target and reduce the fuel consumption rate. Due to the large length scale of the marine engine, RANS simulation was performed in combination with the CTC-SHELL combustion model. Based on the simulation model, the variation of the cylinder pressure curve, the average temperature in the cylinder, the combustion heat release rule and the emission characteristics were studied.
2017-10-08
Technical Paper
2017-01-2398
Bei Liu, Xiaobei Cheng, Jialu Liu, Han Pu, Li Yi
Based on a 4 cylinder turbocharged diesel engine, the research aims at studying the influence of some the fuel injection timing, fuel injection pressure and the ratio of pilot injection fuel to the engine combustion and emission formation under the condition of single injection and pilot injection ,respectively ,which the main focus on the emission characteristics of particles .The results show that the early-injection PPC formed by single injection can reduce the quantity and quality and GMD of particles obviously. However, when the injection timing is too early, the quantity of particles will rise as normal mode. The effect of injection pressure on particles is significant. The quantity of particles will increase under the condition of PPC, but the quality and GMD of particles is first decrease and the increase. The curve of size distribution of particles displays three peaks shape.
2017-10-08
Technical Paper
2017-01-2383
Guoyang Wang, Jun Zhang, Bo Yang, Chuandong Li, Shi-Jin Shuai, Shi Yin, Meng Jian
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
2017-10-08
Technical Paper
2017-01-2190
Alessandro D'Adamo, Marco Del Pecchia, Sebastiano Breda, Fabio Berni, Stefano Fontanesi, Jens Prager
CFD simulations of reacting flows are fundamental investigation tools used to predict combustion behaviour and pollutants formation in modern spark-ignition internal combustion engines. Most of the flamelet-based combustion models adopted in current simulations use the fuel/air/residual laminar flame speed as a background to predict the turbulent flame speed. This in turn is a fundamental requirement to model the effective burn rate. The consolidated approach in engine combustion simulations relies on the adoption of empirical correlations for laminar flame speed, which are derived from fitting activity of combustion experiments. However, these last are conducted at largely different pressure and temperature ranges from those encountered in engines: for this reason, correlation extrapolation at engine conditions is inevitably accepted and relevant differences between proposed correlations emerge even for the same fuel and conditions.
2017-10-08
Technical Paper
2017-01-2247
Wenbin Zhang, Haichun ding, Shijin Shuai, Bin Zheng, Alex Cantlay, Vinod Natarajan, Zhang Song ZHAN, Yunping Pu
Gasoline direct injection (GDI) engines have been developed rapidly in recent years, driven by stringent legislative requirements on vehicle fuel efficiency and emissions. However, one challenge facing GDI is the formation of particulate emissions, particularly with the presence of injector tip deposits. The Chinese market features some gasoline fuels that contain no detergent additives and are prone to deposit formation, which can affect engine performance and emissions. The use of detergent additives to mitigate the formation of injector deposits in a GDI engine was investigated in this study by testing a 1.5L turbocharged GDI engine available in the Chinese market. The engine was operated both on base gasoline and on gasoline dosed with detergent additives to evaluate the effect on injector deposit formation and engine performance and emissions.
2017-10-08
Technical Paper
2017-01-2388
Ahmad Khalfan, Gordon Andrews, Hu Li
The emissions from vehicles in real world driving are of current concern, as they are often higher than on legislated test cycles and this may explain why air quality in cities has not improved in proportion to the reduction in automotive emissions. This has led to the Real Driving Emissions (RDE) legislation in Europe. RDE involves journeys of about 90km with roughly equal proportion of urban, rural and motorway driving. However, air quality exceedances occur in cities with urban congested traffic driving as the main source of the emissions that deteriorate the air quality. Thus the emissions measured on RDE journeys may not be relevant to air quality in cities. A Temet FTIR and Horiba exhaust mass flow measurement system was used for the mass emissions measurements in a Euro 4 SI vehicle. A 5km urban journey on a very congested road was undertaken 29 times at various times so that different traffic congestion was encountered.
2017-10-08
Technical Paper
2017-01-2287
Aniseh Abdalla, Guoyang Wang, Jun Zhang, Shi-Jin Shuai
Emission control technologies are required to achieve stringent emission regulations such as Beijing 6 (equivalent to Europe 6). In order to meet Europe 6 emission regulation, diesel oxidation catalyst (DOC) upstream of catalyzed diesel particulate filter (CDPF) with supplementary fuel injection (hydrocarbon injection (HCI)) are used for the X7 diesel engine to control the particulate matter (PM) for a heavy-duty diesel engine. This study investigated soot loading and active regeneration process in a CDPF by using secondary fuel injection in order to enhance exothermal heat which is needed to raise the CDPF temperature. The injected fuel is burnt in a DOC where the injector is mounted in the tailpipe upstream of DOC.
2017-10-08
Technical Paper
2017-01-2182
Xikai Liu, Xingyu Liang, Yonge Wu, Yuesen Wang
According to the study of the soot emission in marine diesel, ,a new reduced mechanism for n-heptane was constructed to describe the combustion process in diesel engine by using sensitivity analysis.Furthermore,verifying the ignition delay time,the laminar flame speed,the flame propagation distance and species profiles in combustion process by using Chemkin Pro in different pressure(13.5atm and 42 atm),initial temperatures and equivalence ratio(0.5 and 1.0).Then,compare the simulated result with the experiment data and the simulated result by using LLNL(lawrence livermore national laboratory)detail mechanism and SKLE(state key laboratory of engine)mechanism.It is demonstrated that the reduced mechanism can not describe the ignition delay time in low temperature.And then,the reduced mechanism was adjusted and optimized to make it more close to the experiment data,and the reduced mechanism were able to predict ignition delay time,laminar flame speed,flame propagation distance and species profiles.The final reduced n-heptane mechanism are more compact compare with the current detailed mechanisms in literature.Thus,this reduced n-heptane mechanism can reduce the pressure of calculation and save the calculation time.
2017-10-08
Technical Paper
2017-01-2194
Mateusz Pucilowski, Mehdi Jangi, Sam Shamun, Martin Tuner, Xue-Song Bai
Experimental heavy-duty DICI methanol engine is studied under high compression ratio conditions (CR=27). The fuel is injected with common-rail injector close to the top-dead-center (TDC) position with three different injector pressures, leading to a spray formation causing a so called wall-wetting. Numerical simulations using RANS/LPT/WSR and PDF models are employed to investigate the local conditions of the injection and combustion process. The CFD results are compared with the pressure trace and emissions from the metal engine experiment. It is shown that the simulations captured the same trend of increased amount of unburned hydrocarbons at higher injection pressures. Moreover, the intake temperature adjustments were required to correctly capture the ignition delay time when WSR model was used, whereas with the PDF method such adjustments were not needed.
2017-10-08
Technical Paper
2017-01-2232
Liming Cao, Ho Teng, Ruigang Miao, Xuwei Luo, Tingjun Hu, Xianlong Huang
Atkinson cycle realized with a late intake valve closing (LIVC) and Miller cycle achieved with an early intake valve closing (EIVC) have been recognized as effective approaches for improving the gasoline engine fuel economy. In both Atkinson and Miller cycles, the engine can be designed with a higher geometric compression ratio for increasing the expansion work and the effective compression ratio is governed by the intake valve close (IVC) timing for the knock control. Duration of the intake event and IVC timing affect not only the pumping loss during the gas exchange, but also have strong influences on the friction torques of the intake cams and the turbulence intensities for the in-cylinder charge motion. The latter governs duration of combustion and EGR tolerance, both of which have impacts on the engine thermal efficiency.
Viewing 1 to 30 of 16117

Filter

  • Range:
    to:
  • Year: