Criteria

Text:
Display:

Results

Viewing 1 to 30 of 8327
2017-04-04
Event
Papers are invited for this session on particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Papers are also invited on the topics of the environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This includes particulate emissions from both gasoline and diesel engines.
2017-04-04
Event
Papers are invited for this session on the general topics of combustion engine gaseous emissions (regulated and non-regulated). This includes papers discussing well-to-wheels CO2 production for alternative technologies, fuel economy and all greenhouse gas emission research with their primary focus on engine, emissions, fuels, control or related components or sub-components within. It also includes hydrocarbon species and specific NOx species production over aftertreatment devices as a result of changes in fuel specification and the inclusion of bio-derived components and consideration of secondary emissions production (slip) as a result of aftertreatment. (Papers focusing on vehicle-system approach on fuel economy should be directed to PFL370.)
2017-04-04
Event
Papers are invited on technology developments and the integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in sensors and control systems will also be considered.
2017-04-04
Event
Papers on the following exhaust emissions control topics will be considered: System integration and durability, advances in catalyst substrates, advances in particulate filter substrates, advances in NOx reduction technology, and on-board measurement and control.
2016-11-17
Event
This session includes papers focused on the gaseous and particulate emissions performance from operating small engines, both diesel and gasoline on oxygenated fuel blends.
2016-11-08
Technical Paper
2016-32-0072
Fino Scholl, Paul Gerisch, Denis Neher, Maurice Kettner, Thorsten Langhorst, Thomas Koch, Markus Klaissle
One promising alternative for meeting stringent NOx limits while attaining high engine efficiency in lean-burn operation are NOx storage catalysts (NSC), an established technology in passenger car aftertreatment systems. For this reason, a NSC system for a stationary single-cylinder CHP gas engine with a rated electric power of 5.5 kW comprising series automotive parts was developed. Main aim of the work presented in this paper was maximising NOx conversion performance and determining the overall potential of NSC aftertreatment with regard to min-NOx operation. The experiments showed that both NOx storage and reduction are highly sensitive to exhaust gas temperature and purge time. While NOx adsorption rate peaks at a NSC inlet temperature of around 290 °C, higher temperatures are beneficial for a fast desorption during the regeneration phase. Combining a relatively large catalyst (1.9 l) with a small exhaust gas mass flow leads to a low space velocity inside the NSC.
2016-11-08
Technical Paper
2016-32-0068
FNU Joel Prince Lobo, James Howard Lee, Eric Oswald, Spenser Lionetti, Robert Garrick
The performance and exhaust emissions of a commercially available, propane fueled, air cooled engine with Electronic Fuel Injection (EFI) were investigated by varying relative Air to Fuel Ratio (λ), spark timing, and Compression Ratio (CR). Varying λ and spark timing was accomplished by modifying the EFI system using TechniCAL Industries’ engine development software. The CR was varied through using pistons with different bowl sizes. Strong relationships were recorded between λ and spark timing and the resulting effect these parameters have on engine performance and emissions. Lean operation (λ > 1) has the potential to significantly reduce NOx production (3,000 PPM down to 300 PPM). Unfortunately, it also reduces engine performance by up to an order of magnitude (31 Nm down to 3 Nm).
2016-11-08
Technical Paper
2016-32-0093
Denis Neher, Fino Scholl, Maurice Kettner, Danny Schwarz, Markus Klaissle, Blanca Giménez Olavarria PhD
Combustion temperature represents the driving parameter for NOx emissions. Lean burn operation allows engines to reduce combustion temperature due to relatively high heat capacity of the excess air. Lean operating cogeneration engines, however, need additionally to retard ignition timing to meet NOx emission standards. The late combustion phasing leads to a further deviation from the ideal Otto cycle, causing losses in engine efficiency. When substituting a part of the excess air with exhaust gas, heat capacity increases. Combustion phasing can be advanced, resulting in a thermodynamically more favourable heat release. As a result, engine efficiency improves without increasing NOx emissions. In this work, the effect of replacing a part of excess air with exhaust gas was investigated first in a constant volume combustion chamber. It enabled to analyse the influence of the exhaust gas under steady initial conditions for several relative air-fuel ratios (λ = 1.3…1.7).
2016-11-08
Technical Paper
2016-32-0066
P A Lakshminarayanan, S. Aswin
ABSTRACT Particulates from diesel engine consisting of particles of carbon, sulphates, oil, fuel and water are measured by filtering a sample diluted in a partial or full flow tunnel according to strict standards and weighing them. However, these methods suffer from high initial and running costs. On the other hand, filter smoke meters measure the light reflected from a filter paper through which a known volume of exhaust gas is passed and Opacity meters measure light absorbed by a standard column of exhaust. They measure visible black smoke easily at reasonable expenditure. Today, these simple instruments are highly developed to control measurement noise, resolution and repeatability, and can be used to estimate carbon soot precisely.
2016-11-08
Technical Paper
2016-32-0069
Indranil Brahma, Cristobal Manzanares, Rob Jennings, Odinmma Ofili, Matthew Campbell, Abishek Raghavan, Daniel Johnson, Peter Stryker
Non-volatile particle number distributions from a single cylinder industrial diesel engine were measured at several operating conditions spanning the torque curve. The effect of increasing the air-fuel ratio by injecting compressed shop air at various boost pressures was also investigated. A bi-modal distribution separated at approximately 20 nm was observed for most operating conditions. Depending on operating condition, the engine produced between 1014 to 1015 particles per kW-hr. Energy specific particle number emissions (per kW-hr) were seen to be strongly dependent on speed and load. Minimum emissions occurred at intermediate speeds and loads. Particles below 20 nm increased with increasing air-fuel ratio, while the opposite trend was observed for particles greater than 20 nm. Variation in total particle surface and total particle volume followed the same trends as the particles from the larger mode.
2016-10-26 ...
  • October 26-28, 2016 (8:30 a.m. - 4:30 p.m.) - Baltimore, Maryland
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
2016-10-25
Event
Papers are invited for this session on particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Papers are also invited on the topics of the environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This includes particulate emissions from both gasoline and diesel engines.
2016-10-24
Event
Papers are invited on technology developments and the integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in sensors and control systems will also be considered.
2016-10-17
Technical Paper
2016-01-2182
Olivier Laget, Louis-Marie Malbec, Julian kashdan, Nicolas Dronniou, Romain boissard, Patrick Gastaldi
The accumulation of particulate matter in lubricant oil has become an issue in Diesel engines where large amounts of Exhaust Gas Recirculation (EGR) are used at medium to high load operating conditions. Indeed, the accumulation of particulate matter in the engine oil can alter its lubricant properties resulting in mechanical durability issues or TCO increase due to shortened servicing intervals. It is therefore important to gain an improved understanding of the underlying mechanisms that are responsible for this accumulation of particulate matter in the lubricating oil, and ultimately provide design guidelines to help limit this phenomenon. The present study presents the development and validation of experimental and numerical tools used to investigate this phenomenon.
2016-10-17
Technical Paper
2016-01-2285
Chun Guan, Xinling Li, Zhuyue Zhuang, Zhen Huang
In the present study, the effects of oxygenated fuels on particulate-phase organic pollutants including n-alkanes, polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (oxy-PAHs) were investigated on a diesel engine test bench w/o and with a particle oxidation catalyst (POC) device. Two kinds of oxygenated fuels with different oxygenated functional groups, that are biodiesel and ethanol, were selected as the target fuels to be blended with diesel by various volume percentages. POC performance was also studied to further demonstrate the effect of aftertreatments on diesel engine emissions. The results indicated that diesel-biodiesel (DB) blends presented a good linearship between alkanes suppression and blended ratios, while diesel-biodiesel-ethanol (DBE) blends only presented a better suppression on alkanes at a lower blended ratio. Meanwhile, both DB and DBE blends presented an effective suppression on particulate-phase PAHs.
2016-10-17
Technical Paper
2016-01-2249
Akash Gangwar, Abhinav Bhardawaj, Ramesh Singh, Naveen Kumar
Enhancement of combustion behavior of conventional liquid fuel using nanoscale materials of different properties is an imaginative and futuristic topic. This experiment is aimed to evaluate the performance and emission characteristics of a diesel engine when lade with nanoparticles of Cu-Zn alloy. The previous work reported the effect of metal/metal oxide or heterogeneous mixture of two or more particles; less work had been taken to analyze the homogeneous mixture of metals. This paper includes fuel properties such as density, kinematic viscosity, calorific value and performance measures like brake thermal efficiency (BTE), brake specific fuel consumption (BSFC) and emission analysis of NOx, CO, CO2, HC. For the same solid concentration, nano-fuel is compared with base fuel at different engine loads; and its effect when lade at different concentrations.
2016-10-17
Technical Paper
2016-01-2314
Wanyu Sun, Shufen Wang, Yue Huang, Lei Guo, Hongzhen Li, Zhangtao Yao
The possible NOx and soot limits that a conventional diesel engine could meet without the assistance of after-treatment system were investigated on an engineering application level. A methodology combining both experiment and CFD simulation was used to judge favorable and unfavorable effects of various in-cylinder strategies quantitatively. These strategies or factors include exhaust gas recirculation (EGR), fuel injection timing and duration, intake valve closure (IVC) timing, combustion chamber and turbocharger, etc. Interactions among these strategies were paid special attention. Two steps were proposed based on the analysis. The first step would shift the NOx-soot trade-off curve closer to low emission level regions via optimization of injection strategy and combustion chamber geometry. As a result, soot could be reduced by 20% ~ 30% while NOx could be maintained at the same level.
2016-10-17
Technical Paper
2016-01-2284
Yuan Wen, Yinhui Wang, Chenling Fu, Wei Deng, Zhangsong ZHAN, Yuhang Tang, Xuefei Li, Haichun ding, Shijin Shuai
Direct Injection Gasoline (DIG) engine developed rapidly in recent years driven by the requirements of higher fuel efficiency and lower fuel consumption, but faces the challenges of injector deposit and emissions especially particulate emission compared to Port Fuel Injection (PFI) engine. However it has not been revealed through system approach that the qualitative and quantitative impact of injector deposit formation on particulate emission of DIG vehicle through vehicle emission testing and injector spray analysis. In this paper, an experimental study was conducted on a DIG vehicle produced by a Chinese Original Equipment Manufacturer (OEM) to investigate the impact of injector deposit on spray and particulate emissions. The DIG car accumulated with 13,000 km mileage was subject to emissions testing including gaseous emissions, particulate mass (PM) and fuel economy on a chassis dynamometer, then replaced all coking injectors with new injectors and tested emissions again.
2016-10-17
Technical Paper
2016-01-2288
Sam Shamun, Mengqin Shen, Bengt Johansson, Martin Tuner, Joakim Pagels, Anders Gudmundsson, Per Tunestal
The focus has recently been directed towards the engine out soot from Diesel engines. Running the engine in PPC mode has a proven tendency of reducing these emissions significantly. In addition to combustion strategy, several studies have suggested that using alcohol fuels will aid in reducing soot emissions to ultra-low levels. This study analyzes and compares the characteristics of PM emissions from naphtha gasoline PPC, ethanol PPC, methanol PPC and methanol diffusion combustion in terms of soot mass concentration, particle size and distribution in a single cylinder Scania D13 engine, while varying the intake O2. Intake temperature and injection pressure sweeps were also conducted. The fuels emitting the highest amount of particles were gasoline followed by methanol. The two alcohols tested emitted nucleation mode particles only, whereas gasoline emitted accumulation mode particles as well.
2016-10-17
Technical Paper
2016-01-2183
Yann Gallo, Zheming Li, Mattias Richter, Oivind Andersson
Soot formation and soot oxidation are the two competing processes governing soot emissions from Diesel engines. Previous studies have been showing a poor correlation between soot formation rate and soot emissions. This article presents a systematic study of a number of parameters affecting soot oxidation rate and the correlation with soot emissions. An optical heavy-duty engine has been used in conjunction with a laser extinction setup in order to collect time resolved data of the soot concentration in the cylinder during the expansion phase. Laser extinction is measured using a red (685nm) laser beam, which is sent vertically through the cylinder. This wavelength was chosen long enough to minimize absorption interference from polycyclic aromatic hydrocarbons, while still in the visible regime. It is modulated in order to produce 10 pulses per crank angle degree.
2016-10-17
Technical Paper
2016-01-2256
Kristin Götz, Barbara Fey, Anja Singer, Juergen Krahl, Jürgen Bünger, Markus Knorr, Olaf Schröder
The climate target of the European Union (EU) is the reduction of 40 % greenhouse gas reduction from the 1990s level by 2030 [1]. Currently the transport sector is one of the biggest greenhouse gas emission producer in the EU [2]. Drop-in biofuels can contribute to the reduction of GHG emissions in the transport sector and so as well the total GHG emissions. Diesel R33, a new developed biofuel enables sustainable mobility fulfilling the European diesel fuel specification and can reduce the GHG emissions of about 17 % versus fossil diesel fuel. Diesel R33 is made from seven percent used cooking oil methyl ester, 26 percent hydrotreated vegetable oil (HVO) and 67 percent high quality diesel fuel. HVO was produced from rapeseed and palm oil. This new biofuel was tested in a fleet of 280 vehicles (passenger cars, light duty vehicles, off-road vehicles and urban buses) covering all emission classes.
2016-10-17
Technical Paper
2016-01-2300
Mengqin Shen, Martin Tuner, Bengt Johansson, Per Tunestal, Joakim Pagels
In order to reduce NOx and soot emissions while maintaining high thermal efficiency, more advanced combustion concepts have been developed over the years, such as Homogeneous Charge Compression Ignition (HCCI) and Partially Premixed Combustion (PPC), as possible combustion processes in commercial engines. Compared to HCCI, PPC has advantages of lower UHC and CO emissions; however, on the other hand, soot emissions can be a challenge when adding Exhaust-Gas Recirculation (EGR) gas due to increased fuel stratifications. The current work presents particle size distribution measurements performed from HCCI-like combustion with very early (120 CAD BTDC) to PPC combustion with late injection timing (11 CAD BTDC). Combustion phasing was fixed by adjusting inlet temperature at two intake oxygen rates, 21% and 15% respectively. Particle size distributions were measured using a differential mobility spectrometer DMS500.
2016-10-17
Technical Paper
2016-01-2320
Tsuyoshi Asako, Ryuji Kai, Tetsuo Toyoshima, Claus Vogt, Shogo Hirose, Shiori Nakao
Ammonia Selective Catalytic Reduction (SCR) is adapted for a variety of applications to control NOx in diesel engine emission. Most commonly used catalyst for SCR in established markets is Cu-Zeolite due to excellent NOx conversion and thermal durability. However, most applications in emerging markets and certain applications in established markets utilize Vanadia SCR. The operating temperature is typically maintained below 550C to avoid vanadium sublimation due to passive regeneration of diesel particulate filter (DPF) or eliminating DPF from aftertreatment system. For DPF-less system, particulate matter (PM) standard is achievable without DPF depending on engine tuning. Further improvement of Vanadia SCR durability and NOx conversion at low exhaust gas temperatures will be required in consideration of future emission standards.
2016-10-17
Technical Paper
2016-01-2282
Toru Uenishi, Eijiro Tanaka, TAKAO FUKUMA, Jin Kusaka, Yasuhiro Daisho
Experimental and numerical studies were conducted on diesel particulate filter (DPF) under different Particulate Matter (PM) loading and DPF regeneration conditions.Pressure losses across DPF loaded with PM having different mean particle diameters and regenerated with introducing hot gas created in Diesel Oxidation Catalyst(DOC)with oxidized hydrocarbon injected by fuel injector place on exhaust gas pipe were measured by introducing exhaust gases from a 2.2 liter inline four- cylinder, TCI diesel engine designed for use in passenger cars.Pressure drops across DPF loaded with PM having larger mean particle diameters expressed smaller than smaller mean particle diameters in PM loading phase.Meanwhile, the combustion amount and the decrease of pressure losses across DPF loaded with PM having larger mean particle diameters expressed smaller than smaller mean particle diameters in DPF regeneration phase.A mechanistic hypothesis was then proposed to explain the observed trends,accounting for the effects of the soot loading regime in the wall and the soot cake layer on the pressure drop.This hypothesis was used to guide the development and validation of a numerical model for predicting the pressure drop in the DPF.The relationship between the permeability and the porosity of the wall and soot cake layer was modeled under various soot loading conditions.The percolation coefficient at which the soot filtering regime changed from wall trapping to cake layer trapping was also determined by considering the filtering efficiency.The activation energy and exponential factor in the reaction rate constant was calibrated by each the mean diameter of secondary soot particles.The model was validated by comparing its output to the results of experimental test cell studies and used to analyze transport phenomena in particular filters.
2016-10-17
Technical Paper
2016-01-2326
Ahmad Khalfan, Gordon Andrews, Hu Li
The tailpipe exhaust emissions were measured under real world urban driving conditions by using a EURO4 emissions compliant SI car equipped with an on-board heated FTIR, a differential GPS for velocity, altitude and position, thermal couples for temperatures, and a MAX fuel meter for transient fuel consumption. Emissions species were measured at 0.5 Hz. The tests were designed to enable the engine fully warmed up journeys to occur into congested traffic, typical of the people situation living alongside congested roads in a large city. Journeys at various times of the day were conducted to investigate traffic conditions impacts such as traffic and pedestrian lights, grade and turning on emissions, engine thermal efficiency and fuel consumption. Four most congested journeys conducted at rush hours and four least congested journeys conducted at free flow periods were selected for comparison.
2016-10-17
Technical Paper
2016-01-2330
Svitlana Kroll, E. Robert Fanick, Kristin Favela
Although the internal combustion engine has been used for more than a century, significant improvements in energy efficiency and emissions reduction are still possible. Advanced combustion strategies used to improve efficiency, emissions, and performance alter the chemical composition of engine-out emissions. Changes in exhaust chemistry affect the performance of typical exhaust aftertreatment devices used to meet tailpipe emissions standards and require new strategies and technologies for aftertreatment controls. The characterization of exhaust chemistry from advanced internal combustion engines requires a chemistry speciation and analytical system capable of measuring a wide range of compounds from raw exhaust samples. The widely accepted Auto/Oil procedure is used to quantify hydrocarbon compounds between C1 and C12 from dilute engine exhaust in Tedlar polyvinyl fluoride (PVF) bags.
Viewing 1 to 30 of 8327

Filter

  • Range:
    to:
  • Year: