Criteria

Text:
Display:

Results

Viewing 1 to 30 of 8541
Training / Education
Meeting the requirements of heavy-duty engine emissions regulations is a challenge for all engine manufacturers. Since the introduction of Exhaust Gas Recirculation (EGR) in medium and heavy-duty diesel engines, these systems have become more sophisticated and tightly integrated with emission control systems. This 2-day seminar will explore the advantages and disadvantages of EGR and the most effective implementation of various EGR systems. This seminar will begin by defining EGR and why it is used in diesel engines, along with an explanation of the mechanisms by which EGR is able to reduce NOx.
Training / Education
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
Training / Education
Designing more efficient and robust emission control components and exhaust systems results in more efficient performance, reduced backpressure and fuel penalty, and higher conversion efficiency. This course will help you to understand the motion of exhaust flow in both gasoline and diesel emission control components including flow-through and wall-flow devices such as catalytic converters, NOx adsorbers, diesel oxidation catalysts, diesel particulate filters as well as flow through the overall exhaust system.
Training / Education
Lean burn engines (diesel and GDI) boast higher fuel economy and cleaner emissions than conventionally tuned engines while producing equivalent power. They employ higher combustion chamber compression ratios, significant air intake swirl and precise lean-metered direct fuel injection. The downfall of lean-burn technology, however, is increased exhaust NOx emissions (due to higher heat and cylinder pressure) and a somewhat narrower RPM power-band (due to slower burn rates of lean mixtures). Removal of NOx from exhausts is a critical need for emission standards and ambient ozone requirements.
2018-01-05
Standard
ARP6320
This SAE Aerospace Recommended Practice (ARP) describes recommended sampling conditions, instrumentation, and procedures for the measurement of non-volatile particle number and mass concentrations from the exhaust of aircraft gas turbine engines. Procedures are included to estimate sampling system loss performance. This ARP is not intended for in-flight testing, nor does it apply to engines operating in the afterburning mode. This ARP is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances.
2018-01-02
WIP Standard
J1667
This SAE Recommended Practice applies to vehicle exhaust smoke measurements made using the Snap-Acceleration test procedure. Because this is a non-moving vehicle test, this test can be conducted along the roadside, in a truck depot, a vehicle repair facility, or other test facilities. The test is intended to be used on heavy-duty trucks and buses powered by diesel engines. It is designed to be used in conjunction with smokemeters using the light extinction principle of smoke measurement. This procedure describes how the snap-acceleration test is to be performed. It also gives specifications for the smokemeter and other test instrumentation and describes the algorithm for the measurement and quantification of the exhaust smoke produced during the test. Included are discussions of factors which influence snap-acceleration test results and methods to correct for these conditions.
2017-12-07
WIP Standard
J1711
This Society of Automotive Engineers (SAE) Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEVs driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester.
2017-12-06
Technical Paper
2017-01-5100
Thorsten Langhorst, Olaf Toedter, Thomas Koch, Patrick Gonner, Matthew Borst, Richard Morton
Abstract Particulates and nitrogen oxides comprise the main emission components of the Diesel combustion and therefore are subject to exhaust emission legislation in respective applications. Yet, with ever more stringent emission standards and test-procedures, such as in passenger vehicle applications, resulting exhaust gas after-treatment systems are quite complex and costly. Hence, new technologies for emission control have to be explored. The application of non-thermal plasma (NTP) as a means to perform exhaust gas after-treatment is one such promising technology. In several publications dealing with NTP exhaust gas after-treatment the plasma state was generated via dielectric barrier discharges. Another way to generate a NTP is by a corona high-frequency discharge. Hence, in contrast to earlier publications, the experiments in this publication were conducted on an operated series-production Diesel engine with an industrial pilottype corona ignition system.
2017-11-29
WIP Standard
AIR6504A
This SAE Aerospace Information Report (AIR) provides a method for assessing particle losses that occur in a sampling system of specified geometry based on the nvPM mass and number measured at the end of the sampling system. Both size dependent diffusion loss and size independent thermophoretic loss mechanisms are included in the method. The penetration function of that system must be determined by measurement and/or by computation using an analytical method as described within this report. The outcome of this line loss assessment provides estimated correction factors for nvPM mass and number concentration with associated uncertainties based upon nvPM measurement uncertainties and method assumptions. These correction factors give an estimation of nvPM mass and number values at the inlet to the sampling system.
2017-11-27
Technical Paper
2017-01-5022
Sebastian Zirngibl, Stefan Held, Maximilian Prager, Georg Wachtmeister
Abstract In order to fulfill future exhaust emission regulations, the variety of subsystems of internal combustion engines is progressively investigated and optimized in detail. The present article mainly focuses on studies of the flow field and the resulting discharge coefficients of the intake and exhaust valves and ports. In particular, the valves and ports influence the required work for the gas exchange process, as well as the cylinder charge and consequently highly impact the engine’s performance. For the evaluation of discharge coefficients of a modern combustion engine, a stationary flow test bench has been set up at the Chair of Internal Combustion Engines (LVK) of the Technical University of Munich (TUM). The setup is connected to the test bench’s charge air system, allowing the adjustment and control of the system pressure, as well as the pressure difference across the particular gas exchange valve.
2017-11-07
Technical Paper
2017-36-0394
T. A. A. Moreira, T. S. Ferreira, A. J. M. Gurgel, W. N. Silva, F. A. Rodrigues Filho, J. G. C. Baeta
Abstract The automobile industry and its growing commitment to the environment have collaborated in the development of technologies to reduce emissions of gaseous pollutants, including hydrocarbons. Recent works are aimed at the development of the torch ignition in internal combustion engines of the Otto cycle. A prototype characterized by a torch ignition system with fixed geometry of pre-chamber per cylinder, with a volume of 3.66 cm3 and a single nozzle with a diameter of 6.00 mm, fed with homogeneous mixture originating from Combustion chamber. The ignition and injection system was controlled by a reprogrammable electronic management system. The main results were an increase of around 10% in thermal efficiency and reductions of up to 91% in carbon monoxide emissions, but there was a considerable increase in total hydrocarbons (THC) emissions.
2017-11-07
Technical Paper
2017-36-0403
Daniel Mousinho Lago, Fábio César Miranda de Oliveira, Manoel Fernandes de Oliveira Filho, João Telésforo Nóbrega de Medeiros
Abstract A challenge of the maintenance engineering is to detect future failures and the wear in machine components without interrupting its operation. Doing it in a cheap and simple way is even more challenging. With this purpose, the present study collected the debris expelled in the exhaust pipe of an engine through an innovative device built in the Tribology Study Group of UFRN. It was tested a 5 HP stationary diesel engine working under constant load over 150 hours (non-continuous). The morphology and chemicals compounds of the debris collected by the device were analyzed using Scanning Electrons Microscope (SEM) and Energy Dispersive Spectroscopy (EDS), respectively. After the 150 hours of testing, the engine was disassembled and visually inspected. Photos were taken to identify the wear mechanisms present on the piston skirt, piston head, cylinder head and valves. After that, was made a correlation between the collected debris and the wear mechanisms observed in the piston.
2017-11-07
Technical Paper
2017-36-0250
T. A. A. Moreira, G. S. Paiva, O. A. Anjos, T. S. Ferreira, F. A. Rodrigues Filho, R. M. Valle
Abstract Global trends in the development of spark ignition internal combustion engines lead to the adoption of solutions that reduce CO2 emissions and fuel consumption. Downsizing is a well-established path for this reduction, but it is necessary to use other technologies in order to achieve these ever more rigorous levels. A homogeneous torch ignition system is a viable alternative for reducing CO2 emissions with a combined reduction in specific fuel consumption and increased thermal efficiency. Thus a prototype adapted from an Otto engine with four cylinders is used for analysis. The performance and CO2 emission reference data were initially obtained with the baseline engine operating with a stoichiometric mixture. Then for the same conditions of BMEP, angular velocity and gradual lean of the mixture from the stoichiometry, the results of the adapted system are obtained.
2017-11-07
Technical Paper
2017-36-0115
Luís Carlos M. Sales, Lícia G. Souza, Luís Gustavo C. Monteiro, Marcelo S. Rodrigues, Fábio R. Borges
Abstract There is a worldwide race to adopt measures that are efficient in reducing carbon dioxide (CO2) emissions into the planet's atmosphere and consequently minimize the possibility of global warming. In this regard, several countries have adopted laws and programs that encourage the automotive industry to apply advanced and innovative technologies to increase the vehicles energy efficiency. In many cases the adoption of more than one technology does not mean that the result of energy efficiency is the simple sum of the effects of each one of them. Therefore, the relevance of analyzing the interactivity between technologies is justified. The objective of this work is to present the experimental evaluation of the comparison of energy consumption and CO2 reduction with the combined application of Start & Stop and Intelligent Alternator.
2017-11-07
Technical Paper
2017-36-0116
Luís Carlos M. Sales, Edilson P. Pacheco, Luis Gustavo C. Monteiro, Lícia G. Souza, Moises S. Mota
Abstract The automotive industry has played an important role in the international purpose of containing carbon dioxide emissions to mitigate the negative effects of the greenhouse effect. International agreements and treaties promoted legislation that set targets for CO2 emissions and also for the energy consumption of motor vehicles. Several technologies have been implemented and are being developed to increase the energy efficiency of the vehicles and consequently reduce the fuel consumption which is a direct relation with the emission of CO2. This research aimed at the experimental analysis of an alternator equipped with a mechanical decoupling system of the crank shaft of the internal combustion engine. This new system consists of an integrated pulley to an electromagnetic clutch. It is a technological innovation and unprecedented in terms of control of the generation and use of electric energy.
2017-11-05
Technical Paper
2017-32-0052
Katsunori Tasaki
Misfire is the condition where the engine does not fire correctly due to an ignition miss or poor combustion of the air fuel mixture, resulting in serious deterioration of tailpipe emissions due to the discharge of unburned gas. In order to prevent further exacerbating environmental problems, misfire detection is obligatory in On Board Diagnosis (OBD) II systems. OBD II technology for passenger cars cannot be easily adopted to motorcycles for several reasons. However, very little research has been reported on misfire detection for an unevenly firing engine in which the degree of contribution to engine output and the variation pattern of angular velocity show a large difference between cylinders, an aspect that is unique to motorcycles. This research focuses on uneven firing V-twin motorcycle engines, to explore misfire detection techniques using variation characters in crank angular velocity.
2017-11-05
Technical Paper
2017-32-0041
Johannes Hiesmayr, Stephan Schmidt, Stefan Hausberger, Roland Kirchberger, Christian Zinner, Patrick Filips, Roland Wanker, Hubert Friedl
Real world operating scenarios have a major influence on emissions and fuel consumption. To reduce climate-relevant and environmentally harmful gaseous emissions and the exploitation of fossil resources, deep understanding concerning the real drive behavior of mobile sources is needed because emissions and fuel consumption of e.g. passenger cars, operated in real world conditions, considerably differ from the officially published values which are valid for specific test cycles only [1]. Due to legislative regulations by the European Commission a methodology to measure real drive emissions RDE is well approved for heavy duty vehicles and automotive applications but may not be adapted similar to two-wheeler-applications. This is due to several issues when using the state of the art portable emission measurement system PEMS that will be discussed.
2017-11-05
Technical Paper
2017-32-0046
Tomoyuki Mukayama, Ryota Nishigami, Annisa Bhikuning, Go Asai, Masaki Kuribayashi, Eriko Matsumura, Jiro Senda
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
2017-11-05
Technical Paper
2017-32-0107
C. C. Chou, T. F. Kuo, T. H. Tsai, Y. H. Su, J. H. Lu, Y. Y. Ku
The urea-water-solution based selective catalyst reduction (SCR) system is one of the effective devices for reduction of NOx from diesel engines. In an effort to understand the various levels of oscillation observed in the NOx measurement downstream of a SCR in which the urea dosage is controlled by a crankshaft-link pump, a zero-dimensional dynamic SCR model is developed in this paper based on conservation of mass. The model contains three states including the concentrations of NOx and ammonia in the SCR and the surface coverage rate of the catalyst. The temperature-dependent reactions considered in the model include the adsorption, desorption and oxidation of ammonia and the NOx reduction with the reaction constants provided by the catalyst company. The dynamic SCR model is validated both at steady state and during transient under various engine operating conditions and urea dosing rates.
2017-11-05
Technical Paper
2017-32-0095
Preechar Karin, Warawut Amornprapa, Phiranat Khamsrisuk, Pol-ake Budsayahem, Pattara Chammana, Kobsak Sriprapha, Katsunori Hanamura
The soot contamination in used engine oils of diesel engine vehicles was about 1% by weight. The soot and metal wear particle sizes might be in the range of 0-1 µm and 1-25 µm, respectively. The characteristics of soot affecting on metal wear was investigated. Soot particle contamination in diesel engine oil was simulated using carbon black. Micro-nanostructure of soot particles were studied by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and laser diffraction spectroscopy (LDS). The metal wear behavior was studied by means of a Four-Ball tribology test with wear measured. Wear roughness in micro-scale was investigated by high resolution optical microscopy (OM) , 3D rendering optical technique and SEM image processing method. It was found that the ball wear scar diameter increased proportionally to the soot primary particle size. The effect of biodiesel contamination were also increasing in wear scar diameter.
2017-11-05
Technical Paper
2017-32-0094
Preechar Karin, Park Watanawongskorn, Jiramed Boonsakda Eakkawut Saenkhumvong, Sippakorn Rungsritanapaisan, Settavit Srivarocha, Chinda Charoenphonphanich, Nuwong Chollacoop, Katsunori Hanamura
Diesel engines are high thermal efficiency because of high compression ratio but produce high concentration of particulate matter (PM) because of direct injection fuel diffusion combustion. PM must be removed from the exhaust gas to protect human health. This research describes biodiesel engine performance, efficiency and combustion behavior using combustion pressure analyzer. It was clearly observed that PM emitted from CI engines can be reduced by using renewable bio-oxygenated fuels. The morphology and nanostructure of fossil fuel and biofuel PMs were investigated by using a Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). The morphology of biodiesel and diesel doesn’t have much different in the viewpoint of particulate matter trapping using DPF micro surface pores. The agglomerated ultrafine particles and primary nanoparticles sizes of diesel and biodiesel engine’s PM are approximately 50-500 nm and 20-50 nm, respectively.
2017-11-05
Technical Paper
2017-32-0126
Huynh Thanh Cong, Takahiro Kashima, Daisuke Komasaki, Yuta Saito, Akihiko Azetsu
To explore the production and oxidation characteristics of soot in the flame of diesel jet under the condition equivalent to the direct injection diesel engine condition, the effect of three different important parameters (including injection pressure, injection duration, and oxygen concentration) are experimentally examined. For these purposes, a small CVCC (constant volume combustion chamber) with the volume of 60cc equivalent to the volume of combustion chamber of automotive diesel engine is used. To obtain the experimental data of soot production and oxidation, in experiments, the ambient condition of temperature, pressure and oxygen concentration before injection timing are prepared by the combustion of lean hydrogen mixture (with help of 8 spark plugs) at a high temperature and pressure condition around 1000K and 4.5MPa. The common rail type injector with 8 injection holes for modern diesel engine is attached to this vessel.
2017-10-13
Technical Paper
2017-01-5017
Ronith Stanly, Gopakumar Parameswaran, R Rajkiran
Abstract Conventionally, influence of injector coking deposits has been studied using accelerated coking methods. For this work we used in-use vehicles fitted with Common Rail Direct injection (CRDi) injectors in “as-is where is” condition with considerable coked injector deposits. They were then cleaned with a commercial fuel system cleaning solution which did not require the removal of injectors; the influence of injector deposits on vehicular performance and spray field were studied. It was observed that the removal of coking deposits resulted in an increase in the peak power of the vehicle, a lower fuel injected quantity and lower fuel injection duration. It was also observed that the fuel system cleaning procedure resulted in better atomization of fuel spray, better uniformity of the multiple spray jets and an increase in the flow rate of the test injectors.
2017-10-10
Standard
AIR6504
This SAE Aerospace Information Report (AIR) provides a method for assessing particle losses that occur in a sampling system of specified geometry based on the nvPM mass and number measured at the end of the sampling system. Both size dependent diffusion loss and size independent thermophoretic loss mechanisms are included in the method. The penetration function of that system must be determined by measurement and/or by computation using an analytical method as described within this report. The outcome of this line loss assessment provides estimated correction factors for nvPM mass and number concentration with associated uncertainties based upon nvPM measurement uncertainties and method assumptions. These correction factors give an estimation of nvPM mass and number values at the inlet to the sampling system.
2017-10-08
Technical Paper
2017-01-2287
Aniseh Abdalla, Guoyang Wang, Jun Zhang, Shi-Jin Shuai
Abstract Advanced exhaust after-treatment technology is required for heavy-duty diesel vehicles to achieve stringent Euro VI emission standards. Diesel particulate filter (DPF) is the most efficient system that is used to trap the particulate matter (PM), and particulate number (PN) emissions form diesel engines. The after-treatment system used in this study is catalyzed DPF (CDPF) downstream of diesel oxidation catalyst (DOC) with secondary fuel injection. Additional fuel is injected upstream of DOC to enhance exothermal heat which is needed to raise the CDPF temperature during the active regeneration process. The objective of this research is to numerically investigate soot loading and active regeneration of a CDPF on a heavy-duty diesel engine. In order to improve the active regeneration performance of CDPF, several factors are investigated in the study such as the effect of catalytic in filter wall, soot distribution form along filter wall, and soot loads.
2017-10-08
Journal Article
2017-01-2291
Sandro Gail, Takashi Nomura, Hitoshi Hayashi, Yuichiro Miura, Katsumi Yoshida, Vinod Natarajan
Abstract In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
2017-10-08
Technical Paper
2017-01-2292
George S. Dodos, Florentia Vassileiou, Dimitrios Karonis
Abstract The aim of this study is to investigate the lubricity of hydrocarbons that constitute components of petroleum diesel fuel. A number of typical hydrocarbon compounds were selected as representative of the group types of alkanes (paraffins), cycloalkanes (naphthenes) and aromatics, similar to those that are present in diesel fuel. The lubricity of these substances was examined in a High Frequency Reciprocating Rig (HFRR) apparatus according to the ISO 12156-1 standard method. Thereafter, a series of diesel surrogate fuel were prepared from the above substances based on literature data for diesel fuel composition and on the previously obtained results. These model fuels were assessed regarding their lubricating performance in order to evaluate how each individual component can affect the lubricity of the final fuel.
Viewing 1 to 30 of 8541

Filter

  • Range:
    to:
  • Year: