Criteria

Text:
Display:

Results

Viewing 1 to 30 of 8516
2017-12-18 ...
  • December 18-20, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
2017-10-08
Technical Paper
2017-01-2405
Christophe Chaillou, Alexandre Bouet, Arnaud Frobert, Florence Duffour
Fuels from crude oil are the main energy vectors used in the transport sector but these fuels associated to CI engines are nowadays often criticized. Nevertheless, engine and fuel co-research is one of the main leverage to reduce both CO2 footprint and criteria pollutants. CI engines, with gasoline-like fuels, are a promising way for NOx and particulates emission abatement while keeping lower CO2 emission. To introduce a new fuel/engine technology, investigations of pollutants are mandatory. Previous work [1] already studied the behavior of low RON gasoline soot generated with a CI engine. The aim of this paper is to assess the impact of such fuel/engine technology on the HC emissions and on the DOC behavior. HC speciation is performed upstream and downstream DOC. Warm-up and efficiency are also tested for different operating conditions. Then, exothermal capacities are considered to ensure high level of temperature for DPF regeneration.
2017-10-08
Technical Paper
2017-01-2369
Prakash Arunachalam, Martin Tuner, Per Tunestal, Marcus Thern
Humid air motor (HAM) is an engine operated with humidified inlet charge. System simulations study on HAM showed the waste heat recovery potential over a conventional system. An HAM setup was constructed, to comprehend the potential benefits in real-time, the HAM setup was built around a 13-litre six cylinder Volvo diesel engine. The HAM engine process is explained in detail in this paper. Emission analysis is also performed for all three modes of operation. The experiments were carried out at part load operating point of the engine to understand the effects of humidified charge on combustion, efficiency, and emissions. Experiments were conducted without EGR, with EGR, and with humidified inlet charge. These three modes of operation provided the potential benefits of each system. Exhaust heat was used for partial humidification process. Results show that HAM operation, without compromising on efficiency, reduces NOx and soot significantly over the engine operated without EGR.
2017-10-08
Technical Paper
2017-01-2398
Bei Liu, Xiaobei Cheng, Jialu Liu, Han Pu, Li Yi
Based on a 4 cylinder turbocharged diesel engine, the research aims at studying the influence of some the fuel injection timing, fuel injection pressure and the ratio of pilot injection fuel to the engine combustion and emission formation under the condition of single injection and pilot injection ,respectively ,which the main focus on the emission characteristics of particles .The results show that the early-injection PPC formed by single injection can reduce the quantity and quality and GMD of particles obviously. However, when the injection timing is too early, the quantity of particles will rise as normal mode. The effect of injection pressure on particles is significant. The quantity of particles will increase under the condition of PPC, but the quality and GMD of particles is first decrease and the increase. The curve of size distribution of particles displays three peaks shape.
2017-10-08
Technical Paper
2017-01-2383
Guoyang Wang, Jun Zhang, Bo Yang, Chuandong Li, Shi-Jin Shuai, Shi Yin, Meng Jian
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
2017-10-08
Technical Paper
2017-01-2247
Wenbin Zhang, Haichun ding, Shijin Shuai, Bin Zheng, Alex Cantlay, Vinod Natarajan, Zhang Song ZHAN, Yunping Pu
Gasoline direct injection (GDI) engines have been developed rapidly in recent years, driven by stringent legislative requirements on vehicle fuel efficiency and emissions. However, one challenge facing GDI is the formation of particulate emissions, particularly with the presence of injector tip deposits. The Chinese market features some gasoline fuels that contain no detergent additives and are prone to deposit formation, which can affect engine performance and emissions. The use of detergent additives to mitigate the formation of injector deposits in a GDI engine was investigated in this study by testing a 1.5L turbocharged GDI engine available in the Chinese market. The engine was operated both on base gasoline and on gasoline dosed with detergent additives to evaluate the effect on injector deposit formation and engine performance and emissions.
2017-10-08
Technical Paper
2017-01-2287
Aniseh Abdalla, Guoyang Wang, Jun Zhang, Shi-Jin Shuai
Emission control technologies are required to achieve stringent emission regulations such as Beijing 6 (equivalent to Europe 6). In order to meet Europe 6 emission regulation, diesel oxidation catalyst (DOC) upstream of catalyzed diesel particulate filter (CDPF) with supplementary fuel injection (hydrocarbon injection (HCI)) are used for the X7 diesel engine to control the particulate matter (PM) for a heavy-duty diesel engine. This study investigated soot loading and active regeneration process in a CDPF by using secondary fuel injection in order to enhance exothermal heat which is needed to raise the CDPF temperature. The injected fuel is burnt in a DOC where the injector is mounted in the tailpipe upstream of DOC.
2017-10-08
Technical Paper
2017-01-2182
Xikai Liu, Xingyu Liang, Yonge Wu, Yuesen Wang
According to the study of the soot emission in marine diesel, ,a new reduced mechanism for n-heptane was constructed to describe the combustion process in diesel engine by using sensitivity analysis.Furthermore,verifying the ignition delay time,the laminar flame speed,the flame propagation distance and species profiles in combustion process by using Chemkin Pro in different pressure(13.5atm and 42 atm),initial temperatures and equivalence ratio(0.5 and 1.0).Then,compare the simulated result with the experiment data and the simulated result by using LLNL(lawrence livermore national laboratory)detail mechanism and SKLE(state key laboratory of engine)mechanism.It is demonstrated that the reduced mechanism can not describe the ignition delay time in low temperature.And then,the reduced mechanism was adjusted and optimized to make it more close to the experiment data,and the reduced mechanism were able to predict ignition delay time,laminar flame speed,flame propagation distance and species profiles.The final reduced n-heptane mechanism are more compact compare with the current detailed mechanisms in literature.Thus,this reduced n-heptane mechanism can reduce the pressure of calculation and save the calculation time.
2017-10-08
Technical Paper
2017-01-2194
Mateusz Pucilowski, Mehdi Jangi, Sam Shamun, Martin Tuner, Xue-Song Bai
Experimental heavy-duty DICI methanol engine is studied under high compression ratio conditions (CR=27). The fuel is injected with common-rail injector close to the top-dead-center (TDC) position with three different injector pressures, leading to a spray formation causing a so called wall-wetting. Numerical simulations using RANS/LPT/WSR and PDF models are employed to investigate the local conditions of the injection and combustion process. The CFD results are compared with the pressure trace and emissions from the metal engine experiment. It is shown that the simulations captured the same trend of increased amount of unburned hydrocarbons at higher injection pressures. Moreover, the intake temperature adjustments were required to correctly capture the ignition delay time when WSR model was used, whereas with the PDF method such adjustments were not needed.
2017-10-08
Technical Paper
2017-01-2363
Murugesa Pandian M, Anand Krishnasamy
The major limitations in a conventional high temperature diesel combustion are higher oxides of nitrogen (NOx) and particular matter (PM) emissions and a trade-off between them. Advanced low temperature combustion (LTC) strategies are proposed to simultaneously reduce NOx and PM emissions to near zero levels along with higher thermal efficiencies. Various LTC strategies including Premixed Charge Compression Ignition (PCCI), Homogenous Charge Compression Ignition (HCCI), Reactivity Controlled Compression Ignition (RCCI), Stratified Charge Compression Ignition (SCCI) and High Efficiency Clean Combustion (HECC) are proposed so far to achieve near zero NOx and PM emissions along with higher thermal efficiencies. Each of these LTC strategies have their own advantages and limitations interms of precise ignition control, achievable load range and higher unburned emissions.
2017-10-08
Technical Paper
2017-01-2364
Jiaqiang Li, Yunshan Ge, Chao He, Jianwei Tan, Zihang Peng, Zidi Li, Wei Chen, Shijie Wang
Urea selective catalytic reduction is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea selective catalytic reduction process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and provides to catalysts to reduce NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12℃. For preventing deposits formation, the aqueous urea solution is difficult to be injected into the exhaust gas stream at temperature below 200℃. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions.
2017-10-08
Technical Paper
2017-01-2365
Murugesa Pandian M, Anand Krishnasamy
Reactivity controlled compression ignition (RCCI) is one of the most promising low temperature combustion (LTC) strategies to achieve higher thermal efficiencies along with ultra low oxides of nitrogen (NOx) and particulate matter emissions. Small single cylinder diesel engines of air-cooled type are finding increasing applications in the agriculture pump-set and small utility power generation owing to their lower cost and fuel economy advantages. In the present work, a small single cylinder diesel engine is initially operated under conventional combustion mode at rated speed, varying load conditions to establish the base line reference data. Then, the engine is modified to operate under RCCI combustion mode with a newly designed cylinder head to accommodate a high pressure, fully flexible electronically controlled direct diesel fuel injection system, a low pressure gasoline port fuel injection system and an intake air pre heater.
2017-10-08
Technical Paper
2017-01-2371
Hiroki Kambe, Naoto Mizobuchi, Eriko Matsumura
Diesel Particulate filter (DPF) is installed as after treatment device of exhaust gas in diesel engine, and it collects Particulate Matter (PM). However, as the operation time of engine increases, the PM is accumulated in the DPF, resulting in deterioration of PM collection efficiency and increase in pressure loss. Therefore, Post injection has been attracted attention as the DPF regeneration method for burning and removing PM in the DPF. But, Post injection causes oil dilution when fuel is injected at the middle to late stage of expansion stroke. Oil dilution are concern to decrease the stroke lubricity of piston movement and the thermal efficiency. In order to estimate deposition amount of fuel spray that influences oil film, we should elucidate spray impingement behavior on wall surface of oil film, to research more from the behavior of in-cylinder spray during post injection.
2017-10-08
Technical Paper
2017-01-2373
Jun Kaniyu, Shogo Sakatani, Eriko Matsumura, Takaaki Kitamura
Diesel Particulate Filter (DPF) is a very effective aftertreatment device to limit particulate emissions from diesel engines. As the amount of soot collected in the DPF increases, the pressure loss increases and the purification rate decreases. Therefore, DPF regeneration needs to be performed. Injected fuel into the exhaust line upstream of the Diesel Oxidation Catalyst (DOC), hydrocarbons are oxidized on the DOC, which increases the exhaust gas temperature at the DPF inlet. Also, it is necessary that the injected fuel is completely vaporized before entering the DOC, and uniformly mixed with the exhaust gases in order to make the DOC work efficiency and durably. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line are challenging. Therefore, it is important that the fuel spray feature are grasped to perform DPF regeneration effectively. The purpose of this study is the constructing a simulation model.
2017-10-08
Technical Paper
2017-01-2378
Takayuki Ogata, Mikio Makino, Takashi Aoki, Takehide Shimoda, Kyohei Kato, Takahiko Nakatani, Koji Nagata, Claus Dieter Vogt, Yoshitaka Ito, Dominic Thier
In order to meet the challenging CO2 targets beyond 2020 despite keeping high performance engines, Gasoline Direct Injection (GDI) technology usually combined with charged aspiration is expanding in the automotive industry. While providing more efficient powertrains to reduce fuel consumption one side effect of GDI is the increased particle formation during the combustion process. For the first time for GDI from September 2014 there is a Particle Number (PN) limit of 6E12 #/km, which will be further reduced by one order of magnitude to 6E11 #/km effective from September 2017 to be the same level as applied to Diesel engines. In addition to the PN limit of the certification cycle NEDC further certification of Real Driving Emissions (RDE) including portable PN measurements are under discussion by the European Commission. RDE test procedure requires stable and low emissions in a wide range of engine operations and durable over a distance of 160 000 km.
2017-10-08
Technical Paper
2017-01-2390
Hongxue Zhao, Daliang Jing, Yinhui Wang, Shi-jin Shuai, Changle PANG
In this paper, the impacts of Aromatic, Olefin and Ethanol on the formations of PAHs (poly-aromatic hydrocarbons) and VOCs (volatile organic compounds) in the gasoline engine was experimentally and numerically investigated. The objective of this study is to describe the formation process of the soot precursors including one ring to four ring benzene(A1-A4). In order to better understand the effects of the fuel properties on the formations of PAHs and VOCs, four test fuels including pure gasoline, gasoline with higher aromatics content, gasoline with higher olefin content, and gasoline with extra 10% ethanol content were experimentally studied. At the same time, these aspects were also numerically investigated in the CHEMKIN code by using premixed laminar flame model. The results showed that higher aromatics content in gasoline will lead to much higher PAHs and VOCs emissions.
2017-10-08
Technical Paper
2017-01-2397
Zhan Gao, Lei Zhu, Xinyao Zou, Chunpeng Liu, Zhen Huang
Biodiesel is a potential alternative fuel which can meet the growing need for sustainable energy. Partially premixed compression ignition (PPCI) is an important low-temperature combustion strategy to reduce NOx and soot emission of diesel engines. To investigate partial premixing impact on particle formation in flames of biodiesel or biodiesel surrogates, an experimental study was performed to compare the soot morphology and nanostructure evolution in laminar co-flow methyl decanoate non-premixed flame (NPF) and partially premixed flame (PPF). The thermophoretic sampling technique was used to capture particles along flame centerlines. Soot morphology information and volume fraction were obtained from TEM analysis and nanostructure features were evaluated by HR-TEM. With primary equivalence ratio of 19, gas temperature of PPF is higher along flame centerline compared with NPF. The results show an initially stronger sooting tendency in PPF at lower positions.
2017-10-08
Technical Paper
2017-01-2402
Yoshinori Otsuki, Shigemi Tochino, Kenji Kondo, Kazuhiko Haruta
Fine particle emissions from engine exhaust have attracted attention, because of concern of higher deposition fraction in alveoli. Solid particle number (PN) emission regulations have been implemented mainly in Europe in order to reduce fine particle emissions and improve sensitivity of conventional gravimetric particulate matter mass measurement methodology. Since it was observed that sizes of solid particles in exhaust of conventional internal combustion engine technologies are mainly distributed above 30 nm and sensitivity to volatile particles can be reduced, the current PN measurement methodology can identify particle number emissions just to bigger particle than 23 nm. Necessity in measurement of smaller particles than 23 nm is still under discussion. Despite of implementation of stricter emission regulations, pollutant levels in environment have not been improved sufficiently.
2017-10-08
Technical Paper
2017-01-2255
Raul Payri, Jaime Gimeno, Santiago Cardona, Sridhar Ayyapureddi
In this article, a prototype multi-hole diesel injector from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bars under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used thanks to the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. Experimental results show the reduction of soot formation with an increase in injection pressure, a reduction in chamber temperature, a reduction in oxygen concentration or a reduction in chamber density.
2017-10-08
Technical Paper
2017-01-2329
Xiao Ma, Yue Ma, Shuaishuai Sun, Shi-Jin Shuai, Zhi Wang, Jian-Xin Wang
PODEn highlights advantages in soot reduction and renewable alternate fuels. This study uses a PODEn mixture (contains PODE3-6) from mass production as the oxygen fuel. Spray combustion of PODEn and diesel bend fuels in a constant volume vessel was studied using PLII-LEM and OH chemiluminescence. Several blend ratios are compared with pure diesel. It is found that 20% PODEn blended with diesel (P20) can effectively reduce the total soot. Significant soot reduction as over 70% lower than diesel case is observed in P30 combustion. The distribution of soot cloud of P30 is different with that of diesel, which indicates the high oxygen content in PODEn results in big differences in soot formation and oxidization process. However, OH images shows that the ignition positions of blend fuels have small differences, which indicates that low lend ratio does not have great impact on combustion control strategies.
2017-10-08
Technical Paper
2017-01-2248
Haichun Ding, Wenbin Zhang, Xiao Ma, Shi-Jin Shuai, Bin Zheng, Alex Cantlay, Vinod Natarajan, Zhang Song Zhan, Bin Liu
Gasoline direct injection (GDI) engine is now widely used due to its high fuel efficiency and low HC emission during cold start. However, high particle emission has become an inevitable challenge especially with injector deposits. In this paper, a 4-cylinder turbocharged GDI engine in Chinese market was selected and operated at 2000rpm and 3bar BMEP condition for 50 hours to accumulate injector deposits. The engine ignition angle, cylinder pressure, combustion duration, brake specific fuel consumption (BSFC), gas emissions ( THC, NOx, CO) and particle emission were measured before and after the injector fouling test at eight different operation conditions. The test results indicated that, although the injector flow rate and injection pulse did not change a lot after the injector fouling test which means few internal deposit was built inside the injector hole, it still had some effect on engine combustion and emissions.
2017-10-08
Technical Paper
2017-01-2264
Hyun Woo Won, Alexandre Bouet, Joseph Kermani, Florence Duffour, Simon Dosda
Recent work has demonstrated the potential of gasoline-like fuels to reduce NOx and particulate emissions when used in compression ignition engines. In this context, low RON gasoline, a refinery stream derived from the atmospheric crude oil distillation process, has been identified as a highly valuable fuel. In addition, thanks to its higher H/C ratio and energy content compared to diesel, CO2 benefits are also expected when used in such engines. In previous studies, different Cetane Number (CN) fuels have been evaluated and a CN 35 fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern and nozzle design have been performed on a single cylinder compression-ignition engine. The purpose of this paper is to assess different airpath and after treatment system (ATS) definitions to maximize the potential of a low-RON gasoline fuel running on a multi-cylinder compression ignition engine.
2017-10-08
Technical Paper
2017-01-2368
Wenji Song, Weiyong Tang, Bob Chen
The 4JB1 diesel engine originated from Isuzu has large share in the China light duty truck market. However, the tightened NOx emission target enforced by NS-V legislation compared with NS-IV regulatory standard is very challenging for this engine platform which originally adopted the DOC+POC catalyst layout. Furthermore, combustion characterization of this type engine leads to high soluble organic fration (SOF) content in engine out particulates, which requires the catalysts in the exhaust after-treatment system (ATS) to deliver high SOF conversion efficiency in order to meet the regulation limit for particulate matters (PM). In this paper, an innovative DOC+V-SCR exhaust catalyst layout with DOC+V-SCR is introduced. The front DOC is specially formulated with optimized PGM (Platinum Group Metal) loading which ensures effective SOF oxidation while keeping sulfuric acid and sulfate generation minimal.
2017-10-08
Technical Paper
2017-01-2391
Daisy Thomas, Hu Li, Xin Wang, Bin Song, Yunshan Ge, Wenlin Yu, Karl Ropkins
Real world driving emissions have become an ever increasing problem in urban areas, particularly in some mega cities. In this paper, eight in-use spark ignition gasoline-fueled and hybrid passenger cars were tested for real driving emissions (RDE). The vehicles tested include both European and Japanese makes, spanning from EURO 5 to EURO 6 emission compliance. During the RDE testing, the vehicles’ emissions were logged alongside their driving and operational parameters, such as exhaust flow rate and temperature, using the vehicles’ OBD systems. The RDE cycles are comprised of 33% urban, 33% rural and 34% motorway driving, of total duration approximately 1.5 hours. The RDE testing was performed in Beijing, China, using the Horiba OBS-ONE Gas and Horiba OBS-ONE PN equipment for six of the RDE tests, and the AVL M.O.V.E equipment for two of the RDE tests.
2017-10-08
Technical Paper
2017-01-2381
Kristian Hentelä, Ossi Kaario, Vikram Garaniya, Laurie Goldsworthy, Martti Larmi
In the present study, a new approach for modelling emissions of coke particles or cenospheres from large diesel engines using HFO (Heavy fuel oil) was studied. The used model is based on a multicomponent droplet mass transfer and properties model that uses a continuous thermodynamics approach to model the complex composition of the HFO fuel and the resulting evaporation behavior of the fuel droplets. Cenospheres are modelled as the residue left in the fuel droplets towards the end of the simulation. The mass-transfer and fuel properties models were implemented into a cylinder section model based on the Wärtsilä W20 engine in the CFD-code Star CD v.4.24. Different submodels and corresponding parameters were tuned to match experimental data of cylinder pressures available from Wärtsilä for the studied cases. The results obtained from the present model were compared to experimental results found in the literature.
2017-10-08
Technical Paper
2017-01-2401
Elana Chapman, Pat Geng, Yaowei Zhao, Susan Zhang, JunJun Ma, Jianqiang Gong
The impact of gasoline compositions to vehicle particular emission response have been widely investigated and documented with recently proposed so called Particulate Matter Index (PMI) and Particulate Evaluation Index (PEI). Vehicle PM/PN data has demonstrated correlations of the indices to vehicle response. In previous paper, global assessment with PEI on fuel sooting tendency was presented. With increasing air pollution concern and ever stringent emission requirements in China, both OEMs and oil industries are facing new challenge. Emission control requires systematic approach on both fuel and vehicle. This paper will focus on China market gasoline on fuel’s sooting tendency. Additional China vehicle response with ranges of PEI fuels are presented. In addition to PEI index, other fuel properties in gums, final boiling, aromatics, and fuel detergency are also reviewed
2017-10-08
Technical Paper
2017-01-2323
Lei Li, Kai Sun, Jianyu Duan
Butanol is a promising alcohol fuel. Previous studies in flames and diesel engines showed different trends in sooting tendencies of the butanol isomers (n-butanol, iso-butanol, sec-butanol and tert-butanol). However, the impact of butanol isomers on the particulate emissions of GDI (Gasoline Direct Injection) engines has not been reported. This work examined the combustion performance and particle number emissions of a GDI engine fueled with gasoline/butanol blends at steady state modes. Each isomer was tested at the blend ratio 10% to 50% by volume. Spark timings for all the fuels were set to obtain the maximum break torque, i.e. the MBT spark timings. Results showed that the particle number concentration could be reduced significantly with the increasing butanol content for all the isomers.
2017-10-08
Journal Article
2017-01-2291
Sandro Gail, Takashi Nomura, Hitoshi Hayashi, Yuichiro Miura, Katsumi Yoshida, Vinod Natarajan
In emerging markets, Port Fuel Injection (PFI) technology retains a higher market share than Gasoline Direct Injection (GDI) technology. In these markets fuel quality remains a concern even despite an overall improvement in quality. Typical PFI engines are sensitive to fuel quality regardless of brand, engine architecture, or cylinder configuration. One of the well-known impacts of fuel quality on PFI engines is the formation of Intake Valve Deposits (IVD). These deposits steadily accumulate over time and can lead to a deterioration of engine performance. IVD formation mechanisms have been characterized in previous studies. However, no test is available on a state-of-the-art engine to study the impact of fuel components on IVD formation. Therefore, a proprietary engine test was developed to test several chemistries. Sixteen fuel blends were tested. The deposit formation mechanism has been studied and analysed.
2017-10-08
Journal Article
2017-01-2298
Charles S. Shanahan, S. Scott Smith, Brian D. Sears
Abstract The ubiquity of gasoline direct injection (GDI) vehicles has been rapidly increasing across the globe due to the increasing demand for fuel efficient vehicles. GDI technology offers many advantages over conventional port fuel injection (PFI) engines, such as improvements in fuel economy and higher engine power density; however, GDI technology presents unique challenges as well. GDI engines can be more susceptible to fuel injector deposits and have higher particulate emissions relative to PFI engines due to the placement of the injector inside the combustion chamber. Thus, the need for reliable test protocols to develop next generation additives to improve GDI vehicle performance is paramount. This work discloses a general test method for consistently fouling injectors in GDI vehicles and engines that can accommodate multiple vehicle/engine types, injector designs, and drive cycles, which allows for development of effective GDI fuel additives.
2017-10-08
Journal Article
2017-01-2299
Susumu Nagano, Nozomi Yokoo, Koji Kitano, Koichi Nakata
Abstract The effects of high boiling point fuel additives on deposits were investigated in a commercial turbocharged direct injection gasoline engine. It is known that high boiling point substances have a negative effect on deposits. The distillation end points of blended fuels containing these additives may be approximately 15°C higher than the base fuel (end point: 175°C). Three additives with boiling points between 190 and 196°C were examined: 4-tert-Butyltoluene (TBT), N-Methyl Aniline (NMA), and 2-Methyl-1,5-pentanediamine (MPD). Aromatics and anilines, which may be added to gasoline to increase its octane number, might have a negative effect on deposits. TBT has a benzene ring. NMA has a benzene ring and an amino group. MPD, which has no benzene ring and two amino groups, was selected for comparison with the former two additives.
Viewing 1 to 30 of 8516

Filter

  • Range:
    to:
  • Year: