Criteria

Text:
Display:

Results

Viewing 1 to 30 of 8454
2017-09-11 ...
  • September 11-12, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Meeting the requirements of heavy-duty engine emissions regulations is a challenge for all engine manufacturers. Since the introduction of Exhaust Gas Recirculation (EGR) in medium and heavy-duty diesel engines, these systems have become more sophisticated and tightly integrated with emission control systems. This 2-day seminar will explore the advantages and disadvantages of EGR and the most effective implementation of various EGR systems. This seminar will begin by defining EGR and why it is used in diesel engines, along with an explanation of the mechanisms by which EGR is able to reduce NOx.
2017-05-15 ...
  • May 15-17, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 18-20, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
2017-04-18 ...
  • April 18-24, 2017 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Lean burn engines (diesel and GDI) boast higher fuel economy and cleaner emissions than conventionally tuned engines while producing equivalent power. They employ higher combustion chamber compression ratios, significant air intake swirl and precise lean-metered direct fuel injection. The downfall of lean-burn technology, however, is increased exhaust NOx emissions (due to higher heat and cylinder pressure) and a somewhat narrower RPM power-band (due to slower burn rates of lean mixtures). Removal of NOx from exhausts is a critical need for emission standards and ambient ozone requirements.
2017-04-07 ...
  • April 7, 2017 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 6, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Designing more efficient and robust emission control components and exhaust systems results in more efficient performance, reduced backpressure and fuel penalty, and higher conversion efficiency. This course will help you to understand the motion of exhaust flow in both gasoline and diesel emission control components including flow-through and wall-flow devices such as catalytic converters, NOx adsorbers, diesel oxidation catalysts, diesel particulate filters as well as flow through the overall exhaust system.
2017-04-06
Event
Papers are invited for this session on the general topics of combustion engine gaseous emissions (regulated and non-regulated). This includes papers discussing well-to-wheels CO2 production for alternative technologies, fuel economy and all greenhouse gas emission research with their primary focus on engine, emissions, fuels, control or related components or sub-components within. It also includes hydrocarbon species and specific NOx species production over aftertreatment devices as a result of changes in fuel specification and the inclusion of bio-derived components and consideration of secondary emissions production (slip) as a result of aftertreatment. (Papers focusing on vehicle-system approach on fuel economy should be directed to PFL370.)
2017-04-06
Event
This technical session addresses particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Also included are topics on environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This encompasses particulate emissions from both gasoline and diesel engines.
2017-04-06
Event
Papers are invited for this session on the general topics of combustion engine gaseous emissions (regulated and non-regulated). This includes papers discussing well-to-wheels CO2 production for alternative technologies, fuel economy and all greenhouse gas emission research with their primary focus on engine, emissions, fuels, control or related components or sub-components within. It also includes hydrocarbon species and specific NOx species production over aftertreatment devices as a result of changes in fuel specification and the inclusion of bio-derived components and consideration of secondary emissions production (slip) as a result of aftertreatment. (Papers focusing on vehicle-system approach on fuel economy should be directed to PFL370.)
2017-04-05
Event
This technical session addresses particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Also included are topics on environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This encompasses particulate emissions from both gasoline and diesel engines.
2017-04-05
Event
This technical session addresses particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Also included are topics on environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This encompasses particulate emissions from both gasoline and diesel engines.
2017-04-04
Event
Presentations are invited on technology developments and integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in sensors and control systems will also be considered.
2017-04-04
Event
Presentations are invited on technology developments and integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in sensors and control systems will also be considered.
2017-03-28
Technical Paper
2017-01-0964
Jakob Heide, Mikael Karlsson, Mireia Altimira
Selective Catalytic Reduction (SCR) of NOx through injection of Urea-Water-Solution (UWS) into the hot exhaust gas stream is an effective and extensively used strategy in internal combustion engines. Even though actual SCR systems have 95-96% de-NOx efficiency over test cycles, real driving emissions of NOx are much higher, hence proving that there is room for improvement. The efficiency of the NOx conversion is highly dependent on the size of UWS droplets and their spatial distribution. These factors are, in turn, mainly determined by the spray characteristics and its interaction with the exhaust gas flow. The main purpose of this study is to numerically investigate the sensitivity to the modelling framework of the evaporation and mixing of the spray upstream of the catalyst. The dynamics of discrete droplets is handled through the Lagrangian Particle Tracking framework, with models that account for droplet breakup and coalescence, turbulence effects, and water evaporation.
2017-03-28
Technical Paper
2017-01-0141
Ray Host, Peter Moilanen, Marcus Fried, Bhageerath Bogi
Future vehicle North American emissions standards (e.g., North American SULEV 30) require the exhaust catalyst to be >80% efficient by 20 seconds after the engine has been started in the Federal Test Procedure. Turbocharged engines are especially challenged to deliver fast catalyst lightoff since the presence of the turbocharger in the exhaust flow path significantly increases exhaust system heat losses. A solution to delivering cost effective SULEV30 emissions in turbocharged engines is to achieve fast catalyst light-off by reducing exhaust system heat losses in cold start, without increasing catalyst thermal degradation during high load operation. A CAE methodology to assess the thermal performance of exhaust system hardware options, from the exhaust port to the catalyst brick face is described, which assures compliance with future emissions regulations.
2017-03-28
Technical Paper
2017-01-0740
Yu Zhang, Yuanjiang Pei, Nayan Engineer, Kukwon Cho, David Cleary
Partially-premixed combustion (PPC) enabled through gasoline Compression Ignition (GCI) shows a promising potential to achieve high fuel efficiency with low engine-out oxides of nitrogen (NOx) and particulate matter (PM) emissions. However, it faces technical barriers to meet the need for simultaneously mitigating combustion efficiency loss at low load as well as containing maximum pressure rise rate (MPRR) and soot at high load. In addition, GCI typically requires high EGR rate at medium-to-high load and therefore poses challenges on the air system development and transient engine operation. The current study aims to utilize 3-D computational fluid dynamics (CFD) combustion analysis to guide the development of a viable full-load range combustion strategy using a higher reactivity gasoline that has a research octane number (RON) of 70. RON70 was selected as it has the potential to offer a good balance between low load and high load GCI operation.
2017-03-28
Technical Paper
2017-01-0915
Haomiao Zhang, Yuanzhou Xi, Changsheng Su, Z. Gerald Liu
Diesel exhaust fluid, DEF, (32.5 wt.% urea aqueous solution) is widely used as the NH3 source for selective catalytic reduction (SCR) of NOx in diesel aftertreatment systems. The transformation of sprayed liquid phase DEF droplets to gas phase NH3 is a complex physical and chemical process. Briefly, it experiences water vaporization, urea thermolysis/decomposition and hydrolysis. Depending on the DEF doser, decomposition reaction tube (DRT) design and operating conditions, incomplete decomposition of injected urea could lead to solid urea deposit formation in the diesel aftertreatment system. The formed deposits could lead to engine back pressure increase and DeNOx performance deterioration etc. The formed urea deposits could be further transformed to chemically more stable substances upon exposure to hot exhaust gas, therefore it is critical to understand this transformation process.
Viewing 1 to 30 of 8454

Filter

  • Range:
    to:
  • Year: