Criteria

Text:
Display:

Results

Viewing 1 to 30 of 8197
2016-04-26 ...
  • April 26-27, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 12-13, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Meeting the requirements of heavy-duty engine emissions regulations is a challenge for all engine manufacturers. Since the introduction of Exhaust Gas Recirculation (EGR) in medium and heavy-duty diesel engines, these systems have become more sophisticated and tightly integrated with emission control systems. This 2-day seminar will explore the advantages and disadvantages of EGR and the most effective implementation of various EGR systems. This seminar will begin by defining EGR and why it is used in diesel engines, along with an explanation of the mechanisms by which EGR is able to reduce NOx.
2016-04-12
Event
Papers are invited for this session on the general topics of combustion engine gaseous emissions (regulated and non-regulated). This includes papers discussing well-to-wheels CO2 production for alternative technologies, fuel economy and all greenhouse gas emission research with their primary focus on engine, emissions, fuels, control or related components or sub-components within. It also includes hydrocarbon species and specific NOx species production over aftertreatment devices as a result of changes in fuel specification and the inclusion of bio-derived components and consideration of secondary emissions production (slip) as a result of aftertreatment. (Papers focusing on vehicle-system approach on fuel economy should be directed to PFL370.)
2016-04-12
Event
Papers are invited for this session on particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Papers are also invited on the topics of the environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This includes particulate emissions from both gasoline and diesel engines.
2016-04-04 ...
  • April 4-8, 2016 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Lean burn engines (diesel and GDI) boast higher fuel economy and cleaner emissions than conventionally tuned engines while producing equivalent power. They employ higher combustion chamber compression ratios, significant air intake swirl and precise lean-metered direct fuel injection. The downfall of lean-burn technology, however, is increased exhaust NOx emissions (due to higher heat and cylinder pressure) and a somewhat narrower RPM power-band (due to slower burn rates of lean mixtures). Removal of NOx from exhausts is a critical need for emission standards and ambient ozone requirements.
2015-10-08
Event
This session discusses technologies that treat engine exhaust emissions to meet commercial vehicle requirements. The scope covers developments in catalysts, materials, controls, and integration with the complete engine/vehicle system.
2015-10-07
Event
This session explores total vehicle and powertrain technologies for on and off-road commercial vehicles aimed at reduction of CO2 emissions through design, analysis, and testing techniques. The topics may include energy analysis/management/optimization, current and proposed emission legislation, certification techniques, powertrain integration, weight reduction, idle reduction, and friction/parasitic reduction.
2015-10-07
Event
This session explores total vehicle and powertrain technologies for on and off-road commercial vehicles aimed at reduction of CO2 emissions through design, analysis, and testing techniques. The topics may include energy analysis/management/optimization, current and proposed emission legislation, certification techniques, powertrain integration, weight reduction, idle reduction, and friction/parasitic reduction.
2015-10-06
Event
This session will debate the interference in the development of Motorsport brake systems and brake systems or High Performance Road cars. The question will be discused whether Motorsport is a valid test field for High Performance road cars, and what synergies can be found between thess two areas.
2015-10-06
Event
This session explores total vehicle and powertrain technologies for on and off-road commercial vehicles aimed at reduction of CO2 emissions through design, analysis, and testing techniques. The topics may include energy analysis/management/optimization, current and proposed emission legislation, certification techniques, powertrain integration, weight reduction, idle reduction, and friction/parasitic reduction.
2015-10-06
Event
This session explores total vehicle and powertrain technologies for on and off-road commercial vehicles aimed at reduction of CO2 emissions through design, analysis, and testing techniques. The topics may include energy analysis/management/optimization, current and proposed emission legislation, certification techniques, powertrain integration, weight reduction, idle reduction, and friction/parasitic reduction.
2015-10-02 ...
  • October 2, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 11, 2016 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 17, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Designing more efficient and robust emission control components and exhaust systems results in more efficient performance, reduced backpressure and fuel penalty, and higher conversion efficiency. This course will help you to understand the motion of exhaust flow in both gasoline and diesel emission control components including flow-through and wall-flow devices such as catalytic converters, NOx adsorbers, diesel oxidation catalysts, diesel particulate filters as well as flow through the overall exhaust system.
2015-09-29
Technical Paper
2015-01-2880
Fabio Luz Almeida, Philip Zoldak, Marcos de Mattos Pimenta, Pedro Teixeira Lacava
The use of numerical simulations in the development processes of engineering products has been more frequent, since it enables us to predict premature failures and to study new promising and valuable concepts. In industry, numerical simulation usually has the function of reducing the necessary number of validation tests before spending huge amount of resources on alternatives with less chance to succeed. In the context of an economically committed country, the matter of cargo transportation is of great importance, since it affects the trading of consumer goods between cities, states and their flow towards exportation. Thus, the internal combustion (ICE) Diesel cycle engines play an important role in Brazil, since they are extensively used in automotive applications and commercial cargo transportation, mainly due to their relevant advantage in fuel consumption and reliability.
2015-09-29
Technical Paper
2015-01-2795
Jayesh Mutyal, Sourabh Shrivastava, Rana Faltsi, Markus Braun
Stringent diesel emissions standards forcing a constant reduction in discharges of particulate matter and nitrogen oxide (NOx). Current state-of-the-art in-cylinder solutions are falling short of achieving these limits. Engine manufacturers are looking at different ways to meet the emission norms. Selective catalytic reduction (SCR) of oxides of nitrogen with ammonia gas is emerging as preferred technology for meeting stringent NOx emission standards across the world. SCR system designers face several technical challenges, such as avoiding ammonia slip, urea crystallization, low temperature deposits and other potential pitfalls. Simulation can help to develop a deep understanding of these technical challenges and issues, identify root causes and help develop better designs to overcome them. This paper describes the modeling approach for Urea-Water-Solution spray and its interaction with canister walls and exhaust gases.
2015-09-29
Journal Article
2015-01-2778
Thomas Reinhart, Coralie Cooper, John Whitefoot, James MacIsaac
A study was funded by NHTSA to help inform the Phase 2 GHG and Fuel Efficiency Standards for Medium- and Heavy-Duty Engines and Vehicles. The goal of the study was to review technologies that could be used by Class 2b through Class 8 trucks to comply with possible future regulatory requirements, and determine their potential performance. The vehicles and engines selected for the study had extensive experimental data available from earlier work. The four trucks were a Kenworth T700 tractor, a Kenworth T270 box delivery truck, a Ford F-650 tow truck, and a Ram 2500 / 3500 pickup. For the long haul tractor, a Detroit DD15 engine was used. The pickup and medium-duty trucks used two different ratings of the Cummins ISB diesel, as well as a 6.2 liter naturally-aspirated gasoline V-8 and a turbocharged, direct-injected 3.5 liter gasoline V-6. All engine simulations were performed with GT-POWER.
2015-09-29
Journal Article
2015-01-2777
Gary Salemme, Erik Dykes, Daniel Kieffer, Michael Howenstein, Matthew Hunkler, Manik Narula
Simulations used to estimate carbon dioxide (CO2) emissions and fuel consumption of medium- and heavy-duty vehicles over prescribed drive cycles often employ engine fuel maps consisting of engine measurements at numerous steady-state operating conditions. However, simulating the engine in this way has limitations as engine controls become more complex, particularly when attempting to use steady-state measurements to represent transient operation. This paper explores an alternative approach to vehicle simulation that uses a “cycle average” engine map rather than a steady state engine fuel map. The map contains engine CO2 values measured on an engine dynamometer on cycles derived from vehicle drive cycles for a range of generic vehicles. A similar cycle average mapping approach is developed for a powertrain (engine and transmission) in order to show the specific CO2 improvements due to powertrain optimization that would not be recognized in other approaches.
2015-09-29
Journal Article
2015-01-2803
Anuj Kumar, Valentin Rougé, Nathalie Luu, Steven Yu, Valerie Bossoutrot, Steve Hagen, Tracey Jacksier
Abstract The Flame Ionization Detection (FID) is the most sensitive and widely used technology for the measurement of total hydrocarbons (THC). In the automotive emission testing of hydrocarbons, the fuel used for the flame in the FID analyzer is a mixture of hydrogen and helium in the ratio of 40:60. The Environmental Protection Agency (EPA) revised 40CFR part 1065 in April 2014 to include nitrogen as a balance gas alternative to helium for FID fuel mixtures used in the automotive industry. In addition to the balance gas alternative, the FID fuel blend tolerance was decreased from 40±2% to 40±1% (0.39 to 0.41mol/mol) hydrogen to minimize the impact on analyzer response. The feasibility of nitrogen as a FID fuel balance gas was studied and compared with a helium balance gas to understand the relative impact on emission testing. The study evaluated multiple hydrogen concentrations ranging from 38-42% in both balance gases.
2015-09-29
Technical Paper
2015-01-2814
Rakhesh Bharathan
Simultaneous reduction of NOx and PM from engine exhaust of a diesel engine is an interesting area of research due to the implementation of stringent emission regulations all over the world. Cost involved in expensive after treatment systems such as DPF and SCR necessitate minimization of engine out pollutants. With minimum engine out emission achieved through engine hardware and combustion parameter optimization, possibility of elimination or downsizing of the after treatment system can be explored. The paper presents the effect of fuel injection parameters and EGR rate on exhaust emission of a boosted diesel engine. Effects of parameters such as rail pressure, pilot-post injections, SOI, EGR rate and EGR temperature on a 4 cylinder two valve direct injection diesel engine is studied. Present study reveals the possibility of elimination of after treatment systems at BS IV level with optimization of engine hardware and combustion parameters.
2015-09-29
Technical Paper
2015-01-2810
Piotr Lijewski, Jerzy Merkisz, Pawel Fuc, Maciej Siedlecki, Andrzej Ziolkowski
Abstract The paper describes the measurement of PM emission from an excavator engine under actual operating conditions. The exploration of the relations between the engine operating parameters and its emissions requires measurements under actual conditions of engine operation. The specificity of the emission measurements, PM in particular, requires technologically advanced measuring devices. The situation gets even more complicated when, beside the PM mass. The particle size distribution and number (PN) also need to be measured. An important technical issue is the difficulty in fitting the measurement equipment in/on the vehicle in operation (e.g. excavator), which is why the presented investigations were carried out in a laboratory under simulated operation. The laboratory technicians applied load to the engines through the excavator hydraulic system.
2015-09-21 ...
  • September 21-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • March 7-9, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 26-28, 2016 (8:30 a.m. - 4:30 p.m.) - Baltimore, Maryland
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
2015-09-15
Journal Article
2015-01-2562
Tak W. Chan, Wajid Chishty, Craig Davison, David Buote
Abstract This study reports gaseous and particle (ultrafine and black carbon (BC)) emissions from a turbofan engine core on standard Jet A-1 and three alternative fuels, including 100% hydrothermolysis synthetic kerosene with aromatics (CH-SKA), 50% Hydro-processed Esters and Fatty Acid paraffinic kerosene (HEFA-SPK), and 100% Fischer Tropsch (FT-SPK). Gaseous emissions from this engine for various fuels were similar but significant differences in particle emissions were observed. During the idle condition, it was observed that the non-refractory mass fraction in the emitted particles were higher than during higher engine load condition. This observation is consistent for all test fuels. The 100% CH-SKA fuel was found to have noticeable reductions in BC emissions when compared to Jet A-1 by 28-38% by different BC instruments (and 7% in refractory particle number (PN) emissions) at take-off condition.
2015-09-06
Technical Paper
2015-24-2483
Thangaraja Jeyaseelan, Pramod S Mehta
The replacement of fossil diesel with neat biodiesel in a compression ignition engine has advantage in lowering unburned hydrocarbon, carbon monoxide and smoke emissions. However, the injection advance experienced with biodiesel fuel with respect to diesel injection setting increases oxides of nitrogen emission. In this study, the biodiesel-NO control is attempted using charge and fuel modification strategies with retarded injection timing. The experiments are performed at maximum torque speed and higher loads viz. from 60% up to full load conditions maintaining same power between diesel and biodiesel while retarding the timing of injection by 3 deg. crank angle. The charge and fuel modifications are done by recycling 5% by volume of exhaust gas to the fresh charge and 10% by volume of methanol to Karanja biodiesel.
2015-09-06
Technical Paper
2015-24-2408
Nicola Giovannoni, Sebastiano Breda, Stefano Paltrinieri, Alessandro D'Adamo, Stefano Fontanesi, Francesco Pulvirenti
Abstract In spark-ignited direct-injected engines, the formation of fuel pools on the piston is one of the major promoters of unburnt hydrocarbons and soot: in order to comply with the increasingly stringent emission regulations (EU6 and forthcoming), it is therefore necessary to limit fuel deposit formation. The combined use of advanced experimental techniques and detailed 3D-CFD simulations can help to understand the mechanisms driving fuel pool formation. In the paper, a combined experimental and numerical characterization of pool formation in a GDI engine is carried out to investigate and understand the complex interplay of all the mentioned factors. In particular, a low-load low-rpm engine operation is investigated for different ignition phasing, and the impact of both fuel formulation and instantaneous piston temperature variations in the CFD analyses are evaluated.
2015-09-06
Technical Paper
2015-24-2400
Andrea Matrisciano, Anders Borg, Cathleen Perlman, Harry Lehtiniemi, Michal Pasternak, Fabian Mauss
In this work a soot source term tabulation strategy for soot predictions under Diesel engine conditions within the zero-dimensional Direct Injection Stochastic Reactor Model (DI-SRM) framework is presented. The DI-SRM accounts for detailed chemistry, in-homogeneities in the combustion chamber and turbulence-chemistry interactions. The existing implementation [1] was extended with a framework facilitating the use of tabulated soot source terms. The implementation allows now for using soot source terms provided by an online chemistry calculation, and for the use of a pre-calculated flamelet soot source term library. Diesel engine calculations were performed using the same detailed kinetic soot model in both configurations. The chemical mechanism for n-heptane used in this work is taken from Zeuch et al. [2] and consists of 121 species and 973 reactions including PAH and thermal NO chemistry. The engine case presented in [1] is used also for this work.
2015-09-06
Technical Paper
2015-24-2396
Philippe Moreau, Patricia Valerio, Alain Brillard, Valerie Tschamber, Jean-Francois Brilhac, Yves Hohl, Regis Vonarb, L. Germanese, B. Courtalon
Abstract We present an experimental and modelling methodology developed at LGRE research laboratory to characterize soot oxidation in the presence of different atmospheres (NO2, NO2/O2), simulating passive regeneration which occur in a Diesel Particulate Filter (DPF). Based on this methodology which aims at deriving the kinetic parameters for soot combustion, the thermal reactivity of different soot has been studied and compared. Soot were produced from a prototype Liebherr engine and on an engine dynamometer at R&D Moteurs company, under two engine cycles and for two different fuels. Small soot masses (15-30mg) were deposited on the quartz frit of the reactor and submitted to a gas flow (NO2 or NO2/O2), under different temperatures. The mole fractions of NO2, NO, CO2 and CO at the reactor outflow were measured by infrared analyzers. The soot oxidation rate and the sample remaining mass were deduced from CO/CO2 emissions.
2015-09-06
Technical Paper
2015-24-2468
Kar Mun Pang, Hiew Mun Poon, Hoon Kiat Ng, Suyin Gan, Jesper Schramm
Abstract This work concerns the modelling of soot formation process in diesel spray combustion under engine-like conditions. The key aim is to investigate the soot formation characteristics at different ambient temperatures. Prior to simulating the diesel combustion, numerical models including a revised multi-step soot model is validated by comparing to the experimental data of n-dodecane fuel in which the associated chemistry is better understood. In the diesel spray simulations, a single component n-heptane mechanism and the multi-component Diesel Oil Surrogate (DOS) model are adopted. A newly developed C16-based model which comprises skeletal mechanisms of n-hexadecane, heptamethylnonane, cyclohexane and toluene is also implemented. Comparisons of the results show that the simulated liftoff lengths are reasonably well-matched to the experimental measurement, where the relative differences are retained to below 18%.
2015-09-06
Technical Paper
2015-24-2486
Ajay Singh Verma, M. Muzaffarul Hasan, Ashish Karnwal, Vipul Vibhanshu
Abstract The continuous growth of population and development of industries give rise to massive increase in the global energy demand in recent years. Therefore present work investigated the combustion and emission characteristics of an unmodified four stroke single cylinder variable compression ratio diesel engine utilizing isopropyl alcohol (2-propanol)-diethyl ether blends with diesel. The different fuel samples were prepared using 10% isopropyl, alcohol 5% diethyl ether by volume (IPD15), 15% isopropyl alcohol, 5% diethyl ether by volume (IPD20) and 20% isopropyl alcohol 5% diethyl ether by volume (IPD25) with neat standard diesel. All experiment tests were performed with at variable compression ratio 17 and 18 at different load conditions. The effect of blends and compression ratio on combustion parameters viz. peak cylinder pressure and rate of heat release along with exhaust emissions CO, CO2, HC and NOx, were investigated.
2015-09-06
Technical Paper
2015-24-2514
Marco Piumetti, Samir Bensaid, Nunzio Russo
A set of ceria-zirconia nanocatalysts with different Zr-contents and structural properties was prepared to study the effect of both the Zr-amount and surface-dependent activity towards soot combustion in “loose” and “tight” soot-catalyst contact. The properties of the catalysts were examined using several physico-chemical techniques. The best soot oxidation activities were achieved for the Ce0.9Zr0.1O2-NP catalyst (NP means nano-polyhedra and 0.9 indicates the atomic ratio of Ce/Ce+Zr), due to its easier reducibility, compared to high-surface area catalysts with the same Ce/Zr ratio. Moreover, better performances were reached for Ce0.9Zr0.1O2-NP, than similar nano-polyhedra with higher Zr-amounts (denoted as CexZr1-xO2-NP, where x = 0.8 or 0.7). On the other hand, worse activities were obtained for both mesoporous and microporous catalysts with the same Ce/Zr ratio.
2015-09-06
Technical Paper
2015-24-2518
Riccardo Amirante, Elia Distaso, Paolo Tamburrano, Rolf D. Reitz
Due to the new challenge of meeting number-based regulations for particulate matter (PM), a numerical and experimental study has been conducted to better understand particulate formation in engines fuelled with compressed natural gas. The study has been conducted on a Heavy-Duty, Euro VI, 4-cylinder, spark ignited engine, with multipoint sequential phased injection and stoichiometric combustion. For the experimental measurements two different instruments were used: a condensation particle counter (CPC) and a fast-response particle size spectrometer (DMS) the latter able also to provide a particle size distribution of the measured particles in the range from 5 to 1000 nm. Experimental measurements in both stationary and transient conditions were carried out. The data using the World Harmonized Transient Cycle (WHTC) were useful to detect which operating conditions lead to high numbers of particles. Then a further transient test was used for a more detailed and deeper analysis.
2015-09-06
Technical Paper
2015-24-2515
Christophe Barro, Sushant Pandurangi, Philipp Meyer, Konstantinos Boulouchos, Philipp Elbert, Yuri M. Wright
Abstract Past research has shown that post injections have the potential to reduce Diesel engine exhaust PM concentration without any significant influence in NOx emissions. However, an accurate, widely applicable rule of how to parameterize a post injection such that it provides a maximum reduction of PM emissions does not exist. Moreover, the underlying mechanisms are not thoroughly understood. In past research, the underlying mechanisms have been investigated in engine experiments, in constant volume chambers and also using detailed 3D CFD-CMC simulations. It has been observed that soot reduction due to a post injection is mainly due to two reasons: increased turbulence from the post injection during soot oxidation and lower soot formation due to lower amount of fuel in the main combustion at similar load conditions. Those studies do not show a significant temperature rise caused by the post injection.
2015-09-06
Technical Paper
2015-24-2482
Wolfgang Mühlbauer, Sebastian Lorenz, Dieter Brueggemann
Finite fossil energy sources and carbon dioxide as a main cause for climate changes are still under critical discussion. Therefore, scientists work on the replacement of fossil by alternative diesel fuels from biomass. Hence, in this study the in-cylinder combustion and particle number emissions of di-n-butyl ether (DNBE), as a representative of second generation biofuels, and of reference diesel fuel (B0) for comparison were analyzed by several measurement techniques at different injection and boost pressures. The heat release rate and thus the ignition delay as well as the center of combustion were analyzed by monitoring the global in-cylinder pressure signal using a pressure sensor. The combustion process was also visualized by simultaneous imaging of the hydroxyl radical and a spectral range of soot luminescence. This allows the analysis of the in-cylinder soot formation and oxidation process.
Viewing 1 to 30 of 8197

Filter

  • Range:
    to:
  • Year: