Criteria

Text:
Display:

Results

Viewing 1 to 30 of 6546
2017-09-11 ...
  • September 11-12, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Meeting the requirements of heavy-duty engine emissions regulations is a challenge for all engine manufacturers. Since the introduction of Exhaust Gas Recirculation (EGR) in medium and heavy-duty diesel engines, these systems have become more sophisticated and tightly integrated with emission control systems. This 2-day seminar will explore the advantages and disadvantages of EGR and the most effective implementation of various EGR systems. This seminar will begin by defining EGR and why it is used in diesel engines, along with an explanation of the mechanisms by which EGR is able to reduce NOx.
2017-08-15 ...
  • August 15-16, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Stringent requirements of reduced NOx emission limits in the US have presented engineers and technical staff with numerous challenges. Several in-cylinder technical solutions have been developed for diesel engines to meet 2010 emission standards. These technologies have been optimized and have yielded impressive engine-out results in their ability to reduce emissions to extremely low levels. However, current and state-of-the-art in-cylinder solutions have fallen short of achieving the limits imposed on diesel emissions for 2010.
2017-04-18 ...
  • April 18-24, 2017 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Lean burn engines (diesel and GDI) boast higher fuel economy and cleaner emissions than conventionally tuned engines while producing equivalent power. They employ higher combustion chamber compression ratios, significant air intake swirl and precise lean-metered direct fuel injection. The downfall of lean-burn technology, however, is increased exhaust NOx emissions (due to higher heat and cylinder pressure) and a somewhat narrower RPM power-band (due to slower burn rates of lean mixtures). Removal of NOx from exhausts is a critical need for emission standards and ambient ozone requirements.
2017-04-04
Event
This session focuses on technologies such as advanced and partially mixed combustion, cooled EGR boosting, ignition and direct injection technologies, pressure boosting, intelligent combustion, thermal efficiency, fully variable valvetrains, and other new and developing technologies. Papers focused on waste heat recovery technologies should be submitted to HX102/103.
2017-04-04
Event
Separate sub-sessions cover powertrain control, calibration, and system-level optimization processes related to achieving stringent market fuel economy, emissions, performance, reliability, and quality demands. Topics include the control, calibration, and diagnostics of the engine, powertrain, and subsystems related to energy management in conventional and hybrid operation, considering the simultaneous optimization of hardware design parameters and control software calibration parameters.
2017-04-04
Event
Papers are invited on technology developments and the integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in sensors and control systems will also be considered.
2017-04-04
Event
Papers on the following exhaust emissions control topics will be considered: System integration and durability, advances in catalyst substrates, advances in particulate filter substrates, advances in NOx reduction technology, and on-board measurement and control.
2017-04-04
Event
Papers cover exhaust aftertreatment system models, as well as their validation and application. Technologies encompassed include DOC, HC Trap, DPF, GPF, LNT, TWC, SCR, SCRF, ammonia oxidation catalysts, hybrid or combined catalysts, urea-water solution spray dynamics, and mixture non-uniformity. Modeling aspects range from fundamental, 3D models of individual components to system level simulation, optimization, variation, degradation, and control.
2017-04-03 ...
  • April 3-4, 2017 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
Training / Education Classroom Seminars
As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device. This seminar covers many DPF-related topics using fundamentals from various branches of applied sciences such as porous media, filtration and materials sciences and will provide the student with both a theoretical as well as an applications-oriented approach to enhance the design and reliability of aftertreatment platforms.
2017-04-03 ...
  • April 3-5, 2017 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • November 13-15, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
2017-09-25 ...
  • September 25, 2017 (8:30 a.m. - 4:30 p.m.) - Garden Grove, California
Training / Education Classroom Seminars
On-board diagnostics, required by governmental regulations, provide a means for reducing harmful pollutants into the environment. Since being mandated in 1996, the regulations have continued to evolve and require engineers to design systems that meet strict guidelines. This one day seminar is designed to provide an overview of the fundamental design objectives and the features needed to achieve those objectives for generic on-board diagnostics. The basic structure of an on-board diagnostic will be described along with the system definitions needed for successful implementation.
2017-01-10
Journal Article
2017-26-0073
B Ashok, K Nantha Gopal, Thundil Karuppa Raj Rajagopal, Sushrut Alagiasingam, Suryakumar Appu, Aravind Murugan
With the alarming increase in vehicular population, there is a depletion of fossil fuel availability. Hence to overcome the difficulties, bio-fuels as an alternative fuels are being used. One of the major difficulties with the bio fuels is higher viscosity in comparison to fossil fuels.To overcome this, preheating of bio-fuel is a good option as it tends to make the fuel less viscous. In our research, a helical coil heat exchanger to preheat the inlet fuel using the engine's exhaust gas is designed, as this would make the system more sustainable since no external energy needed. For evaluating the effectiveness of the preheating device a simulation study has been carried for the ethanol based bio-fuels. In simulation work, set of boundary conditions has been arrived based on the experimental analysis. The obtained results from the experiments such as velocity of air and fuel inlet were utilized as input to the simulation.
2017-01-10
Technical Paper
2017-26-0117
Matti A Harkonen, Alok Trigunayat, Arvind Kumar, Bosco Rajan
Light Duty Vehicles (LDVs), typically with engine displacement volume of less than 1.5L are an integral part of the India's automobile sector as they are one of the most preferred means of transportation in rural as well as urban India. This market has always been on the rise as a result of rising population, growing commercialization, increasing commercial activities, etc. which are all contributing to the increased demand for intra city transportation. The passenger LDVs such as the three wheeler segment dominates the market as the need for affordable passenger commutation is higher than the need for goods carriage within a city. With BS VI norms slated to be implemented in 2020, it becomes imperative to understand, plan and work out strategies to meet these norms effectively on the Indian roads & actual Indian driving behavior, especially for these LDVs.
2017-01-10
Journal Article
2017-26-0056
Suramya Naik, David Johnson, Laurence Fromm, John Koszewnik, Fabien Redon, Gerhard Regner, Neerav Abani
The government of India has decided to implement Bharat Stage VI (BS-VI) emissions standards from April 2020. This requires OEMs to equip their diesel engines with costly after-treatment, EGR systems and higher rail pressure fuel systems. By one estimate, BS-VI engines are expected to be 15 to 20% more expensive than BS-IV engines, while also suffering with 2 to 3 % lower fuel economy. OEMs are looking for solutions to meet the BS-VI emissions standards while still keeping the upfront and operating costs low enough for their products to attract customers; however traditional engine technologies seem to have exhausted the possibilities. Fuel economy improvement technologies applied to traditional 4-stroke engines bring small benefits with large cost penalties. One promising solution to meet both current, and future, emissions standards with much improved fuel economy at lower cost is the Opposed Piston (OP) engine.
Viewing 1 to 30 of 6546

Filter

  • Range:
    to:
  • Year: