Criteria

Text:
Display:

Results

Viewing 1 to 30 of 6298
2015-09-14 ...
  • September 14, 2015 (8:30 a.m. - 4:30 p.m.) - Indianapolis, Indiana
Training / Education Classroom Seminars
Note: Attendees of the Professional Development Seminar that is being held in conjunction with the SAE 2014 On-Board Diagnostics Symposium are able to attend the Symposium at a 10% discount (which is over and above any member level discount). If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special event daily rate. On-board diagnostics, required by governmental regulations, provide a means for reducing harmful pollutants into the environment.
2015-05-14 ...
  • May 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 19-20, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Stringent requirements of reduced NOx emission limits in the US have presented engineers and technical staff with numerous challenges. Several in-cylinder technical solutions have been developed for diesel engines to meet 2010 emission standards. These technologies have been optimized and have yielded impressive engine-out results in their ability to reduce emissions to extremely low levels. However, current and state-of-the-art in-cylinder solutions have fallen short of achieving the limits imposed on diesel emissions for 2010.
2015-04-21
Event
Papers cover exhaust aftertreatment system models, as well as their validation and application. Technologies encompassed include DOC, HC Trap, DPF, GPF, LNT, TWC, SCR, SCRF, ammonia oxidation catalysts, hybrid or combined catalysts, urea-water solution spray dynamics, and mixture non-uniformity. Modeling aspects range from fundamental, 3D models of individual components to system level simulation, optimization, variation, degradation, and control.
2015-04-21
Event
These sessions will focus on ‘Advances in NOx Reduction Technology’. The topics covered will include: new materials for lean NOx traps (LNT) and Selective Catalytic Reduction (SCR); system integration and durability; advances in NOx catalyst substrates, novel reductants and mixing designs.
2015-04-21
Event
This session covers the complete particulate filter system. There are papers covering the DOC aging as well as the effect of high sulfur fuel on the DOC. A couple of paper study the effect of ash accumulation and two papers cover a novel new asymmetric cell design and modeling of this new design. Finally we have a paper on gasoline particulate filters.
2015-04-21
Event
Papers are invited for this session covering the systems engineering experience required to achieve ultra-low emission levels on light-duty vehicles. Emission system component topics for this session include the development of advanced three-way catalysts, the development of NOX control strategies for gasoline lean burn engines, the application of high cell density substrates to advanced emission systems, and the integration of these components into full vehicle emission systems.
2015-04-20 ...
  • April 20-21, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • September 30-October 1, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device.
2015-04-08 ...
  • April 8-15, 2015 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Lean burn engines (diesel and GDI) boast higher fuel economy and cleaner emissions than conventionally tuned engines while producing equivalent power. They employ higher combustion chamber compression ratios, significant air intake swirl and precise lean-metered direct fuel injection. The downfall of lean-burn technology, however, is increased exhaust NOx emissions (due to higher heat and cylinder pressure) and a somewhat narrower RPM power-band (due to slower burn rates of lean mixtures). Removal of NOx from exhausts is a critical need for emission standards and ambient ozone requirements.
2015-03-26 ...
  • March 26-27, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • August 18-19, 2015 (8:30 a.m. - 4:30 p.m.) - Rosemont, Illinois
Training / Education Classroom Seminars
Meeting the requirements of heavy-duty engine emissions regulations is a challenge for all engine manufacturers. Since the introduction of Exhaust Gas Recirculation (EGR) in medium and heavy-duty diesel engines, these systems have become more sophisticated and tightly integrated with emission control systems. This 2-day seminar will explore the advantages and disadvantages of EGR and the most effective implementation of various EGR systems. This seminar will begin by defining EGR and why it is used in diesel engines, along with an explanation of the mechanisms by which EGR is able to reduce NOx.
2015-03-25 ...
  • March 25-27, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 21-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
On-board diagnosis of engine and transmission systems has been mandated by government regulation for light and medium vehicles since the 1996 model year. The regulations specify many of the detailed features that on-board diagnostics must exhibit. In addition, the penalties for not meeting the requirements or providing in-field remedies can be very expensive. This course is designed to provide a fundamental understanding of how and why OBD systems function and the technical features that a diagnostic should have in order to ensure compliant and successful implementation.
2015-01-22
Event
This session will include an opportunity to hear the views from a range of stakeholders on the types of technologies and policy options which can improve fuel efficiency and reduce GHG emissions from the medium and heavy duty transportation sector. This will include view from manufacturers (OEMs and suppliers), users, and other stakeholders.
2015-01-14
Technical Paper
2015-26-0030
Naresh G. Gandhi, Nitin Gokhale, Yogesh Aghav, M N Kumar
Indian emission norms for stationary Gensets will be upgraded from CPCB I to CPCB II. These new emission norms call for a significant change in emission limits. CPCB II emission norms call for 62% reduction in NOx+HC and 33% reduction in particulates for engines between 75 – 800 kW power range compared to existing CPCB I norms. CPCB II norms are more stringent as compared to EU Stage IIIA and CEV BS III. To meet equivalent emission norms in US and Europe most of the engine manufacturers have used Common Rail Direct Injection (CRDI) or electronic unit injection as the fuel injection technology. This paper describes mechanical fuel injection solution for meeting CPCB II emission norms on engines between 93 kW up to 552 kW with acceptable fuel consumption values. The paper presents simulation and experimentation work carried out to achieve the norms for the said power ratings.
2014-12-10
Event
Accelerated aging of automotive gasoline emissions catalysts has been performed on bench engines for decades. The EPA regulations include an accelerated aging cycle called the Standard Bench Cycle (SBC) that is modeled on the RAT-A cycle developed by GM Corp. and published in 1988. However, this cycle cannot be used for diesel aftertreatment components because it is based on stoichiometric operation, whereas diesel engines typically operate under excess air (lean) conditions. The necessity for accelerated aging cycles for diesel emissions systems can be illustrated by considering that the full useful life requirement in the United States for heavy-duty on-highway trucks is 435,000 miles, and off-road applications may be 8,000 hours. Aging under normal operating conditions is excessively time-consuming and expensive. This need was recognized, and the DAAAC Protocol™ developed to provide accelerated aging cycles for the vast majority of diesel emissions system applications.
Viewing 1 to 30 of 6298

Filter

  • Range:
    to:
  • Year: