Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2229
2017-09-04
Technical Paper
2017-24-0091
Hyun Woo Won, Alexandre Bouet, Joseph KERMANI, Florence Duffour
Abstract Reducing the CO2 footprint, limiting the pollutant emissions and rebalancing the ongoing shift demand toward middle-distillate fuels are major concerns for vehicle manufacturers and oil refiners. In this context, gasoline-like fuels have been recently identified as good candidates. Straight run naphtha, a refinery stream derived from the atmospheric crude oil distillation process, allows for a reduction of both NOx and particulate emissions when used in compression-ignition engines. CO2 benefits are also expected thanks to naphtha’s higher H/C ratio and energy content compared to diesel. In previous studies, wide ranges of Cetane Number (CN) naphtha fuels have been evaluated and CN 35 naphtha fuel has been selected. The assessment and the choice of the required engine hardware adapted to this fuel, such as the compression ratio, bowl pattern, nozzle design and air-path technology, have been performed on a light-duty single cylinder compression-ignition engine.
2017-09-04
Technical Paper
2017-24-0135
Shuxia Miao, Lin Luo, Yan Liu, Zhangsong Zhan
New emissions regulations of light-duty vehicles (China 6) will be implemented in China from July 1, 2020. This standard includes two stages, China 6a and China 6b, in which the PM limits of 4.5 mg/km and 3.0 mg/km are introduced respectively, the PN limit is set to be 6×10e11 #/km for both stages. The WLTC testing cycle will be implemented in China 6 regulation as well. In this study a light-duty vehicle satisfying China 6(b) emission standards was developed by improving the engine raw emissions, optimizing the calibration and adding a coated GPF to the after-treatment system. The impacts of ash content and consumption of engine oil and the fast ash accumulation to vehicle emissions and backpressure were analyzed through dynamometer testing. The vehicle after-treatment system was then designed and developed to meet China 6(b) emission standards. The characteristics of soot accumulated through mimicking routine driving under cold environments were tested.
2017-09-04
Technical Paper
2017-24-0009
Federico Millo, Giulio Boccardo, Andrea Piano, Luigi Arnone, Stefano Manelli, Giuseppe Tutore, Andrea Marinoni
Abstract To comply with Stage IV emission standard for off-road engines, Kohler Engines has developed the 100kW rated KDI 3.4 liters diesel engine, equipped with DOC and SCR. Based on this engine, a research project in collaboration between Kohler Engines, Ricardo, Denso and Politecnico di Torino was carried out to exploit the potential of new technologies to meet the Stage IV and beyond emission standards. The prototype engine was equipped with a low pressure cooled EGR system, two stage turbocharger, high pressure fuel injection system capable of very high injection pressure and DOC+DPF aftertreatment system. Since the Stage IV emission standard sets a 0.4 g/kWh NOx limit for the steady state test cycle (NRSC), that includes full load operating conditions, the engine must be operated with very high EGR rates (above 30%) at very high load.
2017-07-10
Technical Paper
2017-28-1933
Alberto Boretti
Abstract The paper captures the recent events in relation with the Volkswagen (VW) Emissions Scandal and addresses the impact of this event on the future of power train development. The paper analyses the impact on the perspectives of the internal combustion engine, the battery based electric car and the hydrogen based technology. The operation of the United States Environmental Protection Agency (EPA), VW and the United States prosecutor, sparked by the action of the International Council on Clean Transportation (ICCT) is forcing the Original Equipment Manufacturers (OEM) towards everything but rationale immediate transition to the battery based electric mobility. This transition voids the value of any improvement of the internal combustion engine (ICE), especially in the lean burn, compression ignition (CI) technology, and of a better hybridization of powertrains, both options that have much better short term perspectives than the battery based electric car.
2017-07-10
Technical Paper
2017-28-1937
Jyotirmoy Barman, Prateek Arora, Kumar Patchappalam
Abstract Air Pollution is a major concern in our country due to which Indian Government has taken a decision to move from BS-IV to BS-VI which is nearly 90% reduction in NOx and 50% in particulate matter along with addition of particulate number regulation for BS-VI in comparison to BS-IV norms in very short span of time. Vehicle manufacturers are also having the challenge to produce low cost and fuel efficient product with BS-VI solution in order to meet tightening emission regulations and increasing needs of lower fuel consumption. Detailed study is done with different approaches to meet BS-VI emission which is elaborately explained in different aspect of engine design and after treatment parameter with its pros and cons. After Treatment selection plays an important role in engine development to meet stringent emission legislations and customer demands. Strategies for BS-VI were described with the advantage and drawbacks for after treatment selection.
2017-06-27
WIP Standard
ARP6955
This SAE Aerospace Recommended Practice (ARP) document covers the requirements for a Snowcompressor with carrier vehicle used to clear snow from airport operational areas by compressing the volume of collected snow into smaller volumes for loading into a hauling/dump truck or for depositing reduced-volume windrows for snow banking. The term carrier vehicle represents the various self-propelled prime movers that provide the power necessary to move snow and ice control equipment during winter operations. For two-stage rotary plows that primarily are used to cast heavy concentrations of snow away from airport operational areas such as runways and taxiways, see ARP5539.
2017-05-10
Technical Paper
2017-01-1925
Lukas Walter, Attila Toth, Gernot Hasenbichler, Helmut Theissl, Russ Truemner, Gregory Heimann, Praveen Rastogi
With the implementation of EURO VI and similar emission legislation, the industry assumed the pace and stringency of new legislation would be reduced in the future. The latest announcements of proposed and implemented legislation steps show that future legislation will be even more stringent. The currently leading announced legislation, which concerns a large number of global manufacturers, is the legislation from the United States (US) Environmental Protection Agency (EPA) and the California Air Resources Board (CARB). Both announced new legislation for CO2, Greenhouse Gas (GHG) Phase II. CARB is also planning additional Ultra Low NOx regulations. Both regulations are significant and will require a number of technologies to be used in order to achieve the challenging limits. AVL published some engine related measures to address these legislation steps.
2017-05-04
Magazine
Innovations for lightweighting Tough fuel-economy bogies for 2021 and beyond are driving new approaches to materials use, as seen in these case studies. Axellent progress AAM's new Quantum drive-axle technology is a leap forward in lightweight, efficient driveline systems aimed at 2020 and beyond. Low-temperature combustion ready for prime time? At SAE's High-Efficiency IC Engines Symposium, Delphi said its new, third-generation GDCI is promising, but even LTC proponents admit that challenges remain. More automation for ECU testing The latest fault-insertion tests enable engineers to run more test cases in less time.
2017-04-12
Video
While the White House proposes to relax U.S. vehicle emission standards, in Europe there’s no such talk. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at Mercedes race to meet tighter tailpipe regulations coming in 2021. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
2017-03-28
Technical Paper
2017-01-0872
Sunil Kumar Pathak, Vineet sood, Yograj Singh, Shubham Gupta, Salim Abbasbhai Channiwala
Abstract In this study, A Gasoline Passenger car (Euro IV) was experimentally investigated for performance and emissions on three different fuels i.e. Gasoline, LPG (Liquefied Petroleum Gas) and DME (Di-methyl ether) blend with a concentration of 20% by mass in LPG (DME20). In particular, emission characteristics (including Hydrocarbon, CO, NOx, and CO2) over the Modified Indian Driving Cycle (MIDC) and fuel economy were investigated at the Vehicle Emission Laboratory (VEL) at the CSIR- Indian Institute of Petroleum, Dehradun, India. The experimental results showed that Vehicle complies with Euro IV legislation on gasoline and LPG fuel, however, showed higher NOx Emissions on DME 20 fuel. LPG kit was reconfigured for DME and LPG blend to bring down the emissions within the specified emission limits. The Emission values observed for DME20 were 0.635 g/km (CO), 0.044 g/km (THC), and 0.014 g/km (NOx) against the Euro IV limits of 1.0 g/km, 0.1 g/km and 0.08 g/km, respectively.
2017-03-28
Technical Paper
2017-01-1016
Charles Schenk, Paul Dekraker
Abstract EPA has been benchmarking engines and transmissions to generate inputs for use in its technology assessments supporting the Midterm Evaluation of EPA’s 2017-2025 Light-Duty Vehicle greenhouse gas emissions assessments. As part of an Atkinson cycle engine technology assessment of applications in light-duty vehicles, cooled external exhaust gas recirculation (cEGR) and cylinder deactivation (CDA) were evaluated. The base engine was a production gasoline 2.0L four-cylinder engine with 75 degrees of intake cam phase authority and a 14:1 geometric compression ratio. An open ECU and cEGR hardware were installed on the engine so that the CO2 reduction effectiveness could be evaluated. Additionally, two cylinders were deactivated to determine what CO2 benefits could be achieved. Once a steady state calibration was complete, two-cycle (FTP and HwFET) CO2 reduction estimates were made using fuel weighted operating modes and a full vehicle model (ALPHA) cycle simulation.
2017-03-28
Technical Paper
2017-01-1020
Finn Tseng, Imad Makki, Pankaj Kumar, Robert Jentz, Aed Dudar
Abstract Engine-Off Natural Vacuum (EONV) principles based leak detection monitors are designed to determine the presence of a small leak in the fuel tank system. It was introduced to address the ever more stringent emission requirement (currently at 0.02”) for gasoline engine equipped vehicles as proposed by the Environmental Protection Agency (EPA) and California Air Resources Board (CARB) in the United States [2, 3]. Other environmental protection agencies including the ones in EU and China will be adopting similar regulations in the near future. Due to its sensitivity to known noise factors such as the ambient temperature, barometric pressure, drive pattern and parking angle, it has been historically a lower performing monitor that is susceptible to warranty cost or even voluntary recalls. The proposed new model based monitor utilizes production pressure signal and newly instrumented temperature sensors [15].
2017-03-28
Technical Paper
2017-01-0907
Timothy Johnson, Ameya Joshi
Abstract This review paper summarizes major and representative developments in vehicle engine efficiency and emissions regulations and technologies from 2016. The paper starts with the key regulatory developments in the field, including newly proposed European RDE (real driving emissions) particle number regulations, and Euro 6 type regulations for China and India in the 2020 timeframe. China will be tightening 30-40% relative to Euro 6 in 2023. The California heavy duty (HD) low-NOx regulation is advancing and the US EPA is anticipating developing a harmonized proposal for implementation in 2023+. The US also finalized the next round of HD GHG (greenhouse gas) regulations for 2021-27, requiring 5% engine CO2 reductions. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations.
2017-03-28
Journal Article
2017-01-0911
Krishna Chilumukuru, Aniket Gupta, Michael Ruth, Michael Cunningham, Govindarajan Kothandaraman, Lasitha Cumaranatunge, Howard Hess
Abstract Future light duty vehicles in the United States are required to be certified on the FTP-75 cycle to meet Tier 3 or LEV III emission standards [1, 2]. The cold phase of this cycle is heavily weighted and mitigation of emissions during this phase is crucial to meet the low tail pipe emission targets [3, 4]. In this work, a novel aftertreatment architecture and controls to improve Nitrogen Oxides (NOx) and Hydrocarbon (HC) or Non Methane Organic gases (NMOG) conversion efficiencies at low temperatures is proposed. This includes a passive NOx & HC adsorber, termed the diesel Cold Start Concept (dCSC™) catalyst, followed by a Selective Catalytic Reduction catalyst on Filter (SCRF®) and an under-floor Selective Catalytic Reduction catalyst (SCR). The system utilizes a gaseous ammonia delivery system capable of dosing at two locations to maximize NOx conversion and minimize parasitic ammonia oxidation and ammonia slip.
2017-03-28
Journal Article
2017-01-1013
Sunil Kumar Pathak, Yograj Singh, Vineet sood, Salim Abbasbhai Channiwala
Abstract The standard emission protocol including driving cycle is performed for the legislative fuel economy and emission testing of the vehicles in a laboratory. The driving cycles are expected to represent actual driving pattern and energy requirements. However, recent studies showed that the gap between real world driving conditions and the standard driving cycle is widening, as the traffic pattern and vehicle population is varying dynamically and the change in the emission procedures is not synchronized with the same pace. More so, as the process of harmonization of emission legislations is in progress to narrow down the country specific variation of emission regulation, as this will help in the smooth globalization of the automotive business process. The new regulation for in-service conformity is being considered to reduce the emissions in real-world driving.
2017-03-28
Technical Paper
2017-01-0169
Ward J. Atkinson, William Raymond Hill, Gursaran D. Mathur
Abstract The EPA has issued regulations in the Final Rulemaking for 2017-2025 Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards (420r12901-3). This document provides credits against the fuel economy regulations for various Air Conditioning technologies. One of these credits is associated with increased use of recirculation air mode, when the ambient is over 24°C (75°F.). The authors want to communicate the experiences in their careers that highlighted issues with air quality in the interior of the vehicle cabin. Cabin contamination sources may result in safety and health issues for both younger and older drivers. Alertness concerns may hinder their ability to operate a vehicle safely.
2017-03-22
Video
Last week, the EPA decided to revisit a review of automotive emission standards. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at the upcoming mid-term review of automotive emission standards. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
2017-03-01
Book
Jay Meldrum
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using the EPA test procedure and standard for off-road vehicles, along with more stringent U.S. National Park Best Available Technology (BAT) standards that are likened to those of the California Air Resourced Board (CARB). Innovative technology solutions include: • Standard application for diesel engine designs • Applications to address and test both engine and track noise • Benefits of the Miller cycle and turbocharging The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise.
CURRENT
2017-02-21
Standard
J2773_201702
This Standard describes methods to understand the risks associated with vehicle mobile air conditioning [MAC] systems in all aspects of a vehicle’s lifecycle including design, production, assembly, operation and end of life. Information for input to the risk assessment is provided in the Appendices of this document. This information should not be considered to be complete, but only a reference of some of the data needed for a complete analysis of the risk associated with the use of refrigerants in MAC systems.
2017-02-01
Book
Jay Meldrum
This collection is a resource for studying the history of the evolving technologies that have contributed to snowmobiles becoming cleaner and quieter machines. Papers address design for a snowmobile using the EPA test procedure and standard for off-road vehicles. Innovative technology solutions include: • Engine Design: improving the two-stroke, gas direct injection (GDI) engine • Applications of new muffler designs and a catalytic converter • Solving flex-fuel design and engine power problems The SAE International Clean Snowmobile Challenge (CSC) program is an engineering design competition. The program provides undergraduate and graduate students the opportunity to enhance their engineering design and project management skills by reengineering a snowmobile to reduce emissions and noise. The competition includes internal combustion engine categories that address both gasoline and diesel, as well as the zero emissions category in which range and draw bar performance are measured.
2017-01-10
Technical Paper
2017-26-0230
Timothy Dallmann, Zhenying Shao, Aparna Menon, Anup Bandivadekar
Abstract Diesel engines used in non-road vehicles and equipment are a significant source of pollutant emissions that contribute to poor air quality, negative human health impacts, and climate change. Efforts to mitigate the emissions impact of these sources, such as regulatory control programs, have played a key role in air quality management strategies around the world, and have helped to spur the development of advanced engine and emission control technologies. As non-road engine emissions control programs are developed in a growing number of countries around the world, it is instructive to look at the development of programs in two of the regions that have progressed furthest in controlling emissions from non-road engines, the United States (U.S.) and European Union (EU).
Viewing 1 to 30 of 2229

Filter

  • Range:
    to:
  • Year: