Criteria

Text:
Display:

Results

Viewing 1 to 30 of 5309
2015-06-01
Journal Article
2015-01-9073
Peter Schihl, Eric Gingrich, Laura Decker
The U.S. Army currently uses JP-8 for global operations according to the ‘one fuel forward policy’ in order to reduce the logistics burden of supplying a variety of fuels for given Department of Defense ground vehicle applications. One particular challenge with using global JP-8 is the lack of or too broad a range of specified combustion affecting properties including ignition quality, high temperature viscosity, and density. In particular, the ignition quality of JP-8 has dramatically varied throughout the past decade on a global basis covering a range of 29 to 70 cetane index. This key combustion affecting parameter was explored in this study by evaluating a synthesized low ignition quality jet fuel blended in 25% volumetric proportions with JP-8 to effectively cover a cetane number range of 25 to 45 in a single cylinder diesel engine operated at various light, medium, and high load operating conditions.
2015-04-23
Event
This session explores advances in the creation of sustainable energy sources and their usage in the transportation sector. Topics can include research and in-production technology used to produce renewable energy sources and materials. A discussion on lifecycle analysis of the energy sources is also highly recommended. The SDPC encourages usage of papers, presentations, and panels in this session to display leading edge technologies and practical tools for engineers.
2015-04-23
Event
This session includes four papers related to spark-ignition engines and their fuels and five papers related to the processes of compression ignition combustion of different fuels.
2015-04-14
Technical Paper
2015-01-0611
Aref M. A. Soliman, Mina M.S. Kaldas
Abstract This paper presents experimental and theoretical investigations for ride comfort performance of compressed natural gas fuelled car. A compressed natural gas and gasoline fuel are used to run the engine car and its effect on the vehicle ride comfort is evaluated. The ride comfort performance in terms of experimental Root Mean Square (RMS) values of the vertical acceleration at near driver's feet on the floor, on the front and back seat for the same passenger car fuelled by gasoline and natural gas is evaluated. Furthermore, seven degrees of freedom vehicle mathematical model is developed, and validated through laboratory tests. The validation process is performed by comparing the predicted RMS values of the vertical accelerations with the measured RMS values. Furthermore, the optimum values of vehicle suspension parameters are obtained through the validated vehicle model.
2015-04-14
Technical Paper
2015-01-1297
Harveer Singh Pali, Naveen Kumar, Yahaya Alhassan, Amar Deep
Abstract Biodiesel production has been getting global awareness since Petroleum prices are escalating continuously. As biodiesel is gaining considerable demand, standards are vital for its commercialization and market introduction. Feedstocks availability has posed serious challenges, thus the need for non-edible and unexplored feedstocks has risen. In Indian context, Biodiesel is produced using sal seed oil which is potentially available in Indian forest as a non-edible feedstock. The present paper deals with the production optimization using design of experiments and fuel property characterization of Sal biodiesel (sal methyl esters). Transesterification process parameters like catalyst concentration (% w/w), Oil to Methanol molar ratio, reaction time (min) and reaction temperature (°C) were considered the significance factors and the response was taken as the Yield (% w/w). Experiment matrix with several combinations of factors was generated.
2015-04-14
Technical Paper
2015-01-1298
Sangram Jadhav
Abstract The depletion of resources, increased cost of fossil fuel and increased environmental awareness reaching the critical condition. Development of viable alternative fuels from renewable resources is gaining the international attention and acceptance. The vegetable oils have the potential of alternative fuel for compression ignition engines by converting it into biodiesel. The mangifera indica oil is a nonedible vegetable oil, available in large quantities in mango cultivating countries including India. Very little research has been done on utilization of oil in general and optimization of transesterification process for biodiesel production. In the present study, transesterification process with use of homogeneous catalyst has been optimized.
2015-04-14
Technical Paper
2015-01-1677
Amaya Kak, Naveen Kumar, Bharat Singh, Somendra Singh, Dhruv Gupta
Abstract Increased dependency on fossil fuels has led to its depletion as well as affected the environment adversely. Moreover, increasing crude oil prices is pressurizing vehicle manufacturers to invent new technology so as to increase fuel economy and at the same time to keep emissions under control. Hydrogen has gained popularity not just in terms of being an abundant alternative but also due to being a very clean propellant. In the present investigation, hydrogen boosting has been performed on an SI engine running on gasoline-methanol and ethanol-gasoline blends to determine the additional advantages of the same compared to pure gasoline operation. The engine selected for experimental analysis is a single cylinder, air cooled spark ignition engine that has been modified for hydrogen injection in the intake manifold prior to the port with the injection timing being held constant throughout the experiment.
2015-04-14
Technical Paper
2015-01-1682
Sangram D. Jadhav, Madhukar S Tandale
Abstract The mangifera indica oil is a nonedible vegetable oil, which is available in large quantities in mango cultivating countries including India. Very little research has been done on utilization of oil in general and optimization of transesterification process for biodiesel production. In present study, the transesterification processes with heterogeneous catalyst. The various input parameters like methanol to oil molar ratio (1:08, 1:12 and 1:16), heterogeneous catalyst types (ZnO, MgO and CaO), catalyst concentration (0.5, 1 and 1.5 wt %) and reaction temperature (59, 64 and 69°C) were studied by applying the orthogonal experimental array L9.ANOVA (F-test at P=0.05 contribution of each signal to noise factor) technique was used for optimization with the objective of maximizing the yield of high quality mangifera indica oil biodiesel.
2015-04-14
Technical Paper
2015-01-1681
Girish Khairnar, Jagrit Shrivas, Sachin Pande, Rohit Londhe, Yaser Hussaini, Yogesh Ambekar
Abstract Last mile transportation is an important supply chain and transportation requirement for the movement of people and goods from a transport hub to a final destination in that area. In India this requirement is largely met by 3 wheelers and small 4 wheelers (below 1 ton payload). Greaves cotton Ltd. (GCL) has played an important role for last mile transportation solutions in India by developing suitable engines for the above category vehicles. GCL is already supplying single cylinder air cooled 400 cc diesel / CNG, 435 cc & 510 cc diesel and 510 cc water cooled CNG BSIII engines for 3 wheeler applications. Single cylinder water cooled 510 cc and 611 cc BSIII diesel engines are being supplied for small commercial 4 wheeler applications. In India, BSIV emission norms are in place since April 2010 in metro cities for 4 wheelers. CNG network is well established in most of these cities.
2015-04-14
Technical Paper
2015-01-1684
KV Shivaprasad, PR Chitragar, GN Kumar
Abstract This article experimentally characterizes the combustion and emission parameters of a single cylinder high speed SI engine operating with different concentrations of hydrogen with gasoline fuel. For this purpose, the conventional carbureted high speed SI engine was modified into an electronically controllable engine, wherein ECU was used to control the injection timings and durations of gasoline. The experiments have been conducted for different engine speeds at various throttle positions. The experimental results demonstrated that engine brake power and brake thermal efficiency increased to certain extent and then decreases with the increase of hydrogen percentage in the fuel blend. The experimental results revealed that heat release and cylinder pressure increased with addition of hydrogen fraction till 20%. It also showed the reduction in HC and CO emissions in comparison with pure gasoline.
2015-04-14
Technical Paper
2015-01-1733
Michele De Gennaro, Elena Paffumi, Giorgio Martini, Urbano Manfredi, Roberto Rossi, Paolo Massari, Roberto Roasio
Abstract The increasing urbanization level of many countries around the globe has led to a rapid increase of mobility demand in cities. Although public transport may play an important role, there are still many people relying on private vehicles, and, especially in urban areas, motorcycles and scooters can combine handling and flexibility with lower cost of operation compared to passenger cars. However, in spite of their lower fuel demand, they might significantly contribute to air pollution, lagging behind cars in terms of emission performances. The aim of this paper is to provide the scientific community with the results of an exploratory test campaign on four different motorcycles, converted from gasoline to CNG by means of an after-market conversion kit. A fifth motorcycle, similarly converted from gasoline to LPG, was also tested. These vehicles are powered by 4-strokes engines with a displacement ranging from 50 to 250 cm3 and a power ranging from 3.0 to 16.5 kW.
2015-04-14
Technical Paper
2015-01-0958
Naveen Kumar, Sidharth Bansal, Harveer Singh Pali
Abstract Concerns about long term availability of petroleum based fuels and stringent environmental norms have been a subject for deliberations around the globe. The vegetable oil based fuels and alcohols are very promising alternative fuels for substitution of diesel, reduce exhaust emissions and to improve combustion in diesel engines which is mainly possible due to oxygenated nature of these fuels. Jatropha oil is important non-edible oil in India which is either used in neat or modified form as diesel fuel. Furthermore n-butanol is renewable higher alcohol having properties quite similar to diesel fuel. In the present study, n-butanol was blended in Jatropha Oil (JO) and Jatropha Oil Methyl Ester (JME) on volumetric basis (10 and 20%). The blends were homogeneous and stable and there was no phase separation. The different physicochemical properties of blends were evaluated as per relevant standards.
2015-04-14
Technical Paper
2015-01-0955
Hejun Guo, Qining Xun, Shenghua Liu, Xuanjun Wang
Abstract In the present paper, a new biofuel ethylene glycol monomethyl ether soyate has been developed. The biofuel was synthesized with a refined soybean oil and ethylene glycol monomethyl ether as reactants and sodium as catalyst under 90°C. The synthesized crude product was purified and structurally identified through Fourier Transform Infrared Spectrum (FT-IR), 1H Nuclear Magnetic Resonance Spectroscopy (1H NMR) and Gel Permeation Chromatography (GPC) analyses. The physicochemical properties of the biofuel and its addition effects on properties of diesel fuel were measured according to China national standard test methods. A single cylinder diesel engine was employed to evaluate the influences of the biofuel on engine fuel economy and engine-out emissions of CO, HC, NOx and smoke.
2015-04-14
Technical Paper
2015-01-0770
Mehrdad Afshari, Jafar Hashemi Daryan, Seyed Ali Jazayeri, Reza Ebrahimi, Farshad Salimi Naneh Karan
Abstract Currently, the interest in using alternative clean types of fuels has been extensively increased all over the world because of the global approach in reducing engine emissions and creating new sources of fuel for internal combustion engines. The hydrogen-methane blend is one of the alternative fuels which includes the benefits of both of the fuels compared to the traditional petrol/gasoline fuel. This paper addresses a two-zone quasi-dimensional model to investigate the performance of an SI engine which uses a mixture of methane and hydrogen. In this model, gases inside the cylinder are divided into two regions: burned and the unburned. The chemical reactions are supposed to be in equilibrium in each zone, but the extended Zedlovich mechanism is utilized to determine the amount of the NOx available in the exhaust gas. Also, CO concentration is determined by two steps kinematic reactions.
2015-04-14
Technical Paper
2015-01-0827
Yan Zhang, Macklini Dalla Nora, Hua Zhao
Abstract Controlled Auto Ignition (CAI), also known as Homogeneous Charge Compression Ignition (HCCI), is one of the most promising combustion technologies to reduce the fuel consumption and NOx emissions. Most research on CAI/HCCI combustion operations have been carried out in 4-stroke gasoline engines, despite it was originally employed to improve the part-load combustion and emission in the two-stroke gasoline engine. However, conventional ported two-stroke engines suffer from durability and high emissions. In order to take advantage of the high power density of the two-stroke cycle operation and avoid the difficulties of the ported engine, systematic research and development works have been carried out on the two-stroke cycle operation in a 4-valves gasoline engine. CAI combustion was achieved over a large range of operating conditions when the relative air/fuel ratio (lambda) was kept at one as measured by an exhaust lambda sensor.
2015-04-14
Technical Paper
2015-01-0821
Alvaro Pinheiro, David Vuilleumier, Darko Kozarac, Samveg Saxena
Abstract This paper follows a cycle-simulation method for creating an engine performance map for an ethanol fueled boosted HCCI engine using a 1-dimensional engine model. Based on experimentally determined limits, the study defined operating conditions for the engine and performed a limited parameter sweep to determine the best efficiency case for each condition. The map is created using a 6-Zone HCCI combustion model coupled with a detailed chemical kinetic reaction mechanism for ethanol, and validated against engine data collected from a 1.9L 4-Cylinder VW TDI engine modified to operate in HCCI mode. The engine was mapped between engine speeds of 900 and 3000 rpm, 1 and 3 bar intake pressure, and 0.2 and 0.4 equivalence ratio, resulting in loads between idle and 14.0 bar BMEP. Analysis of a number of trends for this specific engine map are presented, such as efficiency trends, effects of combustion phasing, intake temperature, engine load, engine speed, and operating strategy.
2015-04-14
Technical Paper
2015-01-0853
Senthilkumar Masimalai, Arulselvan Subramanian
Abstract The effect of methanol addition (by blending) and methanol induction (by carburetion) on performance of a vegetable oil (Madhuca Indica called as Mahua oil) based diesel engine was studied experimentally. A single cylinder, water cooled, DI, diesel engine was used. Baseline data was generated with neat diesel and neat Mahua oil as fuels. Subsequently methanol was blended with Mahua oil in different proportions such as 5, 10, 15 and 20% by mass and tested for engine's performance. Finally the engine was operated in dual fuel mode of operation with methanol induction and Mahua oil injection. Engine performance, emission and combustion characteristics of ND (neat diesel), NMO (neat Mahua oil), MOMB (Mahua oil+15% methanol blend by mass) and MOMDFE (Mahua oil dual fuel engine at 15% mass share) were compared and analyzed at 100% and 40% loads. NMO resulted in inferior performance and increased emissions at both power outputs as compared to ND.
2015-04-14
Technical Paper
2015-01-0845
Prasad Divekar, Zhenyi Yang, David Ting, Xiang Chen, Ming Zheng, Jimi Tjong
Abstract An experimental investigation of low temperature combustion (LTC) cycles is conducted with diesel and ethanol fuels on a high compression ratio (18.2:1), common-rail diesel engine. Two LTC modes are studied; near-TDC injection of diesel with up to 60% exhaust gas recirculation (EGR), and port injected ethanol ignited by direct injection of diesel with moderate EGR (30-45%). Indicated mean effective pressures up to 10 bar in the diesel LTC mode and 17.6 bar in the dual-fuel LTC mode have been realized. While the NOx and smoke emissions are significantly reduced, a thermal efficiency penalty is observed from the test results. In this work, the efficiency penalty is attributed to increased HC and CO emissions and a non-conventional heat release pattern. The influence of heat release phasing, duration, and shape, on the indicated performance is explained with the help of parametric engine cycle simulations.
2015-04-14
Technical Paper
2015-01-0807
Khanh Cung, Jaclyn Johnson, Seong-Young Lee
Abstract Dimethyl ether (DME) appears to be an attractive alternative to common fossil fuels in compression ignition engines due to its smokeless combustion and fast mixture formation. However, in order to fully understand the complex combustion process of DME, there is still a remaining need to develop a comprehensive chemical kinetic mechanism that includes both soot and NOx chemistry. In this study, a detailed DME mechanism with 305 species is developed from the basic DME mechanism of Curran et al. (2000) with addition of soot and NOx chemistry from Howard's mechanism et al. (1999), and GRI 3.0 mechanism, respectively. Soot chemistry in Howard mechanism consisting hydrogen abstraction acetylene addition (HACA) and growth of small polycyclic aromatic hydrocarbons (PAH), assesses over a wide range of temperature and is able to predict good to fair the formation of PAH up to coronene.
2015-04-14
Technical Paper
2015-01-0803
Marko Jeftić, Jimi Tjong, Graham Reader, Meiping Wang, Ming Zheng
Abstract Experimental testing was done with a modern compression ignition engine to study the effect of the engine load and the effect of different fuels on the post injection characteristics. Two different fuels were utilized; ultra-low sulphur diesel and n-butanol. The results showed that a post injection can be an effective method for increasing the operating range of the engine load. Engine operation at high load can be limited by the peak cylinder pressure but the test results showed that an early post injection can increase the engine load without increasing the peak in-cylinder pressure. Neat butanol combustion may have a very high peak in-cylinder pressure and a very high peak pressure rise rate even at low load conditions. The test results showed that a butanol post injection can contribute to engine power without significantly affecting the peak pressure rise rate and the peak in-cylinder pressure.
2015-04-14
Technical Paper
2015-01-0804
Jinli Wang, Fuyuan Yang, Minggao Ouyang
Abstract Experimental research were carried out on a compression ignition engine with compression ratio of 17.5 with direct-run Naphtha. Exhaust recirculation ratio sweeps were carried out with three injection strategies. Premixed charge compression ignition, partially premixed combustion and low temperature combustion modes were realized and compared with each other. The first injection strategy is single injection. The injection timing is scanned to form partially premixed combustion and low temperature combustion. The second injection strategy features a large early first injection with fixed timing to form premixed charge and a small second injection near top dead center, which was scanned. The third injection strategy is similar to the traditional diesel injection strategy, which has a small pilot injection with fixed interval before the main injection. Results show that all injection strategies could realize both low NOx and low particulate matter emissions simultaneously.
2015-04-14
Technical Paper
2015-01-0802
Claudio Marcio Santana, Jose Eduardo Mautone Barros, Matheus Guilherme França Carvalho, Helder Alves de Almeida, Jr.
Abstract A burning process in a combustion chamber of an internal combustion engine is very important to know the maximum temperature of the gases, the speed of combustion, the ignition delay time of fuel and air mixture exact moment at which ignition will occur. The automobilist industry has invested considerable amounts of resources in numerical modeling and simulations in order to obtain relevant information about the processes in the combustion chamber and then extract the maximum engine performance control the emission of pollutants and formulate new fuels. This study aimed to general construction and instrumentation of a shock tube for measuring shock wave. As specific objective was determined reaction rate and ignition delay time of diesel, biodiesel and ethanol doped with different levels of additive enhancer cetane number. The results are compared with the ignition delay times measured for other authors.
2015-04-14
Technical Paper
2015-01-0389
Zhichao Zhao, Zhengxin Xu, Jingping Liu, Mianzhi Wang, Chia-Fon Lee, Wayne Chang, Jie Hou
Abstract A multi-step acetone-butanol-ethanol (ABE) phenomenological soot model was proposed and implemented into KIVA-3V Release 2 code. Experiments were conducted in an optical constant volume combustion chamber to investigate the combustion and soot emission characteristics under the conditions of 1000 K initial temperature with various oxygen concentrations (21%, 16%, 11%). Multi-dimensional computational fluid dynamics (CFD) simulations were conducted in conjunction under the same operation conditions. The predicted soot mass traces showed good agreement with experimental data. As ambient oxygen decreased from 21% to 11%, ignition delay retarded and the distribution of temperature became more homogenous. Compared to 21% ambient oxygen, the peak value of total soot mass at 16% oxygen concentration was higher due to the suppressed soot oxidation mechanism.
2015-04-14
Technical Paper
2015-01-1744
Jonathan M. S. Mattson, Chenaniah Langness, Christopher Depcik
Abstract The growth of hydraulic fracking has resulted in a dramatic cost reduction of Compressed Natural Gas (CNG), a low carbon fuel. CNG cannot be used as singular fuel in conventional Compression Ignition (CI) engines because of its high auto-ignition characteristics. However, CNG-assisted diesel combustion represents a means to shift the energy consumption of CI engines away from liquid fossil fuels. Calculation of the rate of heat release is vital for understanding and optimizing this mode of engine operation. A previously constructed three-zone equilibrium heat release model that is calibrated to engine exhaust emission measurements was augmented in order to allow for the addition of CNG in the engine intake. The model was also adapted to permit reuse of unburned CNG gas with other exhaust species via exhaust gas recirculation. This is because experiments demonstrated a potentially significant increase in methane emissions under high CNG flowrates.
2015-04-14
Technical Paper
2015-01-0766
Anshuman Goswami, Sagar Vashist, Ashish Nayyar
Abstract This paper reviews the works done on ‘influence of compression ratio (CR) on the performance of spark ignition(SI) engine using fuel blends of ethanol namely E0 (gasoline), E25 (75% gasoline, 25% ethanol), E10, E20, E22, E50, E75, E100 for different CR. The main parameters considered for comparison were brake specific fuel consumption (BSFC), CR, brake torque (BT), air-fuel ratio (AFR) and exhaust emissions. The experimental results of various studies are compared. The need of advanced engine development techniques and modifications are also studied and emphasis is laid on the use of variable compression ratio (VCR) SI engine. The benefits of using VCR in the coming future are discussed briefly mentioning the challenges faced.
2015-04-14
Technical Paper
2015-01-0895
Senthilkumar Masimalai, Venkatesan Kuppusamy, Jaikumar Mayakrishnan
Abstract This paper aims at studying the effect of oxygen enriched combustion on performance, emission and combustion characteristics of a diesel engine using waste cooking oil (WCO) derived from palm oil as fuel. A single cylinder water-cooled, direct injection diesel engine was used. The intake system of the engine was modified to accommodate excess oxygen in the incoming air. Base data was generated using diesel as fuel. Subsequently experiments were repeated with WCO for different oxygen concentrations such as 21% (WCO+21%O2), 23% (WCO+23%O2), 24% (WCO+24%O2) and 25% (WCO+25%O2) by volume. Engine performance, emission and combustion parameters were obtained at different power outputs and analyzed. Results showed reduced brake thermal efficiency, higher smoke, hydrocarbon and carbon monoxide emissions with WCO+21%O2 as compared to diesel at all power outputs.
2015-04-14
Technical Paper
2015-01-0903
Neeraj Mittal, Pradeep Patanwal, M Sithananthan, M Subramanian, Ajay Kumar Sehgal, R Suresh, B P Das
Abstract N-butanol is a promising alternative fuel which needs no engine modification when used as a blend with diesel. The miscibility of n-butanol with diesel is excellent in a wide range of blending ratios. N-butanol has high oxygen content and a comparable energy content, specific gravity and viscosity to that of diesel, which makes it attractive for diesel engines as an alternative fuel. An experimental investigation was conducted to assess the performance of a new generation passenger car with respect to power, fuel economy (FE) and mass emission using 5, 10 and 20 percent (by vol.) n-butanol blends with diesel (NB). Computer controlled DC motor driven chassis dynamometer, AVL AMA I60 mass emission measuring system and AVL FSN smoke meter were used for measuring wide open throttle (WOT) power, road load simulation (RLS) fuel economy, mass emissions and smoke in WOT and steady speed driving conditions.
Viewing 1 to 30 of 5309

Filter

  • Range:
    to:
  • Year: