Criteria

Text:
Display:

Results

Viewing 1 to 30 of 5559
2016-10-24
Event
This session focuses on work pertaining to the production and fundamental properties of new fuels and methods for assessing their performance. This will include work related to the issues of fuel stability, storage and transportation. Examples include diesel fuel stability, lubricity, cold weather issues, and environmental and toxicological impacts of inclusion of more than 7% biodiesel; the substitution of diesel fuel and gasoline with components other than biodiesel and ethanol respectively.
2016-10-24
Event
This session focuses on fuel injection, combustion, controls, performance and emissions of SI engines fueled with gaseous fuels such as methane, natural gas (NG), biogas, producer gas, coke oven gas, hydrogen, or hydrogen-NG blends. Papers on Diesel-NG or diesel-hydrogen dual-fuel engines will also be accepted in this session.
2016-10-24
Event
This session covers fuel cell advances from vehicle manufacturers in the first stage of series production FCEVs. In addition, there are modeling studies and evaluation of components mainly in PEM fuel cell systems, hydrogen storage and hydrogen fueling.
2016-05-18
Journal Article
2016-01-9043
Timo van Overbrueggen, Marco Braun, Michael Klaas, Wolfgang Schroder
Abstract The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
2016-05-12
Standard
J1616_201605
Compressed Natural Gas (CNG) is a practical automotive fuel, with advantages and disadvantages when compared to gasoline. Large quantities of natural gas are available in North America. It has a higher octane number rating, produces low exhaust emissions, no evaporative emissions and can cost less on an equivalent energy basis than other fuels. Natural gas is normally compressed from 20 684 to 24 821 kPa (3000 to 3600 psig) to increase its energy density thereby reducing its on-board vehicle storage volume for a given range and payload. CNG can also be made from liquefied natural gas by elevating its pressure and vaporizing it to a gas. Once converted it is referred to LCNG.
2016-04-13
Event
This session focuses on work pertaining to the production and fundamental properties of new fuels and methods for assessing their performance. This will include work related to the issues of fuel stability, storage and transportation. This second of two parts focuses on work related to compression ignition engines and advance combustion techniques.
2016-04-13
Event
This session focuses on work pertaining to the production and fundamental properties of new fuels and methods for assessing their performance. This will include work related to the issues of fuel stability, storage and transportation. This first of two parts focuses on work relating to spark ignition engines.
2016-04-13
Event
This session explores advances in the creation of sustainable energy sources and their usage in the transportation sector. Topics can include research and in-production technology used to produce renewable energy sources and materials. A discussion on lifecycle analysis of the energy sources is also highly recommended. The SDPC encourages usage of papers, presentations, and panels in this session to display leading edge technologies and practical tools for engineers.
2016-04-12
Event
This session explores advances in the creation of sustainable energy sources and their usage in the transportation sector. Topics can include research and in-production technology used to produce renewable energy sources and materials. A discussion on lifecycle analysis of the energy sources is also highly recommended. The SDPC encourages usage of papers, presentations, and panels in this session to display leading edge technologies and practical tools for engineers.
2016-04-05
Technical Paper
2016-01-1089
Jagrit Shrivas, Girish Khairnar, Sachin Pande, Yaser Hussaini, Amit Chaudhari
Abstract In Internal Combustion (I.C.) engines, seat inserts and valves are the major components responsible for performance, emissions and reliability. Failure of these components can cause performance deterioration. In case of compressed natural gas (CNG) engines, impact on life of seat inserts and valves are adversely affected due to its dry combustion environment and high operating temperatures. Greaves cotton has developed a single cylinder, water cooled, dedicated CNG engine with port injection from the base diesel engine. Major challenges were encountered during the CNG engine development with respect to seat inserts and valves wear. The design was modified considering the different design parameters to arrest failure modes as given below: 1 Seat insert material compatibility2 Seat angle3 Seat width4 Valve head stiffness5 Alignment of seat inserts and valves6 Valves closing velocities.
2016-04-05
Technical Paper
2016-01-0877
Preetham Churkunti, Jonathan M. S. Mattson, Christopher Depcik
Abstract Biodiesel is a potential alternative to Ultra Low Sulfur Diesel (ULSD); however, it often suffers from increased fuel consumption in comparison to ULSD when injection timings and/or pressures are similar. To decrease fuel consumption, increasing biodiesel injection pressure has been found to mitigate the issues associated with its relatively high viscosity and lower energy content. When doing so, the literature indicates decreased emissions, albeit with potentially greater nitrogen oxide (NOx) emissions in contrast to ULSD. In order to better understand the trade-off between fuel consumption and NOx emissions, this study explores the influence of fuel injection pressure on ULSD, Waste Cooking Oil (WCO) biodiesel, and their blends in a single-cylinder compression ignition (CI) engine. In particular, fuel injection pressures and timings for WCO biodiesel and blended fuels are adjusted to attempt to mimic the in-cylinder pressure profile of operation using ULSD.
2016-04-05
Technical Paper
2016-01-0852
Nwabueze Emekwuru
Abstract The results of the numerical characterization of the hydrodynamics of Soybean Oil Methyl Ester (SME) fuel spray using a spray model based on the moments of the droplet size distribution function are presented. A heat and mass transfer model based on the droplet surface-areaaveraged temperature is implemented in the spray model and the effects on the SME fuel spray tip penetration and droplet sizes at different ambient gas temperature (300 K to 450 K) and fuel temperature (300 K to 360 K) values are evaluated. The results indicate that the SME fuel spray tip penetration values are insensitive to variations to the fuel temperature values but increase with increasing ambient gas temperature values. The droplet size values increase with increasing SME fuel temperature. The fuel vapor mass fraction is predicted to be highest at the spray core, with the axial velocity values of the droplets increasing with increases in the SME fuel spray temperature.
2016-04-05
Technical Paper
2016-01-0855
Xiucheng Zhu, Sanjeet Limbu, Khanh Cung, William De Ojeda, Seong-Young Lee
Abstract Dimethyl Ether (DME) is considered a clean alternative fuel to diesel due to its soot-free combustion characteristics and its capability to be produced from renewable energy sources rather than fossil fuels such as coal or petroleum. To mitigate the effect of strong wave dynamics on fuel supply lines caused due to the high compressibility of DME and to overcome its low lubricity, a hydraulically actuated electronic unit injector (HEUI) with pressure intensification was used. The study focuses on high pressure operation, up to 2000 bar, significantly higher than pressure ranges reported previously with DME. A one-dimensional HEUI injector model is built in MATLAB/SIMULINK graphical software environment, to predict the rate of injection (ROI) profile critical to spray and combustion characterization.
2016-04-05
Technical Paper
2016-01-0977
Jan Czerwinski, Pierre Comte, Zbigniew Stepien, Stanislaw Oleksiak
Abstract A well-balanced use of alternative fuels worldwide is an important objective for a sustainable development of individual transportation. Several countries have objectives to substitute a part of the energy of traffic by ethanol as the renewable energy source. The global share of Bioethanol used for transportation is continuously increasing. Investigations of limited and unregulated emissions of a flex fuel vehicle with gasoline-ethanol blend fuel have been performed in the present work on the chassis dynamometer according to the measuring procedures, which were established in the previous research in the Swiss Network to adequately consider the transient (WLTC) and the stationary operation (SSC). The investigated fuel contained ethanol (E), in the portions of 10% & 85% by volume. The investigated vehicle represented a newer state of technology and an emission level of Euro 5. The engine works with homogenous GDI concept and with 3-W-catalyst (3WC).
2016-04-05
Technical Paper
2016-01-1025
Daniela Cempirkova, Rostislav Hadas, Lukáš Matějovský, Rolf Sauerstein, Matthias Ruh
Abstract As emission regulations tighten across various regions of the world there is a growing trend in the use of alternative fuels such as Ethanol being blended with gasoline. A notable case of Ethanol usage is found in South America with the widespread use of E100, which has no gasoline content and can often contain up to 10% water. Engine oil contamination by fuel is of major concern and under certain conditions can have negative effects on the durability of turbocharger components which come into contact with contaminated oil, particularly sliding bearings, but also compressor stage through crankcase ventilation system fed gas. The manner in which this effect takes hold can cause a decrease in the lubrication properties and increase in corrosiveness of the engine oil.
2016-04-05
Technical Paper
2016-01-1014
Shyam K. Menon, Himakar Ganti, Chris Hagen
Abstract Natural gas is an attractive option for transportation applications in the United States due to its abundant availability and potential for reduced emissions. The scarcity of refueling resources imposes a barrier to widespread use of natural gas in internal combustion engines. A novel bi-modal engine under development is capable of operating in a compressor mode and provide refueling capabilities without any supplemental devices thus overcoming the infrastructure based limitations. As part of this development, a multi-cylinder production engine was acquired and the intake modified on one of the cylinders to perform air compression. This system was tested with accompanying plate heat exchangers that allow for cooling of the compressed air. To make the system self-contained, engine coolant and vehicle refrigerant are used as heat sinks in the heat exchangers.
2016-04-05
Technical Paper
2016-01-1005
Yuanzhou Xi, Nathan Ottinger, Z. Gerald Liu
Abstract Regulations on methane emissions from lean-burn natural gas (NG) and lean-burn dual fuel (natural gas and diesel) engines are becoming more stringent due to methane’s strong greenhouse effect. Palladium-based oxidation catalysts are typically used for methane reduction due to their relative high reactivity under lean conditions. However, the catalytic activity of these catalysts is inhibited by the water vapor in exhaust and decreases over time from exposure to trace amounts of sulfur. The reduction of deactivated catalysts in a net rich environment is known to be able to regenerate the catalyst. In this work, a multicycle methane light-off & extinction test protocol was first developed to probe the catalyst reactivity and stability under simulated exhaust conditions. Then, the effect of two different regeneration gas compositions, denoted as regen-A and regen-B, was evaluated on a degreened catalyst and a catalyst previously tested on a natural gas engine.
2016-04-05
Technical Paper
2016-01-1009
Xin Wang, Yunshan Ge, Chuanzhen Zhang, Jia Liu, Zihang Peng, Huiming Gong
Abstract Along with the booming expansion of private car preservation, many Chinese cities are now struggling with hazy weather and ground-level ozone contamination. Although central government has stepped up efforts to purify skies above China, counter-strategies to curb ground-level ozone is comparatively weak. By using maximum incremental reactivity (MIR) method, this paper estimated the ozone forming potential for twenty-five Euro-3 to Euro-5 passenger cars burning conventional gasoline, methanol-gasoline, ethanol-gasoline, neat methanol and compressed natural gas (CNG). The results showed that, for all the fuel tested, VOC/NOx ratios and SR values decreased with the upgrading of emission standard. Except for Euro-3 M100 and Euro-4 M85, SR values for alternative fuel were to different degrees smaller than those for gasoline. When the emission standard was shifted from Euro-4 to Euro-5, OFP values estimated for gasoline vehicle decreased.
2016-04-05
Technical Paper
2016-01-0996
Thomas L. Darlington, Dennis Kahlbaum, Shon Van Hulzen, Robert L. Furey
Abstract In 2008-2009, EPA and DOE tested fifteen 2008 model year Tier 2 vehicles on 27 fuels. The fuels were match-blended to specific fuel parameter targets. The fuel parameter targets were pre-selected to represent the range of fuel properties from fuel survey data from the Alliance of Automobile Manufacturers for 2006. EPA's analysis of the EPAct data showed that higher aromatics, ethanol, and T90 increase particulate matter (PM) emissions. EPA focused their analysis only on the targeted fuel properties and their impacts on emissions, namely RVP, T50, T90, aromatics, and ethanol. However, in the process of fuel blending, at least one non-targeted fuel property, the T70 distillation parameter, significantly exceeded 2006 Alliance survey parameters for two of the E10 test fuels. These two test fuels had very high PM emissions. In this study, we examine the impacts of adding T70 as an explanatory variable to the analysis of fuel effects on PM.
2016-04-05
Technical Paper
2016-01-0998
Shuli Wang, Xinda Zhu, L.M.T. Somers, L.P.H. de Goey
In this work, the influences of aromatics on combustion and emission characteristics from a heavy-duty diesel engine under various loads and exhaust gas recirculation (EGR) conditions are investigated. Tests were performed on a modified single-cylinder, constant-speed and direct-injection diesel engine. An engine exhaust particle sizer (EEPS) was used in the experiments to measure the size distribution of engine-exhaust particle emissions in the range from 5.6 to 560 nm. Two ternary blends of n-heptane, iso-octane with either toluene or benzaldehyde denoted as TRF and CRF, were tested, diesel was also tested as a reference. Test results showed that TRF has the longest ignition delay, thus providing the largest premixed fraction which is beneficial to reduce soot. However, as the load increases, higher incylinder pressure and temperature make all test fuels burn easily, leading to shorter ignition delays and more diffusion combustion.
2016-04-05
Technical Paper
2016-01-1340
Vikram Dang, Subhash Chander
Abstract This paper presents a CFD simulation methodology for solving complex physics of methane/air swirling turbulent flame impinging on a flat surface. Turbulent Flow in burner is simulated using Re-Normalized Group k-ε model while Stress-omega Reynolds Stress Model is used for flame structure. Methane/air combustion is simulated using global combustion reaction mechanism. To account for Turbulence-Chemistry Interaction of methane/air combustion, Eddy - Dissipation Model is used. The effect of varying plate distance to burner exit nozzle diameter is also investigated and comparisons of simulated results with experiments are discussed. Change in flame structure is observed with variation of plate distance from burner exit. A dip in the heat flux distribution is observed for all cases. This is due to the presence of central weak flow region created at and around the central axis due to swirl.
2016-04-05
Technical Paper
2016-01-1269
Naveen Kumar, Harveer Singh Pali
Abstract The present study was carried to explore the potential suitability of biodiesel as an extender of Kerosene in an off road dual fuel (gasoline start, kerosene run) generator set and results were compared with kerosene base line data. The biodiesel was blended with kerosene in two different proportions; 2.5% and 5% by volume. Physico-chemical properties of blends were also found to be comparable with kerosene. Engine tests were performed on three test fuels namely K100 (Kerosene 100%), KB 2.5 (Kerosene 97.5% + Biodiesel 2.5%) and KB5 (Kerosene 95% + Biodiesel 5%). It was found that brake thermal efficiency [BTE] increases up to 3.9% while brake specific energy consumption [BSEC] decreases up to 2.2% with increasing 5% volume fraction of biodiesel in kerosene. The exhaust temperature for blends was lower than kerosene. The test engine emitted reduced Carbon monoxide [CO] emission was 7.4 % less than using neat kerosene as compared to kerosene-biodiesel blends.
2016-04-05
Technical Paper
2016-01-1275
Ganesh Duraisamy, Nagarajan Govindan, P. Shanmugam
Biodiesel obtained by transesterification process from the fatty leather waste (tannery waste water) was blended with Diesel in various proportions and it was tested in a single cylinder, naturally aspirated, direct injection (DI) Diesel engine of rated power 4.4 kW at the rated speed of 1500 rpm. Experiments were conducted with B10, B20, B30, B40 and B50 blends and their combustion, performance and emission characteristics were studied in comparison with conventional Diesel fuel. The experimental results show an increase in brake thermal efficiency with biodiesel blends compared to neat Diesel operation. Reduced ignition delay and combustion duration is observed for B30 blend compared to Diesel. The oxides of nitrogen emissions are significantly lower for B10 and B20 blends compared to Diesel operation, whereas with remaining blends the NOx emissions are increased compared to Diesel fuel.
Viewing 1 to 30 of 5559

Filter

  • Range:
    to:
  • Year: