Criteria

Text:
Display:

Results

Viewing 1 to 30 of 5327
2015-09-22
Event
The goal of this session is to address developments in energy efficient manufacturing relevant to the aerospace industry. Specifically, it will focus on examining emerging energy efficient manufacturing technologies, as well as, best practices for established manufacturing methods. Additionally, the session examines innovative design and modeling techniques relevant to energy systems employed in aircraft manufacturing.
2015-09-22
Event
Research and development efforts that enable the use of alternative energy sources for aviation, with emphasis on commercial aviation fuels and energies that can supplement or replace current crude oil-derived kerosene jet fuels. Environmental, technical, economic and logistical challenges found in the production and use of alternative jet fuels.
2015-09-06
Technical Paper
2015-24-2461
Agnese Magno, Ezio Mancaruso, Bianca Maria Vaglieco
The diesel engine is currently the most efficient internal combustion engine technology. Moreover, in order to realize more efficient engine type could be convenient to combine this technology with one of the cleanest fuels available (methane). The main benefits are: methane (CH4) is cheaper than diesel and thus may reduce fuel costs; and, dual fuel technology also reduces particulate matter emissions. In the present activity, dual fuel operation was investigated in a single cylinder research engine. Methane was injected in the intake manifold while the diesel was delivered via the standard injector directly into the engine. The aim is to study the effect of increasing methane concentration at constant injected diesel amount on the start of combustion, ignition delay, and combustion evolution.
2015-09-06
Technical Paper
2015-24-2511
Theodoros Grigoratos, Georgios Fontaras, Giorgio Martini, Cesare Pelleto
Gas operated Heavy Duty Vehicles (HDV) powered by Natural Gas (NG) are seen as a possible option for curbing CO2 emissions, fuel consumption and operating costs of goods transport. Initiatives have been adopted by various organizations worldwide in order to introduce NG fueled HDVs in their fleets. In this study, an advanced newly designed CNG prototype engine, which was developed in the framework of the FP7 research project “CO2 Reduction for long distance transport” (CO2RE), is benchmarked against its parent Euro V compliant CNG engine (reference) in terms of emissions and fuel consumption. The main technological innovation includes a new cylinder head equipped with a Variable Valve Actuation system designed to provide on the intake side a continuous fully flexible variation of the valve lift and timing. The newly developed engine was optimized for urban emission profiles and operation such as garbage collection purposes.
2015-09-06
Technical Paper
2015-24-2409
Lorenzo Bartolucci, Stefano Cordiner, Vincenzo Mulone, Vittorio Rocco, Edward Chan
Predictive modeling of the premixed turbulent combustion process has become key to design advanced strategies for novel internal combustion engine solutions. Reynolds Averaged Navier-Stokes (RANS) based combustion models are assessed but are unable to capture transient phenomena such combustion instabilities, self-ignition and other aspects related to the coupling between turbulence and chemistry. Large Eddy Simulation (LES) based combustion models have demonstrated in several studies better capabilities to capturing those phenomena and, hence, present in general much higher accuracy. The aim of this work is to carry out a statistical analysis of numerical results obtained with a LES approach to describe a partially premixed natural gas spark ignition combustion process in a Constant Volume Combustion Chamber (CVCC). The OpenFOAM based solver has been already validated in a previous paper by comparing results data experimentally gathered at the University of British Columbia.
2015-09-06
Technical Paper
2015-24-2459
Francesco Catapano, Silvana Di Iorio, Paolo Sementa, Bianca Maria Vaglieco
The increasing concerns on the global environment issues and on the depletion of fossil fuel reserves have been driving to searching sustainable and environmental friendly fuels. Methane is one of the alternative fuels for addressing these issues. The potential of methane in improving the engine performance was fully exploited when blended with hydrogen or dual fueled with gasoline. In this paper a methane-assisted gasoline injection in a small displacement GDI SI engine was analyzed. Typically, the air-assisted fuel injection system was applied to supply assistant air for the atomization of injected fuel. This configuration allows improving the gasoline combustion thanks not only to the assisted injection, which improves the fuel atomization and consequently the homogenization of the charge, but also to the presence of the methane and its chemical interaction with gasoline heavy hydrocarbon, which allows a more efficient combustion.
2015-09-06
Technical Paper
2015-24-2486
Ajay Singh Verma, M. Muzaffarul Hasan, Ashish Karnwal, Vipul Vibhanshu
The continuous growth of population and development of industries give rise to massive increase in the global energy demand in recent years. The timing of peak oil, serious social economic consequences and global decline in oil production may be avoided by use of unconventional alternative fuels. Therefore present work investigated the combustion and emission characteristics of an unmodified four stroke single cylinder variable compression ratio diesel engine utilizing isopropyl alcohol (2-propanol)-diethyl ether blends with diesel. In this study, the proportion of isopropyl alcohol was varied as 10%, 15% and 20% by volume while proportion of diethyl ether was kept constant as 5% by volume. The different fuel samples were prepared using 10% isopropyl, alcohol 5% diethyl ether by volume (IPD15), 15% isopropyl alcohol, 5% diethyl ether by volume (IPD20) and 20% isopropyl alcohol 5% diethyl ether by volume (IPD25) with neat standard diesel.
2015-09-06
Journal Article
2015-24-2479
Maximilian Malin, Vladimir Krivopolianskii, Bjørn Rygh, Vilmar Aesoy, Eilif Pedersen
Maritime environmental restrictions urge the need for cleaner emissions from shipping, by improved combustion processes, alternative cleaner fuels and exhaust gas cleaning. Alternative fuels, like bio fuel (fish oil), has a potential to reduce soot production during the combustion process and will be deeply investigated in this article. For this purpose a constant volume pre-combustion rig laboratory was build up in the last year and is used as a basic investigation tool for studying the fuel injection system (including investigation in combustion, spray development, fuel evaporation process and ignition delay) in engines. The focus of this study is to investigate the injector in full size, including experiments with multi nozzle injections, and with full optical access to the chamber. To generate similar injection condition in the combustion rig as in the internal combustion engine, the rig is heated up using a so called chemical heating process.
2015-09-06
Journal Article
2015-24-2513
Michal Vojtisek-Lom, Vit Beranek, Jitka Stolcpartova, Martin Pechout, Vojtech Klir
*** This paper is also relevant to session ICENA303, Alternative and Advanced Fuels *** This work reports on the effects of using butanol, an alternative to ethanol, in an unmodified production direct injection spark ignition (DISI) engine. Butanol, a higher alcohol that can be produced from biomass by fermentation, is an emerging alternative fuel viewed as more compatible with gasoline engines and fuel systems than ethanol. In this work, a Euro 5 Ford Focus car with a 1.0-liter Ecoboost DISI engine has been tested on a chassis dynamometer using WLTP and Artemis driving cycles, and on the road on a one-hour test loop containing urban, rural and motorway driving. Two isomers of butanol, 1-butanol and 2-methyl-propanol, were each blended with gasoline at 25% volume corresponding to 5% oxygen by weight or 15% ethanol (E15). Non-oxygenated gasoline and E15 were used as reference fuels. The vehicle performed well in terms of cold start, driveability, and general performance.
2015-09-06
Journal Article
2015-24-2458
Yasumasa Suzuki, Taku Tsujimura, Takuro Mita
Hydrogen can be produced by electrolyzation with renewable electricity and the combustion products of hydrogen mixture include no CO, CO2 and unburned hydrocarbons. We focus these characteristics and high thermal efficiency of diesel engine. In this study, hydrogen diesel dual fuel (H2 DDF) operation on multi-cylinder diesel engine is investigated due to clarify advantages and disadvantages of H2 DDF. Firstly, we evaluate performances of H2 DDF operation without EGR under several brake power conditions. Proportion of hydrogen to total input energy (H2 rate) is changed by adjusting diesel fuel amount to keep torque constant. Under low load conditions, DDF operation improve CO2, CO, THC emissions. However, NOx, soot emission and thermal efficiency get worse. Unburned hydrogen emission causes the worse thermal efficiency. As engine loads increase, H2 rate of 80% can be achieved and thermal efficiency of DDF is higher than one of diesel fuel operation.
2015-09-06
Technical Paper
2015-24-2453
K Abdul Rahman, A Ramesh
Diesel fuelled HCCI (Homogeneous Charge Compression Ignition) engines experience advanced heat release rates and high HC emissions. However, gaseous fuel like biogas and hydrogen that have high self ignition temperatures have been used to effectively retard the combustion process in diesel fuelled HCCI engines. Since gaseous fuels form homogeneous mixtures more readily as compared to diesel they also can lower the HC and smoke emissions in HCCI engines. In biogas diesel HCCI engines the homogeneity of the diesel which is influenced by the injection process significantly affects combustion and performance. This work focuses on the influence of injecting diesel in two pulses in a Biogas Diesel HCCI (BDHCCI) engine as against injecting it in a single pulse. Comparisons have also been made with the Dual Fuel mode of operation at the same output under different biogas to diesel energy ratios.
2015-06-29
WIP Standard
J1555
This SAE Recommended Practice applies to all portions of the vehicle, but design efforts should focus on components and systems with the highest contribution to the overall average repair cost (see 3.7). The costs to be minimized include not only insurance premiums, but also out-of-pocket costs incurred by the owner. Damageability, repairability, serviceability and diagnostics are inter-related. Some repairability, serviceability and diagnostics operations may be required for collision or comprehensive loss-related causes only, some operations for non-collision-related causes only (warranty, scheduled maintenance, non-scheduled maintenance, etc.), and some for both causes. The scope of this document deals with only those operations that involve collision and comprehensive insurance loss repairs.
2015-06-03
Magazine
Executive Viewpoints Off-highway industry executives from companies such as BorgWarner, Perkins, Cummins, and Danfoss reflect upon challenges inside, and outside, the industry, and what technologies, innovations, and strategies will need to be implemented to thrive into the long-term future. 16th Annual Product Guide Top products from throughout the industry covering technologies such as Powertrain & Energy, Hydraulics, Electronics, and Testing & Simulation.
2015-06-01
Journal Article
2015-01-9073
Peter Schihl, Eric Gingrich, Laura Decker
The U.S. Army currently uses JP-8 for global operations according to the ‘one fuel forward policy’ in order to reduce the logistics burden of supplying a variety of fuels for given Department of Defense ground vehicle applications. One particular challenge with using global JP-8 is the lack of or too broad a range of specified combustion affecting properties including ignition quality, high temperature viscosity, and density. In particular, the ignition quality of JP-8 has dramatically varied throughout the past decade on a global basis covering a range of 29 to 70 cetane index. This key combustion affecting parameter was explored in this study by evaluating a synthesized low ignition quality jet fuel blended in 25% volumetric proportions with JP-8 to effectively cover a cetane number range of 25 to 45 in a single cylinder diesel engine operated at various light, medium, and high load operating conditions.
2015-04-23
Event
This session explores advances in the creation of sustainable energy sources and their usage in the transportation sector. Topics can include research and in-production technology used to produce renewable energy sources and materials. A discussion on lifecycle analysis of the energy sources is also highly recommended. The SDPC encourages usage of papers, presentations, and panels in this session to display leading edge technologies and practical tools for engineers.
2015-04-23
Event
This session includes four papers related to spark-ignition engines and their fuels and five papers related to the processes of compression ignition combustion of different fuels.
2015-04-14
Technical Paper
2015-01-1733
Michele De Gennaro, Elena Paffumi, Giorgio Martini, Urbano Manfredi, Roberto Rossi, Paolo Massari, Roberto Roasio
Abstract The increasing urbanization level of many countries around the globe has led to a rapid increase of mobility demand in cities. Although public transport may play an important role, there are still many people relying on private vehicles, and, especially in urban areas, motorcycles and scooters can combine handling and flexibility with lower cost of operation compared to passenger cars. However, in spite of their lower fuel demand, they might significantly contribute to air pollution, lagging behind cars in terms of emission performances. The aim of this paper is to provide the scientific community with the results of an exploratory test campaign on four different motorcycles, converted from gasoline to CNG by means of an after-market conversion kit. A fifth motorcycle, similarly converted from gasoline to LPG, was also tested. These vehicles are powered by 4-strokes engines with a displacement ranging from 50 to 250 cm3 and a power ranging from 3.0 to 16.5 kW.
2015-04-14
Technical Paper
2015-01-1732
Marie-Josee Poitras, Deborah Rosenblatt, Jeffery Goodman
The focus of this study was the characterization and comparison of power-specific exhaust emission rates from a closed-loop small spark-ignited engine fuelled with ethanol and isobutanol gasoline blends. A 4-cycle Kohler ECH-630 engine certified to the Phase 3 emissions standards was operated over the G2 test cycle, a six-mode steady-state test cycle, in its original configuration. This engine was equipped with electronic ignition, electronic fuel injection and an oxygen sensor. Certification gasoline fuel was splash-blended by percent volume with ethanol and isobutanol to result in the test blend levels of E10, E15, iB16 and iB8-E10. Reductions in emission rates of carbon monoxide (up to 12.0% with the ethanol blends and up to 11.4% with the isobutanol blends) were achieved along with a reduction in total hydrocarbons (up to 10.9% with the ethanol blends and up to 8.2% with the isobutanol blends). Nitrogen oxide emissions were decreased by up to 9.8% with the ethanol blends.
2015-04-14
Technical Paper
2015-01-1744
Jonathan M. S. Mattson, Chenaniah Langness, Christopher Depcik
Abstract The growth of hydraulic fracking has resulted in a dramatic cost reduction of Compressed Natural Gas (CNG), a low carbon fuel. CNG cannot be used as singular fuel in conventional Compression Ignition (CI) engines because of its high auto-ignition characteristics. However, CNG-assisted diesel combustion represents a means to shift the energy consumption of CI engines away from liquid fossil fuels. Calculation of the rate of heat release is vital for understanding and optimizing this mode of engine operation. A previously constructed three-zone equilibrium heat release model that is calibrated to engine exhaust emission measurements was augmented in order to allow for the addition of CNG in the engine intake. The model was also adapted to permit reuse of unburned CNG gas with other exhaust species via exhaust gas recirculation. This is because experiments demonstrated a potentially significant increase in methane emissions under high CNG flowrates.
2015-04-14
Technical Paper
2015-01-1745
Cemil Bekdemir, Rik Baert, Frank Willems, Bart Somers
Abstract For natural gas (NG)-diesel RCCI, a multi-zonal, detailed chemistry modeling approach is presented. This dual fuel combustion process requires further understanding of the ignition and combustion processes to maximize thermal efficiency and minimize (partially) unburned fuel emissions. The introduction of two fuels with different physical and chemical properties makes the combustion process complicated and challenging to model. In this study, a multi-zone approach is applied to NG-diesel RCCI combustion in a heavy-duty engine. Auto-ignition chemistry is believed to be the key process in RCCI. Starting from a multi-zone model that can describe auto-ignition dominated processes, such as HCCI and PCCI, this model is adapted by including reaction mechanisms for natural gas and NOx and by improving the in-cylinder pressure prediction. The model is validated using NG-diesel RCCI measurements that are performed on a 6 cylinder heavy-duty engine.
2015-04-14
Technical Paper
2015-01-0389
Zhichao Zhao, Zhengxin Xu, Jingping Liu, Mianzhi Wang, Chia-Fon Lee, Wayne Chang, Jie Hou
Abstract A multi-step acetone-butanol-ethanol (ABE) phenomenological soot model was proposed and implemented into KIVA-3V Release 2 code. Experiments were conducted in an optical constant volume combustion chamber to investigate the combustion and soot emission characteristics under the conditions of 1000 K initial temperature with various oxygen concentrations (21%, 16%, 11%). Multi-dimensional computational fluid dynamics (CFD) simulations were conducted in conjunction under the same operation conditions. The predicted soot mass traces showed good agreement with experimental data. As ambient oxygen decreased from 21% to 11%, ignition delay retarded and the distribution of temperature became more homogenous. Compared to 21% ambient oxygen, the peak value of total soot mass at 16% oxygen concentration was higher due to the suppressed soot oxidation mechanism.
2015-04-14
Technical Paper
2015-01-0398
Lorenzo Bartolucci, Stefano Cordiner, Vincenzo Mulone, Vittorio Rocco, Edward Chan
Abstract The aim of this work is to assess the accuracy of results obtained from Large Eddy Simulations (LES) of a partially-premixed natural gas spark-ignition combustion process in a Constant Volume Combustion Chamber (CVCC). To this aim, the results are compared with the experimental data gathered at the University of British Columbia. The computed results show good agreement with both flame front visualization and pressure rise curves, allowing for drawing important statements about the peculiarities of the Partially Stratified Combustion ignition concept and its benefits in ultra-lean combustion processes.
2015-04-14
Technical Paper
2015-01-0932
Satoru Sasaki, Masaaki Kato, Takamasa Yokota, Mitsuru Konno, Denis Gill
Abstract DiMethyl Ether (DME) has been known to be an outstanding fuel for combustion in diesel cycle engines for nearly twenty years. DME has a vapour pressure of approximately 0.5MPa at ambient temperature (293K), thus it requires pressurized fuel systems to keep it in liquid state which are similar to those for Liquefied Petroleum Gas (mixtures of propane and butane). The high vapour pressure of DME permits the possibility to optimize the fuel injection characteristic of direct injection diesel engines in order to achieve a fast evaporation and mixing with the charged gas in the combustion chamber, even at moderate fuel injection pressures. To understand the interrelation between the fuel flow inside the nozzle spray holes tests were carried out using 2D optically accessed nozzles coupled with modelling approaches for the fuel flow, cavitation, evaporation and the gas dynamics of 2-phase (liquid and gas) flows.
2015-04-14
Technical Paper
2015-01-0919
Timothy H. Lee, Yilu Lin, Han Wu, Lei Meng, Alan Hansen, Chia-Fon Lee
Abstract Recent research has shown that butanol, instead of ethanol, has the potential of introducing a more suitable blend in diesel engines. This is because butanol has properties similar to current transportation fuels in comparison to ethanol. However, the main downside is the high cost of the butanol production process. Acetone-butanol-ethanol (ABE) is an intermediate product of the fermentation process of butanol production. By eliminating the separation and purification processes, using ABE directly in diesel blends has the potential of greatly decreasing the overall cost for fuel production. This could lead to a vast commercial use of ABE-diesel blends on the market. Much research has been done in the past five years concerning spray and combustion processes of both neat ABE and ABE-diesel mixtures. Additionally, different compositions of ABE mixtures had been characterized with a similar experimental approach.
2015-04-14
Technical Paper
2015-01-0950
Jonas Galle, Roel Verschaeren, Sebastian Verhelst
Abstract The need for simulation tools for the internal combustion engine is becoming more and more important due to the complex engine design and increasingly strict emission regulation. One needs accurate and fast models, but fuels consist of a complex mixture of different molecules which cannot realistically be handled in computations. Simplifications are required and are realized using fuel surrogates. The main goal of this work is to show that the choice of the surrogates is of importance if simplified models are used and that the performance strongly depends upon the sensitivity of the fuel properties that refer to the main model hypotheses. This paper starts with an overview of surrogates for diesel and bio-diesel as well as the motivation for choosing them. Next, a phenomenological model for vaporizing fuel-sprays is implemented to assess how well-known surrogates for diesel and bio-diesel affect the obtained results.
2015-04-14
Technical Paper
2015-01-0937
Philip Zoldak, Joel John Joseph, William Shelley, Jaclyn Johnson, Jeffrey Naber
Abstract The increased availability of natural gas (NG) in the United States (US) and its relatively low cost compared to diesel fuel has heightened interest in the conversion of medium duty (MD) and heavy duty (HD) diesel engines to NG fuel and combustion systems (compressed or liquefied). The intention is to realize fuel cost savings and reduce harmful emissions, while maintaining or improving overall vehicle fuel economy. This is a potential path to help the US achieve energy diversity and reduce dependence on crude oil. Traditionally, port-injected, premixed NG spark-ignited combustion systems have been used for medium and heavy duty engines with widespread use in the US and Europe. But this technology exhibits poor cycle efficiency and is load limited due to knock phenomenon. Direct Injection of NG during the compression stroke promises to deliver improved thermal efficiency by avoiding premixing and extending the lean limits which helps to extend the knock limit.
2015-04-14
Technical Paper
2015-01-0938
Prashanth Karra, Thomas Rogers, Petros Lappas
Abstract The air entrainment process of a compressed natural gas transient fuel jet was investigated in a constant-volume chamber using Schlieren and particle image velocimetry (PIV) techniques. A new method of calculating air entrainment around a gaseous fuel jet is proposed using Schlieren and PIV imaging techniques. This method offers an alternative to calculation of an alternative to calculation of entrainment using LIF technique in gaseous fuel jets. Several Jet-ambient pressure ratios were tested. In each test, nitrogen was used to fill the chamber as an air surrogate before the jet of natural gas was injected. Schlieren high speed videography and PIV experiments were performed at the same conditions. Schlieren mask images were used to accurately identify the jet boundary which was then superimposed onto a PIV image. Vectors adjacent to the Schlieren mask in the PIV image were used to calculate the spatial distribution of the air entrainment at the jet boundary.
Viewing 1 to 30 of 5327

Filter

  • Range:
    to:
  • Year: