Criteria

Text:
Display:

Results

Viewing 1 to 30 of 5700
2017-06-26 ...
  • June 26-28, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Fuel composition has had to change with the advent of more stringent emission regulations. Reformulated gasoline (RFG), for example, is vastly different from gasoline of even ten years ago. Tightening regulations on diesel emissions will dramatically change both diesel fuel and engine design. This three-day seminar will review the fundamentals of motor fuels, combustion and motor power generation. The primary content of the course provides a basic introduction to the technology, performance, evaluation, and specifications of current gasoline, diesel, and turbine fuels.
2017-04-06
Event
This session includes four papers related to spark-ignition engines and their fuels and five papers related to the processes of compression ignition combustion of different fuels.
2017-04-05
Event
This session includes four papers related to spark-ignition engines and their fuels and five papers related to the processes of compression ignition combustion of different fuels.
2017-04-05
Event
This session focuses on fuel injection, combustion, controls, performance and emissions of SI engines fueled with gaseous fuels such as methane, natural gas (NG), biogas, producer gas, coke oven gas, hydrogen, or hydrogen-NG blends. Papers on Diesel-NG or diesel-hydrogen dual-fuel engines will also be accepted in this session.
2017-04-05
Event
This session focuses on fuel injection, combustion, controls, performance and emissions of SI engines fueled with gaseous fuels such as methane, natural gas (NG), biogas, producer gas, coke oven gas, hydrogen, or hydrogen-NG blends. Papers on Diesel-NG or diesel-hydrogen dual-fuel engines will also be accepted in this session.
2017-04-04
Event
This session explores advances in the creation of sustainable energy sources and their usage in the transportation sector. Topics can include research and in-production technology used to produce renewable energy sources and materials. A discussion on lifecycle analysis of the energy sources is also highly recommended. The SDPC encourages usage of papers, presentations, and panels in this session to display leading edge technologies and practical tools for engineers.
2017-04-04
Event
This session explores advances in the creation of sustainable energy sources and their usage in the transportation sector. Topics can include research and in-production technology used to produce renewable energy sources and materials. A discussion on lifecycle analysis of the energy sources is also highly recommended. The SDPC encourages usage of papers, presentations, and panels in this session to display leading edge technologies and practical tools for engineers.
2017-04-04
Event
This session covers fuel cell advances from vehicle manufacturers in the first stage of series production FCEVs. In addition, there are modeling studies and evaluation of PEM fuel cell cold start, analysis, turbo compressor and oxide supports.
2017-04-04
Event
This session covers fuel cell advances from vehicle manufacturers in the first stage of series production FCEVs. In addition,modeling and demonstration of novel fuel cell vehicle concepts are will be shown as well as hydrogen infrastructure, hydrogen storage and hydrogen fueling will be presented.
2017-03-28
Technical Paper
2017-01-0726
Muhammad Waqas, Nimal Naser, Mani Sarathy, Jeroen Feijs, Kai Morganti, Gustav Nyrenstedt, Bengt Johansson
Abstract Gasoline-ethanol-methanol (GEM) blends, with constant stoichiometric air-to-fuel ratio (iso-stoichiometric blending rule) and equivalent to binary gasoline-ethanol blends (E2, E5, E10 and E15 in % vol.), were defined to investigate the effect of methanol and combined mixtures of ethanol and methanol when blended with three FACE (Fuels for Advanced Combustion Engines) Gasolines, I, J and A corresponding to RON 70.2, 73.8 and 83.9, respectively, and their corresponding Primary Reference Fuels (PRFs). A Cooperative Fuel Research (CFR) engine was used under Spark Ignition and Homogeneous Charge Compression Ignited modes. An ignition quality tester was utilized in the Compression Ignition mode. One of the promising properties of GEM blends, which are derived using the iso-stoichiometric blending rule, is that they maintain a constant octane number, which has led to the introduction of methanol as a drop-in fuel to supplement bio-derived ethanol.
2017-03-28
Technical Paper
2017-01-0727
Ida Truedsson, Christine Rousselle, Fabrice Foucher
Abstract The transportation sector adds to the greenhouse gas emissions worldwide. One way to decrease this impact from transportation is by using renewable fuels. Ethanol is a readily available blend component which can be produced from bio blend­stock, currently used blended with gasoline from low to high concentrations. This study focuses on a high octane (RON=97) gasoline blended with 0, 20, and 50, volume % of ethanol, respectively. The high ethanol blended gasoline was used in a light duty engine originally designed for diesel combustion. Due to the high octane rating and high ignition resistance of the fuel it required high intake temperatures of 443 K and higher to achieve stable combustion in in homogeneously charged compression ignition (HCCI) combustion operation at low load. To enable combustion with lower intake temperatures more commonly used in commercial vehicles, ozone was injected with the intake air as an ignition improver.
2017-03-28
Technical Paper
2017-01-0738
Akhilendra Pratap Singh, Avinash Kumar Agarwal
Abstract Premixed charge compression ignition (PCCI) combustion is an advanced combustion technique, which has the potential to be operated by alternative fuels such as alcohols. PCCI combustion emits lower oxides of nitrogen (NOx) and particulate matter (PM) and results thermal efficiency similar to conventional compression ignition (CI) engines. Due to extremely high heat release rate (HRR), PCCI combustion cannot be used at higher engine loads, which make it difficult to be employed in production grade engines. This study focused on development of an advanced combustion engine, which can operate in both combustion modes such as CI combustion as well as PCCI combustion mode. This Hybrid combustion system was controlled by an open engine control unit (ECU), which varied the fuel injection parameters for mode switching between CI and PCCI combustion modes.
2017-03-28
Technical Paper
2017-01-0733
Mario Martins, Ivanir Fischer, Franciel Gusberti, Rafael Sari, Macklini Dalla Nora
Abstract Ethanol with high levels of hydration is a low cost fuel that offers the potential to replace fossil fuels and contribute to lower carbon dioxide (CO2) emissions. However, it presents several ignition challenges depending on the hydration level and ambient temperature. Advanced combustion concepts such as homogeneous charge compression ignition (HCCI) have shown to be very tolerant to the water content in the fuel due to their non-flame propagating nature. Moreover, HCCI tends to increase engine efficiency while reducing oxides of nitrogen (NOx) emissions. In this sense, the present research demonstrates the operation of a 3-cylinder power generator engine in which two cylinders operate on conventional diesel combustion (CDC) and provide recycled exhaust gas (EGR) for the last cylinder running on wet ethanol HCCI combustion. At low engine loads the cylinders operating on CDC provide high oxygen content EGR for the dedicated HCCI cylinder.
2017-03-28
Technical Paper
2017-01-0734
Eshan Singh, Muhammad Waqas, Bengt Johansson, Mani Sarathy
Abstract The blending of ethanol with primary reference fuel (PRF) mixtures comprising n-heptane and iso-octane is known to exhibit a non-linear octane response; however, the underlying chemistry and intermolecular interactions are poorly understood. Well-designed experiments and numerical simulations are required to understand these blending effects and the chemical kinetic phenomenon responsible for them. To this end, HCCI engine experiments were previously performed at four different conditions of intake temperature and engine speed for various PRF/ethanol mixtures. Transfer functions were developed in the HCCI engine to relate PRF mixture composition to autoignition tendency at various compression ratios. The HCCI blending octane number (BON) was determined for mixtures of 2-20 vol % ethanol with PRF70. In the present work, the experimental conditions were considered to perform zero-dimensional HCCI engine simulations with detailed chemical kinetics for ethanol/PRF blends.
2017-03-28
Technical Paper
2017-01-0810
Jan-Hendrik Redmann, Maik Beutler, Jennifer Kensler, Martin Luebbers, Roger Cracknell
Abstract In light of increasingly stringent CO2 emission targets, Original Equipment Manufacturers (OEM) have been driven to develop engines which deliver improved combustion efficiency and reduce energy losses. In spark ignition engines one strategy which can be used to reach this goal is the full utilization of fuel octane number. Octane number is the fuel´s knock resistance and is characterized as research octane number (RON) and motor octane number (MON). Engine knock is caused by the undesired self-ignition of the fuel air mixture ahead of the flame front initiated by the spark. It leads to pressure fluctuations that can severely damage the engine. Modern vehicles utilize different strategies to avoid knock. One extreme strategy assumes a weak fuel quality and, to protect the engine, retards the spark timing at the expense of combustion efficiency. The other extreme carefully detects knock in every engine cycle and retards the spark timing only when knock is detected.
2017-03-28
Technical Paper
2017-01-0817
Remi Konagaya, Ken Naitoh, Kohta TSURU, Yasuo Takagi, Yuji Mihara
Abstract For various densities of gas jets including very light hydrogen and relatively heavy ones, the penetration length and diffusion process of a single high-speed gas fuel jet injected into air are computed by performing a large eddy simulation (LES) with fewer arbitrary constants applied for the unsteady three-dimensional compressible Navier-Stokes equation. In contrast, traditional ensemble models such as the Reynolds-averaged Navier-Stokes (RANS) equation have several arbitrary constants for fitting purposes. The cubic-interpolated pseudo-particle (CIP) method is employed for discretizing the nonlinear terms. Computations of single-component nitrogen and hydrogen jets were done under initial conditions of a fuel tank pressure of gas fuel = 10 MPa and back pressure of air = 3.5 MPa, i.e., the pressure level inside the combustion chamber after piston compression in the engine.
2017-03-28
Journal Article
2017-01-0777
Gordon McTaggart-Cowan, Jian Huang, Sandeep Munshi
Abstract Natural gas offers the potential to reduce greenhouse gas emissions from heavy-duty on-road transportation. One of the challenges facing natural gas as a fuel is that its composition can vary significantly between different fuel suppliers and geographical regions. In this work, the impact of fuel composition variations on a heavy-duty, direct injection of natural gas engine with diesel pilot ignition is evaluated. This combustion process results in a predominantly non-premixed gaseous fuel combustion event; as a result, end-gas autoignition (knock) is not a concern. Changes in the fuel composition do still impact the combustion, both through the changes in the chemical kinetics of the reactions and due to changes in the density of the fuel. Increasing concentrations of heavier hydrocarbons, such as ethane or propane, in the fuel lead to higher fuel densities and hence greater fuel mass being injected for a given injection duration.
2017-03-28
Technical Paper
2017-01-0778
Vishnu Vijayakumar, P. Sakthivel, Bhuvenesh Tyagi, Amardeep Singh, Reji Mathai, Shyam Singh, Ajay Kumar Sehgal
Abstract In the light of major research work carried out on the detrimental health impacts of ultrafine particles (<50 nm), Euro VI emission standards incorporate a limit on particle number, of which ultrafine particles is the dominant contributor. As Compressed Natural Gas (CNG) is a cheaper and cleaner fuel when compared to diesel, there has been a steady increase in the number of CNG vehicles on road especially in the heavy duty segment. Off late, there has been much focus on the nature of particle emissions emanating from CNG engines as these particles mainly fall under the ultrafine particle size range. The combustion of lubricant is considered to be the dominant source of particle emissions from CNG engines. Particle emission due to lubricant is affected by the oil transport mechanisms into the combustion chamber which in turn vary with engine operating conditions as well as with the physico chemical properties of the lubricant.
2017-03-28
Technical Paper
2017-01-0780
Dongwei Wu, Baigang Sun, Qinghe Luo, Xi Wang, Yunshan Ge
Abstract The combustion characteristics of hydrogen-air mixtures have significance significant impact on the performance and control of hydrogen-fueled internal combustion engines and the combustion velocity is an important parameter in characterizing the combustion characteristics of the mixture. A four-cylinder hydrogen internal combustion engine was used to study hydrogen combustion; the combustion characteristics of a hydrogen mixture were experimentally studied in a constant-volume incendiary bomb, and the turbulent premixed combustion characteristics of hydrogen were calculated and analyzed. Turbulent hydrogen combustion comes under the folded laminar flame model. The turbulent combustion velocity in lean hydrogen combustion is related not only to the turbulent velocity and the laminar burning velocity, but also to the additional turbulence term caused by the instability of the flame.
2017-03-28
Technical Paper
2017-01-0782
Qian xiong, Yasuo Moriyoshi, Koji Morikawa, Yasushi takahashi, Tatsuya Kuboyama, Toshio Yamada
Abstract To understand the mechanism of the combustion by torch flame jet in a gas engine with pre-chamber and also to obtain the strategy of improving thermal efficiency by optimizing the structure of pre-chamber including the diameter and number of orifices, the combustion process was investigated by three dimensional numerical simulations and experiments of a single cylinder natural gas engine. As a result, the configuration of orifices was found to affect the combustion performance strongly. With the same orifice diameter of 1.5mm, thermal efficiency with 7 orifices in pre-chamber was higher than that with 4 orifices in pre-chamber, mainly due to the reduction of heat loss by decreasing the impingement of torch flame on the cylinder linear. Better thermal efficiency was achieved in this case because the flame propagated area increases rapidly while the flame jets do not impinge on the cylinder wall intensively.
2017-03-28
Technical Paper
2017-01-0781
Philip Zoldak, Jeffrey Naber
Abstract The increased availability of natural gas (NG) in the United States (US) and its relatively low cost versus diesel fuel has increased interest in the conversion of medium duty (MD) and heavy duty (HD) engines to NG fueled combustion systems. The aim for development for these NG engines is to realize fuel cost savings and increase operating range while reduce harmful emissions and maintaining durability. Traditionally, port-fuel injection (PFI) or premixed NG spark-ignited (SI) combustion systems have been used for light duty LD, and MD engines with widespread use in the US and Europe [1]. However, this technology exhibits poor thermal efficiency and is load limited due to knock phenomenon that has prohibited its use for HD engines. Spark Ignited Direct Injection (SIDI) can be used to create a partially stratified combustion (PSC) mixture of NG and air during the compression stroke.
2017-03-28
Technical Paper
2017-01-0783
Hamid R. Rahai, Yong Lee, Najmeh rahimi, Komal Gada
Abstract The investigation has been divided into two parts. In part one, numerical investigations of the effect of humid air with different levels of humidity on gaseous emissions of a non-premixed combustion have been investigated. This part of the investigation was a feasibility study, focused on how different levels of humidity in the intake air affects the exhaust NO emission. Part two of the investigation was verification of the numerical results with a naturally aspirated engine with natural gas as the fuel. Here, we also investigated the impact of humid air intake on engine’s particulate matter (PM) emission. For the numerical investigations, the non-premixed combustion in a single cylinder was simulated using the presumed probability density function combustion model. Simulations were performed for dry as well as humid intake air for 0%, 15%, and 30% relative humidity (RH).
2017-03-28
Technical Paper
2017-01-0482
Cristiano Grings Herbert, Luiz Rogério De Andrade Lima, Cristiane Gonçalves
Abstract Phthalates have been extensively used in rubbers formulation as plasticizer additive for PVC and NBR promoting processing parameters or for cost reduction. The most commonly used plasticizer in PVC compounds was di-2-ethylhexyl phthalate (DEHP) currently not recommend due toxicity. DEHP is listed as prohibited to the Global Automotive Declarable Substance List (GADSL). Phthalates alternatives are already available but the compatibility in automotive fuel system with biodiesel was not extensively understood. This aspect is important since plasticizer may migrate and change rubber properties. Tri-2-ethylhexyl trimellitate (TOTM) and di-2-ethylhexyl terephthalate (DEHT) were selected in this work as alternative additives to a rubber formulation since is not listed to GADSL and have good potential as plasticizer.
2017-03-28
Technical Paper
2017-01-0539
Duc-Khanh Nguyen, Sebastian Verhelst
Abstract Methanol fueled spark ignition (SI) engines have the potential for very high efficiency using an advanced heat recovery system for fuel reforming. In order to allow simulation of such an engine system, several sub-models are needed. This paper reports the development of two laminar burning velocity correlations, corresponding to two reforming concepts, one in which the reformer uses water from an extra tank to produce hydrogen rich gas (syngas) and another that employs the water vapor in the exhaust gas recirculation (EGR) stream to produce reformed-EGR (R-EGR). This work uses a one-dimensional (1D) flame simulation tool with a comprehensive chemical kinetic mechanism to predict the laminar burning velocities of methanol/syngas blends and correlate it. The syngas is a mixture of H2/CO/CO2 with a CO selectivity of 6.5% to simulate the methanol steam reforming products over a Cu-Mn/Al catalyst.
2017-03-28
Journal Article
2017-01-0518
Sebastian Hann, Lukas Urban, Michael Grill, Michael Bargende
Abstract Since 0D/1D-simulations of natural gas spark ignition engines use model theories similar to gasoline engines, the impact of changing fuel characteristics needs to be taken into consideration in order to obtain results of higher quality. For this goal, this paper proposes some approaches that consider the influence of binary fuel mixtures such as methane with up to 40 mol-% of ethane, propane, n-butane or hydrogen on laminar flame speed and knock behavior. To quantify these influences, reaction kinetics calculations are carried out in a wide range of the engine operation conditions. Obtained results are used to update and extend existing sub-models. The model quality is validated by comparing measured burn rates with simulation results. The benefit of the new sub-models are utilized by predicting the influence the fuel takes on engine operating limits in terms of knocking and lean misfire limits, the latter being determined by using a cycle-to-cycle variation model.
Viewing 1 to 30 of 5700

Filter

  • Range:
    to:
  • Year: