Criteria

Text:
Display:

Results

Viewing 1 to 30 of 5210
2015-06-03 ...
  • June 3-5, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Fuel composition has had to change with the advent of more stringent emission regulations. Reformulated gasoline (RFG), for example, is vastly different from gasoline of even ten years ago. Tightening regulations on diesel emissions will dramatically change both diesel fuel and engine design. This three-day seminar will review the fundamentals of motor fuels, combustion and motor power generation. The primary content of the course provides a basic introduction to the technology, performance, evaluation, and specifications of current gasoline, diesel, and turbine fuels.
2015-04-21
Event
2015-04-21
Event
This session focuses on the fundamental properties of fuels and methods for measuring these properties, as well as issues related to fuel storage and transportation. Examples include diesel fuel lubricity determination, fuel effects on deposits, cold weather issues, and environmental and toxicological impacts of new fuels.
2015-04-21
Event
This session explores advances in the creation of sustainable energy sources and their usage in the transportation sector. Topics can include research and in-production technology used to produce renewable energy sources and materials. A discussion on lifecycle analysis of the energy sources is also highly recommended. The SDPC encourages usage of papers, presentations, and panels in this session to display leading edge technologies and practical tools for engineers.
2015-01-23
Event
This session will focus on the safety of electrical systems in electric cars including battery testing. It will also cover international regulations on hydrogen and CNG and guidelines on modification to convert to electric vehicles.NHTSA report on Ford/SAE projects; Hydrogen GTR: cylinder tests, NASA cylinder lifetime testing, EV Safety / Battery Safety.
2015-01-14
Technical Paper
2015-26-0052
Ashish Jashvantlal Modi, Dhiren Patel
As concerned with the IC engine now a day’s energy conservation and higher thermal efficiency are the main issues. As there is a big amount of heat loss in atmosphere due to which the efficiency is lower for the standard engine. There is one possible solution to reduce such problem by converting the conventional CI engine in to the LHR engine. For the current work the performance and emission characteristics are evaluated for the twin cylinder ceramic coated water cooled CI engine using blends of diesel and neem bio diesel. For the present work the bio-diesel was prepared in laboratory from non-edible vegetable oil (neem oil) by transesterification process with methanol, where potassium hydroxide (KOH) was used in as a catalyst. Inside Cylinder of combustion chamber, Piston top surface (crown) and valve faces were coated with the Magnesium Zirconate (MgZrO3).
2015-01-14
Technical Paper
2015-26-0059
Rahul R Kartha, Mohammad Jamadar, Kishor Kumar Kavathekar, S D Rairikar, S. S Ramdasi, S.S Thipse, N. V Marathe
The paper deals with the simulation of a Light Commercial Vehicle (LCV) using vehicle performance algorithms. This method speeds up the product development process. Also by using these kind of methodology in vehicle simulation there is much noticeable reduction in cost of testing. The simulation model is used for parametric studies of the vehicle and also to attain objectives such as to optimize transmission ratio, full load acceleration, maximum tractive force, gradient performance, fuel consumption and the exhaust emission . In this case study, simulation model of a CNG LCV is used to analyse the performances similar to that done in a chassis dynamometer. The simulation leads to the prediction and evaluation of various parameters such as fuel consumption, exhaust emissions, full load acceleration, gradient performance & maximum tractive effort for Indian Driving Cycle.
2015-01-14
Technical Paper
2015-26-0048
Hans Juergen Manns, Maximilian Brauer, Holger Dyja, Hein Beier, Alexander Lasch
Abstract Future regulations for passenger cars will no longer focus on emission reduction only but also on reducing CO2. The use of Compressed Natural Gas (CNG) in combustion engines is one solution which provides benefits in CO2 and in pollutant emissions at the same time. The conversion of Gasoline engines to CNG operation is well known. In this paper however - the operation of a passenger car diesel engine in Diesel - CNG dual fuel mode is investigated. The paper describes the experimental setup and measurement procedure that was chosen to assess combined Diesel - CNG combustion. Results for emissions, fuel economy (CO2), engine noise and combustion stability will be presented for three different operating points on a research single cylinder engine. Special focus lies on the partially/unburned hydrocarbon (HC) emissions which are typically high when CNG is well premixed and burning in a globally lean combustion environment.
2015-01-14
Technical Paper
2015-26-0057
K. R. Patil, S. S. Thipse, Arundhati Warke
Abstract Diethyl Ether (DEE) is a promising oxygenated renewable bio-base resource fuel used for diesel engines, owing to its high ignition quality. An experimental investigation has been carried out to evaluate the effects of DEE blends with diesel on the combustion, performance and emission characteristics of a direct injection diesel engine. The engine tests are carried out for 10%, 25%, 50%, 75% and 100% of the full load. In this study, 2%, 5%, 8%, 10%, 15%, 20% and 25% of DEE (by volume) are blended with diesel. Beyond 25% DEE blend, the viscosity and density of the blended fuel reduces as compared to the acceptable limits, that can further reduces the lubricity and create potential wear problems in sensitive fuel injection pump and fuel injector design. The laboratory fuel tests showed that DEE can be mixed in any proportion in diesel fuel. The blended fuel retains the desirable physical properties of diesel fuel but includes the cleaner burning capability of DEE.
2015-01-14
Technical Paper
2015-26-0049
Amar Deep, Naveen Kumar, Mukesh Kumar, Ashish Singh, Dhruv Gupta, Jitesh Singh Patel
In the past few decades, use of energy resources in industrial and transportation sector have reached to its peak resulting in depleting resources and environment squalor. Vegetable oils, which have properties comparable to diesel fuel, are considered promising alternative fuels for unmodified diesel engines. However, high viscosity of vegetable oils is a major challenge which could be reduced by blending with alcohols. The aim of the present study was to investigate the suitability of Orange peel oil and n-butanol blends as an alternative fuel for CI engine. Various blends of butanol with Orange peel oil were prepared on volumetric basis and named as B10OPO90 (10% n-butanol and 90% Orange peel oil), B20OPO80 (20% n-butanol and 80% Orange peel oil), B30OPO70 (30% n-butanol and 70% Orange peel oil) and B40OPO60 (40% n-butanol and 60% Orange peel oil). All blends were found homogenous and various physico-chemical properties were evaluated in accordance to relevant standards.
2015-01-14
Journal Article
2015-26-0051
Srinivas Jilakara, Jaikumar V Vaithianathan, Saravanan Natarajan, Venkateswara R Ramakrishnan, GP Subash, Mathew Abraham, Jayakrishnan Krishnan Unni, Lalit Mohan Das
Abstract Hydrogen is considered as one of the potential alternate fuel and when compared to other alternate fuels like CNG, LPG, Ethanol etc., it has unique properties due to absence of carbon. In the current work, Hydrogen engine of 2.5 L, four cylinder, spark ignited Turbocharged-Intercooled engine is developed for Mini Bus application. Multi-point fuel injection system is used for injecting the hydrogen in the intake manifold. Initially, boost simulation is performed to select the optimum compression ratio and turbocharger. The literature review has shown that in-order to get the minimum NOx emissions Hydrogen engines must be operated between equivalence ratios ranging from 0.5 to 0.6. In the present study, full throttle performance is conducted mainly with the above equivalence ratio range with minimum advance for Maximum Brake Torque (MBT) ignition timing. At each operating point, the performance, emissions and combustion parameters are recorded and analyzed in detail.
2015-01-14
Journal Article
2015-26-0056
Pedro M. Barroso, Xavier Ribas, Mario Pita Sr, Judith Dominguez, Edgard De Seia
Abstract This work is based on the development of heavy-duty diesel engines for alternative fuel use. Three diesel engines for commercial vehicle applications were studied: a 13L diesel engine was converted to a dedicated lean-burn NG engine and two diesel engines (14 and 4.25L) were converted to a dual-fuel operation with diesel-NG and diesel-LPG respectively. The dedicated NG engine conversion was achieved by means of some relevant modifications such as the reduction of the compression ratio, design of a gas injection system, design of a spark plug adapter, and implementation of a complete EMS. In relation to dual-fuel cases, some minor modifications were made to the diesel baseline engines such as the installation of the gas train components and the implementation of a gas ECU for the management of the diesel and gas injection using some CAN bus J1939 signals.
2015-01-14
Journal Article
2015-26-0058
Sukrut Thipse, Ajit Vinayak Kulkarni, Suresh J Vispute, S D Rairikar, Shailesh B Sonawane, Vinayak Shivalink Sagare, Subhanker Dev, Kishor Kumar Kavathekar, Parag Mengaji, Ujjwala Shailesh Karle, Neelkanth V Marathe, Kausik Sinha
Abstract Towards the effort of reducing pollutant emissions, especially soot and nitrogen oxides, from direct injection Diesel engines, engineers have proposed various solutions, one of which is the use of a gaseous fuel as a partial supplement for liquid Diesel fuel. These engines are known as dual fuel combustion engines. A dual fuel (Diesel-CNG) engine is a base diesel engine fitted with a dual fuel conversion kit to enable use of clean burning alternative fuel like compressed natural gas. In this engine diesel and natural gas are burned simultaneously. Natural gas is fed into the cylinder along with intake air; the amount of diesel injection is reduced accordingly. Dual fuel engines have number of potential advantages like fuel flexibility, higher compression ratio, and better efficiency and less modifications on existing diesel engines. It is an ecological friendly technology due to lower PM and smoke emissions and retains the efficiency of diesel combustion.
2015-01-14
Technical Paper
2015-26-0047
Darshan Jain, Saravanan Kumarasamy, K. C. Vora
Abstract:- Jatropha curcus.L, which is often referred to as “Jatropha” is a plant that produces seeds with high oil content. The plant can be grown on low fertile land with no intensive water supply. The seeds are toxic and are non-edible which make it an important source for producing bio-diesel in developing countries. The Jatropha seeds consist of kernels enclosed by shells. The maximum oil content of the seed is present in white kernels.There are different types of expelling methods such as Mechanical extraction, Solvent extraction and Enzymatic extraction.The study was conducted with hand driven mechanical expeller which is most conventional way of extracting oil from seeds and with mechanical efficiency of 60-80% for single pass. The study includes various combinations of parameters like seed treatment, sun drying, pre-heating, soaking at different temperatures and different de-hulling compositions.
2015-01-14
Technical Paper
2015-26-0050
Kunal Kumar Rana, Saravanan Natarajan, Srinivas Jilakara
The carbonless structure of Hydrogen is considered as a potential fuel for future automotive propulsion system to reduce reliance on energy imports and elimination of carbon containing emissions. There are a lot of research on fuel cells, which yields very promising results, yet at other side it has several drawbacks such as cost, bulkiness and low efficiency at high loads. Here the hydrogen fuelled internal combustion engine appears on the scene. The working principle of an internal combustion engine fuelled with hydrogen is same as any spark ignition engine. This paper reviews optimistic features and current boundaries that are associated with the use of hydrogen as SI engine fuel, along with the recent advancements in hydrogen (H2) powered engine. An overview of highly favourable engine specific properties of hydrogen with regards to its combustion characteristics and challenges that must be surmounted in order to establish a "Hydrogen Economy" are described.
2015-01-14
Technical Paper
2015-26-0046
Sukrut S Thipse, Shailesh B Sonawane, Ashwin F D' Souza, S D Rairikar, Kishor Kumar Kavathekar, Neelkanth V Marathe
Abstract CNG has long since been established as a front runner amongst other available alternative fuels. In India, its infrastructure and penetration far exceeds others. While other, more efficient alternatives are been researched, CNG has established itself in the market as the alternative fuel of choice for majority of Indians. CNG technology has evolved itself from the basic venturi system to the more efficient sequential injection system nowadays. While the efficiency of an engine using sequential injection CNG has increased, the inherent problem with respect to lower volumetric efficiency and hence less power still persists. Direct injection CNG technology is seen as the solution to this age old problem. In the older days, the lack of technological expertise in SI direct fuel injection provided a stumbling block for development of direct gas injection.
2014-12-11
Standard
J3050_201412
Provide the railroad industry and the locomotive manufacturers a summary of lessons learned in the automotive industry regarding use of biodiesel. Close the knowledge gap between those who have been participating at ASTM International over the last two decades and those who have not. Merge the activities of the two groups, bring the railroads to ASTM, and eliminate duplication of efforts. Lack of participation by any group in standard setting efforts can result in fuel specifications that lack components for a particular application.
2014-11-18
Event
This session includes papers focused on the gaseous and particulate emissions performance from operating small engines, both diesel and gasoline on oxygenated fuel blends.
2014-11-18
Event
This session includes papers focused on aspects of operating small engines on non-petroleum based fuels or non-conventional blends of fuels. In particular this session looks at metrics such as spray behaviour and combustions characteristics for gasoline and diesel engines.
2014-11-11
Technical Paper
2014-32-0005
Keisuke Mochizuki, Takahiro Shima, Hirotaka Suzuki, Yoshihiro Ishikawa, Akira Iijima, Koji Yoshida, Hideo Shoji
Abstract Homogeneous Charge Compression Ignition (HCCI) has attracted a great deal of interest as a combustion system for internal combustion engines because it achieves high efficiency and clean exhaust emissions. However, HCCI combustion has several issues that remain to be solved. For example, it is difficult to control engine operation because there is no physical means of inducing ignition. Another issue is the rapid rate of heat release because ignition of the mixture occurs simultaneously at multiple places in the cylinder. The results of previous investigations have shown that the use of a blended fuel of DME and propane was observed that the overall combustion process was delayed, with that combustion became steep when injected propane much. This study focused on expanding the region of stable engine operation and improving thermal efficiency by using supercharging and blended fuels. The purpose of using supercharging were in order to moderated combustion.
2014-11-11
Technical Paper
2014-32-0082
Stefano Frigo, Roberto Gentili, Franco De Angelis
Abstract Storing hydrogen is one of the major issues concerning its utilization on board vehicles. A promising solution is storing hydrogen in the form of ammonia that contains almost 18% hydrogen by mass and is liquid at roughly 9 bar at environmental temperature. As a matter of fact, liquid ammonia contains 1.7 times as much hydrogen as liquid hydrogen itself, thus involving relatively small volumes and light and low-cost tanks. It is well known that ammonia can be burned directly in I.C. engines, however a combustion promoter is necessary to support and speed up combustion especially in the case of high-speed S.I. engines. The best promoter is hydrogen, due to its opposed and complementary characteristics to those of ammonia, Hydrogen has high combustion velocity, low ignition energy and wide flammability range, whereas ammonia has low flame speed, narrow flammability range, high ignition energy and high self-ignition temperature.
2014-11-11
Journal Article
2014-32-0087
Jeff R. Wasil, Thomas Wallner
Abstract Biologically derived isobutanol, a four carbon alcohol, has an energy density closer to that of gasoline and has potential to increase biofuel quantities beyond the current ethanol blend wall. When blended at 16 vol% (iB16), it has identical energy and oxygen content of 10 vol% ethanol (E10). Engine dynamometer emissions tests were conducted on two open-loop electronic fuel-injected marine outboard engines of both two-stroke and four-stroke designs using indolene certification fuel (non-oxygenated), iB16 and E10 fuels. Total particulate emissions were quantified using Sohxlet extraction to determine the amount of elemental and organic carbon. Data indicates a reduction in overall total particulate matter relative to indolene certification fuel with similar trends between iB16 and E10. Gaseous and PM emissions suggest that iB16, relative to E10, could be promising for increasing the use of renewable fuels in recreational marine engines and fuel systems.
2014-11-11
Technical Paper
2014-32-0083
Akihiko Azetsu, Hiroomi Hagio
Abstract The objective of this study is to understand the fundamental spray combustion characteristics of FAME mixed with diesel oil. To examine the phenomena in detail, diesel spray flame formed in a constant volume high pressure vessel was visualized and the flame temperature and the KL factor were analyzed by two color method of luminous flame. The FAMEs examined in this study are PME, RME and CME, and compared with the combustion characteristics of diesel oil. From the systematic experiments, it is confirmed that the ignition delay and combustion period of bio diesel fuels are almost equivalent with those of diesel oil. The flame temperature decreased slightly with the bio fuel. Furthermore the total KL factor, a measure of the amount of soot in flame, decreased drastically by using the bio diesel fuel in the order of the mass fraction of oxygen in the molecule.
2014-11-11
Technical Paper
2014-32-0084
Eiji Kinoshita, Akira Itakura, Takeshi Otaka, Kenta Koide, Yasufumi Yoshimoto, Thet Myo
Abstract In order to improve the cold flow properties of coconut oil biodiesel and to reduce the lifecycle CO2 emission by using bio-alcohol at biodiesel manufacturing, varying the types of alcohol used at transesterification was examined. The pour point of coconut oil ester decreases as the carbon number of alcohol increases. Among 5 ester fuels, the pour point of coconut oil isobutyl ester (CiBE) made from isobutanol is lowest, −12.5 °C, compared to that of coconut oil methyl ester (CME), highest, −5 °C. The pour point of coconut oil 1-butyl ester (CBE) is −10 °C, second lowest. Furthermore, CBE, CiBE, CME and JIS No.2 diesel fuel (gas oil) were tested using a DI diesel engine. CBE and CiBE have shorter ignition delay compared to the gas oil although slightly longer than CME. CBE and CiBE have the same thermal efficiency and NOx emissions compared to the gas oil. HC, CO and Smoke emissions of coconut oil ester fuels slightly increase when the ester molecule carbon number increases.
Viewing 1 to 30 of 5210

Filter

  • Range:
    to:
  • Year: