Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2549
2018-06-07
Event
2018-05-22
Training / Education
Developing vehicles that achieve optimum fuel economy and acceleration performance is critical to the success of any automotive company, yet many practicing engineers have not received formal training on the broad range of factors which influence vehicle performance. This seminar provides this fundamental understanding through the development of mathematical models that describe the relevant physics and through the hands-on application of automotive test equipment. Attendees will also be introduced to software used to predict vehicle performance.
2018-05-03
Training / Education
Improving vehicular fuel efficiency is of paramount importance to the global economy. Governmental regulations, climate change and associated health concerns, as well as the drive towards energy independence, have created a technical need to achieve greater fuel efficiency. While vehicle manufacturers are focusing efforts on improved combustion strategies, smaller displacement engines, weight reduction, low friction surfaces, etc., the research involved in developing fuel efficient engine oils has been less publicized.
2018-03-20
Training / Education
Driven by the need for lower emissions, better fuel economy and improved drive quality, optimized powertrain calibrations are required for the many different vehicle configurations on today's roadways. While powertrain components such as the internal combustion engine, transmission, and hybrid electric powertrain are somewhat familiar to the automotive industry, the control theory, calibrations and system interactions between these components are a relatively unfamiliar aspect.
2018-02-20
Training / Education
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2017-10-08
Technical Paper
2017-01-2464
Xinyou Lin, Chaoyu Wu, Qingxiang Zheng, Liping Mo, Hailin Li
Abstract The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy.
2017-10-08
Technical Paper
2017-01-2208
Tao Liu, Ziwang Lu, Guangyu Tian
Abstract To further explore the potential of fuel economy for hybrid electric vehicle (HEV), a methodology of demand power optimization is proposed. The fuel consumption depends not only on the EMS, but also on the way to operate vehicle. A control strategy to adjust driver’s demand before power splitting is necessary. To get accurate and reliable control strategy, two aspects are the most important. First, a rigorous and organized modeling approach is a base to describe complicated powertrain system of HEV. The energetic macroscopic representation (EMR) is a graphical synthetic description of electromechanical conversion system based on energy flow. A powertrain architecture of HEV is described explicitly via the EMR. Second, the effectiveness of EMS and the reasonability of driving operations are vital.
2017-10-08
Technical Paper
2017-01-2224
Paul Freeland, Gareth Jones, Rong-Sheih Chen, Liang-Wei Huang, Marwan El-Kassem, Roland Kaiser
Abstract The paper outlines the fuel consumption benefits available from de-throttling technologies that can help to bring gasoline engine efficiency on a par with that of diesel engines. The paper shows the relative efficiency improvements offered by a fully-variable intake valve lift system in conjunction with wide-range cam phasers, which also incorporate the facility to provide zero valve lift to enable cylinder deactivation. Testbed results recorded with a prototype concept engine show the degree to which early intake valve closing, valve overlap and cylinder deactivation can work together, and the limitations of this synergy at different operating conditions.
2017-10-08
Technical Paper
2017-01-2245
Xianlin Ouyang, Ho Teng, Xiaochun zeng, Xuwei Luo, Tingjun Hu, Xianlong Huang, Jiankun Luo, Yongli Zhou
Abstract In order to better understand how the Atkinson cycle and the Miller cycle influence the fuel consumption at different engine speeds and loads, an investigation was conducted to compare influences of early intake valve closing (EIVC) and late intake valve closing (LIVC) on the fuel consumption of a 1.5L turbo-charged gasoline direct injection (TGDI) engine. The engine was tested with three different intake cams, covering three intake durations: 251 degCA (the base engine), 196 degCA (the Miller engine), and 274 degCA (the Atkinson engine). Compression ratios are 9.5:1 for the base engine and 11.4:1 for the Atkinson and Miller engines, achieved with piston modifications. Results of this investigation will be reported in three papers focusing respectively on characteristics of the engine friction, in-cylinder charge motions for different intake events, and combustion and fuel economy without and with EGR for the naturally aspirated mode and boost mode.
2017-10-08
Technical Paper
2017-01-2290
Zhixin Sun, Shaoqing Yang, Xinyong Qiao, Zhiyuan Zhang
Abstract When operating at high elevation of 3700m (atmospheric pressure about 68 kPa), the combustion process of diesel engine deteriorates, and the engine performance declines significantly. In this paper, Isooctyl Nitrate(EHN) is blended into the diesel fuel as additive to improve the combustion process. The decomposition of Isooctyl Nitrate(EHN) is analyzed and its mechanism is studied through chemical kinetics. A series of tests were carried out on a single cylinder diesel engine to study the effects of EHN on diesel engine combustion with the low intake pressure of 68kPa. Results show that the generation of OH、 H、 HO2 and H2O2 in n-heptane cleavage reactions can be promoted by EHN. In both stages of low and high temperature, the decomposition of n-heptane is accelerated, which shortened the ignition delay period. Four kinds of fuel are studied by tests: diesel fuel, diesel fuel with 0.3%, 0.6% and 0.9% mass fraction EHN respectively.
2017-10-08
Technical Paper
2017-01-2355
Yungwan Kwak, Christopher Cleveland
Abstract Due to its simplicity and fuel economy benefit, continuously variable transmission (CVT) technology has gained a lot of attention in recent years. Market penetration of CVT technology is increasing rapidly compared to step-type automatic transmission technology. OEMs, Tier 1 suppliers, and lubricant suppliers are working to further improve the fuel economy benefit of CVTs. As a lubricant supplier, we want to understand the effects of fluid properties on CVT fuel economy (FE). We have formulated fluids that had KV100 ranges from 2-4 cSt to 7-9 cSt with various types and viscosities of base oils. Wide ranges of viscosity indexes, steel-on-steel friction, and other properties were tested. Full vehicle fuel economy tests were performed in a temperature controlled environment with a robotic driver. The test revealed that there was more than 3% overall FE variation compared to a reference fluid.
2017-10-08
Technical Paper
2017-01-2435
Jian Ji, BoZhou He, Lei Yuan
Abstract It is well-known that, compared with automatic transmissions (ATs), continuously variable transmission (CVT) shows advantages in fuel saving due to its continuous shift manner, since this feature enables the engine to operate in the efficiency-optimized region. However, as the AT gear number increases and the ratio gap narrows, this advantage of CVT is challenged. In this paper, a comparative study on fuel economy for a CVT based vehicle and a 9-speed automatic transmission (AT) based vehicle is proposed. The features of CVT and AT are analyzed and ratio control strategies for both the CVT and 9-speed AT based vehicles are designed from the view point of vehicle fuel economy, respectively. For the 9-speed AT, an optimal gear shift map is constructed. With this gear shift map, the optimal gear is selected as vehicle velocity and driving condition vary.
2017-10-08
Journal Article
2017-01-2348
Michael Clifford Kocsis, Peter Morgan, Alexander Michlberger, Ewan E. Delbridge, Oliver Smith
Abstract Increasingly stringent fuel economy and emissions regulations around the world have forced the further optimization of nearly all vehicle systems. Many technologies exist to improve fuel economy; however, only a smaller sub-set are commercially feasible due to the cost of implementation. One system that can provide a small but significant improvement in fuel economy is the lubrication system of an internal combustion engine. Benefits in fuel economy may be realized by the reduction of engine oil viscosity and the addition of friction modifying additives. In both cases, advanced engine oils allow for a reduction of engine friction. Because of differences in engine design and architecture, some engines respond more to changes in oil viscosity or friction modification than others. For example, an engine that is designed for an SAE 0W-16 oil may experience an increase in fuel economy if an SAE 0W-8 is used.
2017-10-08
Technical Paper
2017-01-2344
Robert Taylor, Hua Hu, Carl Stow, Tony Davenport, Robert Mainwaring, Scott Rappaport, Sarah Remmert
Abstract It is anticipated that worldwide energy demand will approximately double by 2050, whilst at the same time, CO2 emissions need to be halved. Therefore, there is increasing pressure to improve the efficiency of all machines, with great focus on improving the fuel efficiency of passenger cars. The use of downsized, boosted, gasoline engines, can lead to exceptional fuel economy, and on a well-to-wheels basis, can give similar CO2 emissions to electric vehicles (depending, of course, on how the electricity is generated). In this paper, the development of a low weight concept car is reported. The car is equipped with a three-cylinder 0.66 litre gasoline engine, and has achieved over 100 miles per imperial gallon, in real world driving conditions.
2017-10-08
Technical Paper
2017-01-2354
Dave Horstman, John Sparrow
Abstract Due to recent legislation on CO2 emissions, Heavy Duty engine and vehicle manufacturers and their suppliers have had an increased interest in improving vehicle fuel economy. Many aspects are being investigated including vehicle aerodynamics, tire rolling resistance, waste heat recovery, engine fuel efficiency, and others. Crankcase oils offer a cost-effective mechanism to reduce engine friction and increase engine fuel efficiency. The potential gains realized by optimized fuel-efficient oils are relatively small, usually less than 3%. Therefore, in order to develop these oils, formulators must have a robust, repeatable, and realistic test method for differentiation. To serve Light Duty (LD) engines, this need has been partially satisfied by the development of what became the Sequence VI engine test for gasoline passenger car oils in the early 1990’s.
2017-10-08
Journal Article
2017-01-2346
Hong Liu, Jiajia Jin, Hongyu Li, Kazuo Yamamori, Toyoharu Kaneko, Minoru Yamashita, Liping Zhang
Abstract It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
2017-10-08
Technical Paper
2017-01-2349
Sarita Seth, Swamy Maloth, Prashant Kumar, Bhuvenesh Tyagi, Lokesh Kumar, Rajendra Mahapatra, Sarita Garg, Deepak Saxena, R Suresh, SSV Ramakumar
Abstract Automobile OEMs are looking for improving fuel economy[1,2] of their vehicles by reducing weight, rolling resistance and improving engine and transmission efficiency apart from the aerodynamic design. Fuel economy may be improved by using appropriate low viscosity [3] and use of friction reducers (FRs)[4,5] in the engine oils. The concept of high viscosity index [6] is being used for achieving right viscosity at required operating temperatures. In this paper performance properties of High Viscosity Index engine oils have been compared with conventional VI engine oils. Efforts have been made to check the key differentiation in oil properties w.r.t. low temperature fluidity, high temperature high shear viscosity/deposits, friction behavior, oxidation performance in bench tribological /engine/chassis dyno tests which finally lead to oil performance assessment.
2017-10-08
Technical Paper
2017-01-2246
Xuwei Luo, Ho Teng, Yuxing Lin, Bin Li, Xiaochun Zeng, Tingjun Hu, Xianlong Huang, Xiaojun Yuan
Abstract The present paper is Part II of an investigation on the influences of the late intake valve closing (LIVC) and the early intake valve closing (EIVC) on the engine fuel consumptions at different loads and speeds. The investigation was conducted with two 1.5L turbo-charged gasoline direct injection (TGDI) engines, one with a low-lift intake cam and the other with a high-lift intake cam. The focus of this paper is the cylinder charge motion. Computational fluid dynamic (CFD) analyses were conducted on the characteristics of the cylinder charge motion for the load points 6 bar-bmep / 2000 rpm, 12 bar-bmep / 3000 rpm, and 19 bar-bmep / 1500 rpm, representing naturally aspirated and boost-mode operations without and with scavenging during the valve overlap.
2017-10-08
Technical Paper
2017-01-2232
Liming Cao, Ho Teng, Ruigang Miao, Xuwei Luo, Tingjun Hu, Xianlong Huang
Abstract The present paper is Part III of an investigation on the influences of the late intake valve closing (LIVC) and the early intake valve closing (EIVC) on the engine fuel consumptions at different loads and speeds. The investigation was conducted with two 1.5L turbo-charged gasoline direct injection (TGDI) engines, one with a low-lift intake cam (the Miller engine) and the other with a high-lift intake cam (the Atkinson engine). This paper focuses on the influence of the intake-valve-closing timing on the fuel economy with and without exhaust gas recirculation (EGR). It was found that the Miller engine had a lower friction than the Atkinson engine; however, the impact of the difference in engine frictions on the fuel economy was mainly for low-speed operations. Across the engine speed range, the Miller engine had longer combustion durations than the Atkinson engine as a result of the impact of EIVC on the cylinder charge motion.
2017-10-08
Technical Paper
2017-01-2207
Nobunori Okui
Abstract Next-generation vehicles which include the Electric Vehicles, the Hybrid Electric Vehicles and the Plug-in Hybrid Electric Vehicles are researched and expected to reduce carbon dioxide (CO2) emission in the future. In order to reduce the emissions of the heavy-duty diesel plug-in hybrid electric vehicles (PHEV), it is necessary to provide the high exhaust-gas temperature and to keep the exhaust-gas aftertreatment system effective. The engine starting condition of the PHEV is cold, and the engine start and stop is repeated. And, the engine load of the PHEV is assisted by the electric motor. Therefore, the exhaust-gas aftertreatment system of the PHEV is not able to get the enough high exhaust-gas temperature. And, the warm-up of the exhaust-gas aftertreatment system for the PHEV is spent the long time. So, it is worried about a bad effect on the emission characteristics of the PHEV.
2017-09-28
Magazine
Advances for off-highway engine design As manufacturers continue to drive out cost and meet a worldwide patchwork of regulatory frameworks, the tools for developing those engines are advancing. From showcase prototypes to advanced analytical techniques, suppliers are helping the cause. Military vehicles battle for autonomy at lower cost Engineers are adding sensors, more powerful micros and faster networks as they automate tasks and pave the way to autonomy. Heavy duty lightweighting Optimization of tractor-trailer systems and component design helps to reduce overall vehicle mass, a key strategy in improving fuel economy and meeting upcoming Phase 2 GHG regulations. Navistar's SuperTruck II explores composites, WiFi to cut weight Methane state of mind New Holland ramps up its focus on alternative fuels, showcasing a methane-powered concept tractor that trims emissions, operating costs.
2017-09-25
WIP Standard
J3156
Develop and document an aerodynamic constant speed procedure for heavy vehicles that can accurately calculate the aerodynamic performance through the typical expected yaw angles during operation at highway speeds.
2017-08-11
Journal Article
2017-01-9379
John Thomas, Shean Huff, Brian West, Paul Chambon
Abstract Aggressive driving is an important topic for many reasons, one of which is higher energy used per unit distance traveled, potentially accompanied by an elevated production of greenhouse gases and other pollutants. Examining a large data set of self-reported fuel economy (FE) values revealed that the dispersion of FE values is quite large and is larger for hybrid electric vehicles (HEVs) than for conventional gasoline vehicles. This occurred despite the fact that the city and highway FE ratings for HEVs are generally much closer in value than for conventional gasoline vehicles. A study was undertaken to better understand this and better quantify the effects of aggressive driving, including reviewing past aggressive driving studies, developing and exercising a new vehicle energy model, and conducting a related experimental investigation.
2017-08-04
Magazine
Opposed-piston engines: the powerplant of the future India's dream of an all-EV fleet by 2030: Myth, miracle, or reality? An approach for prediction of motorcycle engine noise under combustion load Innovations for lightweighting Tough U.S. fuel-economy bogies for 2021 and beyond are driving new approaches for materials, as seen in these examples. More intelligence equals more efficiency, enhanced functionality Advanced electronic systems require renewed focus on architectures, processors, sensors and networks. Connected commercial vehicles bring cybersecurity to the fore Connectivity, automation and electrification will drive vehicle development in the near future, say industry experts attending the revamped SAE COMVEC 17 event.
Viewing 1 to 30 of 2549

Filter

  • Range:
    to:
  • Year: