Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2561
2018-06-07
Event
Training / Education
Developing vehicles that achieve optimum fuel economy and acceleration performance is critical to the success of any automotive company, yet many practicing engineers have not received formal training on the broad range of factors which influence vehicle performance. This seminar provides this fundamental understanding through the development of mathematical models that describe the relevant physics and through the hands-on application of automotive test equipment. Attendees will also be introduced to software used to predict vehicle performance.
Training / Education
Improving vehicular fuel efficiency is of paramount importance to the global economy. Governmental regulations, climate change and associated health concerns, as well as the drive towards energy independence, have created a technical need to achieve greater fuel efficiency. While vehicle manufacturers are focusing efforts on improved combustion strategies, smaller displacement engines, weight reduction, low friction surfaces, etc., the research involved in developing fuel efficient engine oils has been less publicized.
Training / Education
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2018-01-08
WIP Standard
J1341
This document covers evaluation techniques for determining the power consumption characteristics of engine driven hydraulic pumps used on heavy-duty trucks and buses. The testing technique outlined in this SAE Recommended Practice was developed as part of an overall program for testing and evaluating fuel consumption of heavy-duty trucks and buses. The technique outlined in this document provides a description of the test to be run to determine power consumption of these engine driven components, the type of equipment and facilities which are generally required to perform these tests are discussed in SAE J745. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation.
2018-01-08
WIP Standard
J1340
The testing techniques outlined in this SAE Recommended Practice were developed as part of an overall program for testing and evaluating fuel consumption of heavy duty trucks and buses. The technique outlined in this document provides a general description of the type of equipment and facility which is necessary to determine the power consumption of these engine-driven components. It is recommended that the specific operating conditions suggested throughout the test be carefully reviewed on the basis of actual data obtained on the specific vehicle operation. If specific vehicle application is not known, see SAE J1343. The purpose of this document is to provide a recommended test procedure for establishing the power consumption of an air brake compressor or an air conditioning compressor. It is intended that this test procedure be used to determine compressor power consumption over a range of operating conditions, including both the loaded and unloaded modes.
2017-12-07
WIP Standard
J1711
This Society of Automotive Engineers (SAE) Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEVs driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester.
2017-11-07
Technical Paper
2017-36-0236
Claudio M. Engler Pinto, Victor Algate, André Carbonara
Abstract The first production ethanol (E100) fueled capable vehicle was launched in Brazil in 1979. In the decade of 1980, most of the vehicles in Brazilian market ran either on gasohol (E22) or on ethanol. By this time, two different engine hardware had been developed: one for gasohol and one for ethanol, the latter with a higher compression ratio assuring a better fuel conversion efficiency. In this period, it was usual to have same vehicle models operating with an E100 / E22 fuel economy ratio (FE in km/l) in the range of 0.75 to 0.80. This range is greater than the E100 / E22 energy content ratio which is approximately 0.70. The customers very well perceived the higher efficiency of the ethanol-fueled vehicle when the low E100 / E22 price ratio at the pump played a major factor for this perception.
2017-11-07
Technical Paper
2017-36-0199
R Lopes, A Carbonara
Abstract Vehicle Fuel Economy and Emission measurements requires road load determination by standardized Coast-down test. Worldwide stablished standards for testing and calculation apply second order polynomial fit models to describe road load. The common approach on road load analysis and validation is by direct comparison of coefficients and corresponding parabolas. This paper discuss an alternative approach (currently used by the USA Environmental Protection Agency) for estimating road load energy loss on standard test driving profile. Combining simple physical concepts on Work with the road load model and the chassis dynamometer driving profile, equations are derived describing the energy loss as a function of road load coefficients on a fuel economy test.
2017-11-05
Technical Paper
2017-32-0064
Christian Hubmann, Harald Mayrhofer, Hubert Friedl, Gerald Hochmann
The motorcycle and small engine industry is entering a chapter where emission legislation (EU5, BS6) is adapted to the automotive industries and especially CO2 emission is coming more and more into the focus of the OEMs, the legislative authorities and finally the end-user. Technologies like variable valve actuation, direct gasoline injection and turbo charging are state of the art in the automotive industry and have brought the efficiency of the internal combustion engine onto the next level. Nevertheless the small engine manufacturers are seeking for solutions which are cost efficient as well as simple and easy to apply. Even powertrain complexity is increasing the development efforts have to be kept moderate. Therefore, there is strong request for modern instrumentation and Testbeds which support an efficient and effective development process.
2017-11-05
Technical Paper
2017-32-0003
Timothy C. Simmons, Larry J. Markoski
An innovative carburetor system has been developed for use in single cylinder small engines. The carburetor has been implemented on a 79cc 4 stroke portable gasoline generator for the purposes of illustrating its effect in reducing emissions, engine deposits and improving fuel economy without re-jetting the carburetor. This method of carburetion dynamically tunes the venturi effect in the carburetor, allowing for air density, fuel viscosity and fuel type compensation for optimal AFR. Modified and stock generators were tested at various power levels, elevations and temperatures to simulate operational environments. The improvements in emissions and fuel consumption will be presented. In addition, the system has been designed as a bolt-on, low cost alternative to an EFI method of complying with emissions regulations for existing small engine applications.
2017-11-05
Technical Paper
2017-32-0008
Pei Yi Lim, Youhei Inagaki
Sustainability trends and reduced fuel consumption as a value proposition to end users have led to an ever-increasing focus on fuel efficiency in the personal mobility segment. This is evident in the development of smaller and lighter engine hardware with optimized combustion systems as well as the lowering of engine oil viscosity grades and formulation of additives with improved friction properties. Due to the unique challenges of lubricating motorcycle engines, the development of fuel efficient motorcycle engine oil presents several technical dilemmas. The reduction of oil viscosity gives rise to durability concerns particularly in such high temperature and high speed operating conditions, while the formulation of additives with lower friction properties may affect clutch friction that is necessary for a manual motorcycle.
2017-10-08
Technical Paper
2017-01-2290
Zhixin Sun, Shaoqing Yang, Xinyong Qiao, Zhiyuan Zhang
Abstract When operating at high elevation of 3700m (atmospheric pressure about 68 kPa), the combustion process of diesel engine deteriorates, and the engine performance declines significantly. In this paper, Isooctyl Nitrate(EHN) is blended into the diesel fuel as additive to improve the combustion process. The decomposition of Isooctyl Nitrate(EHN) is analyzed and its mechanism is studied through chemical kinetics. A series of tests were carried out on a single cylinder diesel engine to study the effects of EHN on diesel engine combustion with the low intake pressure of 68kPa. Results show that the generation of OH、 H、 HO2 and H2O2 in n-heptane cleavage reactions can be promoted by EHN. In both stages of low and high temperature, the decomposition of n-heptane is accelerated, which shortened the ignition delay period. Four kinds of fuel are studied by tests: diesel fuel, diesel fuel with 0.3%, 0.6% and 0.9% mass fraction EHN respectively.
2017-10-08
Technical Paper
2017-01-2246
Xuwei Luo, Ho Teng, Yuxing Lin, Bin Li, Xiaochun Zeng, Tingjun Hu, Xianlong Huang, Xiaojun Yuan
Abstract The present paper is Part II of an investigation on the influences of the late intake valve closing (LIVC) and the early intake valve closing (EIVC) on the engine fuel consumptions at different loads and speeds. The investigation was conducted with two 1.5L turbo-charged gasoline direct injection (TGDI) engines, one with a low-lift intake cam and the other with a high-lift intake cam. The focus of this paper is the cylinder charge motion. Computational fluid dynamic (CFD) analyses were conducted on the characteristics of the cylinder charge motion for the load points 6 bar-bmep / 2000 rpm, 12 bar-bmep / 3000 rpm, and 19 bar-bmep / 1500 rpm, representing naturally aspirated and boost-mode operations without and with scavenging during the valve overlap.
2017-10-08
Technical Paper
2017-01-2245
Xianlin Ouyang, Ho Teng, Xiaochun zeng, Xuwei Luo, Tingjun Hu, Xianlong Huang, Jiankun Luo, Yongli Zhou
Abstract In order to better understand how the Atkinson cycle and the Miller cycle influence the fuel consumption at different engine speeds and loads, an investigation was conducted to compare influences of early intake valve closing (EIVC) and late intake valve closing (LIVC) on the fuel consumption of a 1.5L turbo-charged gasoline direct injection (TGDI) engine. The engine was tested with three different intake cams, covering three intake durations: 251 degCA (the base engine), 196 degCA (the Miller engine), and 274 degCA (the Atkinson engine). Compression ratios are 9.5:1 for the base engine and 11.4:1 for the Atkinson and Miller engines, achieved with piston modifications. Results of this investigation will be reported in three papers focusing respectively on characteristics of the engine friction, in-cylinder charge motions for different intake events, and combustion and fuel economy without and with EGR for the naturally aspirated mode and boost mode.
2017-10-08
Technical Paper
2017-01-2232
Liming Cao, Ho Teng, Ruigang Miao, Xuwei Luo, Tingjun Hu, Xianlong Huang
Abstract The present paper is Part III of an investigation on the influences of the late intake valve closing (LIVC) and the early intake valve closing (EIVC) on the engine fuel consumptions at different loads and speeds. The investigation was conducted with two 1.5L turbo-charged gasoline direct injection (TGDI) engines, one with a low-lift intake cam (the Miller engine) and the other with a high-lift intake cam (the Atkinson engine). This paper focuses on the influence of the intake-valve-closing timing on the fuel economy with and without exhaust gas recirculation (EGR). It was found that the Miller engine had a lower friction than the Atkinson engine; however, the impact of the difference in engine frictions on the fuel economy was mainly for low-speed operations. Across the engine speed range, the Miller engine had longer combustion durations than the Atkinson engine as a result of the impact of EIVC on the cylinder charge motion.
2017-10-08
Technical Paper
2017-01-2224
Paul Freeland, Gareth Jones, Rong-Sheih Chen, Liang-Wei Huang, Marwan El-Kassem, Roland Kaiser
Abstract The paper outlines the fuel consumption benefits available from de-throttling technologies that can help to bring gasoline engine efficiency on a par with that of diesel engines. The paper shows the relative efficiency improvements offered by a fully-variable intake valve lift system in conjunction with wide-range cam phasers, which also incorporate the facility to provide zero valve lift to enable cylinder deactivation. Testbed results recorded with a prototype concept engine show the degree to which early intake valve closing, valve overlap and cylinder deactivation can work together, and the limitations of this synergy at different operating conditions.
2017-10-08
Technical Paper
2017-01-2207
Nobunori Okui
Abstract Next-generation vehicles which include the Electric Vehicles, the Hybrid Electric Vehicles and the Plug-in Hybrid Electric Vehicles are researched and expected to reduce carbon dioxide (CO2) emission in the future. In order to reduce the emissions of the heavy-duty diesel plug-in hybrid electric vehicles (PHEV), it is necessary to provide the high exhaust-gas temperature and to keep the exhaust-gas aftertreatment system effective. The engine starting condition of the PHEV is cold, and the engine start and stop is repeated. And, the engine load of the PHEV is assisted by the electric motor. Therefore, the exhaust-gas aftertreatment system of the PHEV is not able to get the enough high exhaust-gas temperature. And, the warm-up of the exhaust-gas aftertreatment system for the PHEV is spent the long time. So, it is worried about a bad effect on the emission characteristics of the PHEV.
2017-10-08
Technical Paper
2017-01-2208
Tao Liu, Ziwang Lu, Guangyu Tian
Abstract To further explore the potential of fuel economy for hybrid electric vehicle (HEV), a methodology of demand power optimization is proposed. The fuel consumption depends not only on the EMS, but also on the way to operate vehicle. A control strategy to adjust driver’s demand before power splitting is necessary. To get accurate and reliable control strategy, two aspects are the most important. First, a rigorous and organized modeling approach is a base to describe complicated powertrain system of HEV. The energetic macroscopic representation (EMR) is a graphical synthetic description of electromechanical conversion system based on energy flow. A powertrain architecture of HEV is described explicitly via the EMR. Second, the effectiveness of EMS and the reasonability of driving operations are vital.
2017-10-08
Technical Paper
2017-01-2464
Xinyou Lin, Chaoyu Wu, Qingxiang Zheng, Liping Mo, Hailin Li
Abstract The range-extended electric vehicle (REEV) is a complex nonlinear system powered by internal combustion engine and electricity stored in battery. This research proposed a Multiple Operation Points (MOP) control strategy of REVV based on operation features of REEV and the universal characteristic curve of the engine. The switching logic rules of MOP strategy are designed for the desired transition of the operation mode, which makes the engine running at high efficiency region. A Genetic algorithm (GA) is adapted to search the optimal solution. The fuel consumption is defined as the target cost function. The demand power of engine is defined as optimal variable. The state of charge (SOC) and vehicle speed are selected as the state variables. The dynamic performance of vehicle and cycling life of battery is set as the constraints. The optimal switching parameters are obtained based on this control strategy.
2017-10-08
Technical Paper
2017-01-2435
Jian Ji, BoZhou He, Lei Yuan
Abstract It is well-known that, compared with automatic transmissions (ATs), continuously variable transmission (CVT) shows advantages in fuel saving due to its continuous shift manner, since this feature enables the engine to operate in the efficiency-optimized region. However, as the AT gear number increases and the ratio gap narrows, this advantage of CVT is challenged. In this paper, a comparative study on fuel economy for a CVT based vehicle and a 9-speed automatic transmission (AT) based vehicle is proposed. The features of CVT and AT are analyzed and ratio control strategies for both the CVT and 9-speed AT based vehicles are designed from the view point of vehicle fuel economy, respectively. For the 9-speed AT, an optimal gear shift map is constructed. With this gear shift map, the optimal gear is selected as vehicle velocity and driving condition vary.
2017-10-08
Journal Article
2017-01-2346
Hong Liu, Jiajia Jin, Hongyu Li, Kazuo Yamamori, Toyoharu Kaneko, Minoru Yamashita, Liping Zhang
Abstract It has been long established fact that fuel economy is a key driving force of low viscosity gasoline engine oil research and development considered by the original equipment manufacturers (OEMs) and lubricant companies. The development of low viscosity gasoline engine oils should not only focus on fuel economy improvement, but also on the low speed pre-ignition (LSPI) prevention property. In previous LSPI prevention literatures, the necessity of applying Ca/Mg-based detergents system in the engine oil formulations was proposed. In this paper, we adopted a specific Group III base oil containing Ca-salicylate detergent, borated dispersant, Mo-DTC in the formulation and investigated the various effects of Mg-salicylate and Mg-sulfonate on the performance of engine oil. It was found that Mg-sulfonate showed a significant detrimental impact on silicone rubber compatibility while the influence from Mg-salicylate remains acceptable.
Viewing 1 to 30 of 2561

Filter

  • Range:
    to:
  • Year: