Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2484
2017-06-08
Event
2017-06-06 ...
  • June 6-8, 2017 (2 Sessions) - Live Online
  • November 14-16, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2017-05-22 ...
  • May 22-23, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Developing vehicles that achieve optimum fuel economy and acceleration performance is critical to the success of any automotive company, yet many practicing engineers have not received formal training on the broad range of factors which influence vehicle performance. This seminar provides this fundamental understanding through the development of mathematical models that describe the relevant physics and through the hands-on application of automotive test equipment. Attendees will also be introduced to software used to predict vehicle performance.
2017-05-04 ...
  • May 4-5, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Improving vehicular fuel efficiency is of paramount importance to the global economy. Governmental regulations, climate change and associated health concerns, as well as the drive towards energy independence, have created a technical need to achieve greater fuel efficiency. While vehicle manufacturers are focusing efforts on improved combustion strategies, smaller displacement engines, weight reduction, low friction surfaces, etc., the research involved in developing fuel efficient engine oils has been less publicized.
2017-04-04
Event
Separate sub-sessions cover powertrain control, calibration, and system-level optimization processes related to achieving stringent market fuel economy, emissions, performance, reliability, and quality demands. Topics include the control, calibration, and diagnostics of the engine, powertrain, and subsystems related to energy management in conventional and hybrid operation, considering the simultaneous optimization of hardware design parameters and control software calibration parameters.
2017-04-04
Event
The focus of this session is the performance of integrated vehicle systems and the influence of driving styles and drive cycles on fuel consumption/economy. This will include how integration of vehicle components such as the powertrain, parasitics, accessories, mass elements, aerodynamics, tires, brakes, and hubs affect the overall vehicle energy and energy conversion efficiency.
2017-03-14 ...
  • March 14-16, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Driven by the need for lower emissions, better fuel economy and improved drive quality, optimized powertrain calibrations are required for the many different vehicle configurations on today's roadways. While powertrain components such as the internal combustion engine, transmission, and hybrid electric powertrain are somewhat familiar to the automotive industry, the control theory, calibrations and system interactions between these components are a relatively unfamiliar aspect.
2017-01-10
Journal Article
2017-26-0364
Igor Gritsuk, Vladimir Volkov, Vasyl Mateichyk, Yurii Gutarevych, Mykola Tsiuman, Nataliia Goridko
The article suggests the results of experimental and theoretical studies of the engine heating system with a phase-transitional thermal accumulator when the vehicle is in motion. The aim of the study is to evaluate the efficiency of the vehicle heating system within thermal accumulator, catalytic converter, and the vehicle interior under operating conditions. The peculiarity of the presented system is that it uses thermal energy of exhaust gases to accumulate thermal energy during engine operation. The article describes the methodology to evaluate vehicle fuel consumption and emission in the driving cycle according to the ENECE regulation № 83-05. The methodology takes into account the environmental parameters, road conditions, the design parameters of the vehicle, the modes of its motion, the thermal state of the engine cooling system, the catalytic converter and the interior.
2017-01-10
Technical Paper
2017-26-0078
Nandagopalan Chidambaram, Sridhar Prasad Chandrasekar, VM Maheshwar, Prabaharan Palanivelu, Aravapalli Sriniwas
In the past few decades, improvement on fuel efficient technologies have progressed rapidly, whereas little emphasis is being made on how the vehicle is driven. Driving habits significantly influences fuel consumption and poor driving habits leads to increased fuel consumption. In this paper a new system called “Green Drive” is being presented wherein driving habits are closely monitored, evaluated and details are systematically presented to the user. Green Drive system monitors key driving parameters like speed, gear selection, acceleration, unwanted engine idling periods, aggressive braking and clutch override and presents an ecoscore on the infotainment system which is reflection of users driving behavior. The system also offers guidance on the scope for improving driving habits to achieve better ecoscore and hence reduced fuel consumption.
2017-01-10
Journal Article
2017-26-0056
Suramya Naik, David Johnson, Laurence Fromm, John Koszewnik, Fabien Redon, Gerhard Regner, Neerav Abani
The government of India has decided to implement Bharat Stage VI (BS-VI) emissions standards from April 2020. This requires OEMs to equip their diesel engines with costly after-treatment, EGR systems and higher rail pressure fuel systems. By one estimate, BS-VI engines are expected to be 15 to 20% more expensive than BS-IV engines, while also suffering with 2 to 3 % lower fuel economy. OEMs are looking for solutions to meet the BS-VI emissions standards while still keeping the upfront and operating costs low enough for their products to attract customers; however traditional engine technologies seem to have exhausted the possibilities. Fuel economy improvement technologies applied to traditional 4-stroke engines bring small benefits with large cost penalties. One promising solution to meet both current, and future, emissions standards with much improved fuel economy at lower cost is the Opposed Piston (OP) engine.
2017-01-10
Technical Paper
2017-26-0036
Ingo Steinberg, Dan Freiholtz, Gereon Hellenbroich
In India, the market demand for passenger cars with automated manual transmissions is steadily increasing. So far, the most successful vehicles addressing this trend use magnitude as the sales of vehicles with manual transmissions. Since customers are expecting even smoother vehicle operation, the next anticipated step is the move to automatic transmissions without any torque interrupt during gear shift. This can favorably be addressed with the dual clutch transmission technology. Re-utilization of already existing manufacturing facilities is possible with the retention of the lay-shaft design. Dual clutch transmissions offer driving characteristics, including vehicle launch, which are very similar to the behavior of vehicles with manual transmissions. This applies also to the fuel economy. Against this background, this article introduces an all new concept for a very cost efficient dual clutch transmission family for transversal, transaxle powertrains.
2016-11-16
Journal Article
2016-01-9046
Johann Peer, Fabian Backes, Henning Sauerland, Martin Härtl, Georg Wachtmeister
Abstract In the present work the benefit of a 50 MPa gasoline direct injection system (GDI) in terms of particle number (PN) emissions as well as fuel consumption is shown on a 0.5 l single cylinder research engine in different engine operating conditions. The investigations show a strong effect of injection timing on combustion duration. As fast combustion can be helpful to reduce fuel consumption, this effect should be investigated more in detail. Subsequent analysis with the method of particle image velocimetry (PIV) at the optical configuration of this engine and three dimensional (3D) computational fluid dynamics (CFD) calculations reveal the influence of injection timing on large scale charge motion (tumble) and the level of turbulent kinetic energy. Especially with delayed injection timing, high combustion velocities can be achieved. At current series injection pressures, the particle number emissions increase at late injection timing.
2016-11-08
Technical Paper
2016-32-0092
Tomokazu Kobayashi, Kazuyuki Kosei, Sadaaki Ito, Satoshi Iijima
Abstract A variable cooling system has been developed for scooters equipped with an air cooled, four-stroke, single cylinder gasoline engine. This system opens or closes louver located at the cooling air inlet using an oil-temperature sensitive actuator. When the engine is cold or the engine load is low, the louver shut off the cooling air for a quick warm-up and for maintaining the engine oil temperature high to reduce the friction losses that occur with low oil temperature while eliminating the loss from driving the cooling fan as well. The quick warm-up also decreases supplementary fuel injections necessary when the engine is cold. Consequently, fuel economy improvement by 3.3% was realized in running condition of the Urban Driving Cycle.
2016-11-08
Journal Article
2016-32-0036
Takamori Shirasuna, Ryoh Hatakeyama, Yukio Sakai
Abstract A simulation tool has been developed that can be used to estimate a fuel economy while driving in a mode test of a motorcycle equipped with a continuously variable transmission (CVT) at an early stage of development. For a precise estimation of a mode fuel economy, it is necessary to accurately estimate the CVT ratio, the engine speed, and the crankshaft torque during driving in a mode. To achieve this, this study has generalized the transmission efficiency of a CVT system. This study has also derived developed balance equations that can take into account the transmission efficiency of CVT and the slippage that occurs when the centrifugal clutch is about to be engaged. In the proposed method, the pulley ratio of CVT, the engine speed, and the torque at the crankshaft were obtained first by solving the developed balance equations at discrete times during driving in a mode.
Viewing 1 to 30 of 2484

Filter

  • Range:
    to:
  • Year: