Viewing 1 to 30 of 8136
2017-11-07 ...
  • November 7-9, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Although many have an idea of what the term “driver distraction” means, there is no common definition within the research community. Additionally, there are many studies that have investigated the topic, but with varying and sometimes conflicting results. What should be made of these discrepancies? This four-hour web seminar will provide an overview of driver distraction (predominantly electronic devices): the problem; how to define it; the current state of research and how to critically evaluate that research to make informed decisions; and the effectiveness of state laws and fleet policies to reduce it.
2017-10-09 ...
  • October 9-10, 2017 (8:30 a.m. - 4:30 p.m.) - Farmington, Connecticut
Training / Education Classroom Seminars
The requirements of the AS9120, Rev. B, EN9120B and JIAQ9120B Standards have significantly changed and are based on the NEW ISO9001:2015 Standard. This two-day training program is designed to provide individuals with the knowledge necessary to understand and comprehend the NEW requirements described in AS9120 Rev. B, Quality Management Systems – Requirements for Aviation, Space, and Defense Distributors. The course includes classroom instruction combined with class exercises to further reinforce concepts and definitions now required by the standard.
2017-06-15 ...
  • June 15-16, 2017 (8:30 a.m. - 4:30 p.m.) - Hamburg, Germany
  • August 22-23, 2017 (8:30 a.m. - 4:30 p.m.) - Tysons, Virginia
  • December 12-13, 2017 (8:30 a.m. - 4:30 p.m.) - Puyallup, Washington
Training / Education Classroom Seminars
Individuals responsible for quality management system, implementation, and transition to the AS9100:2016 series of standards for Aviation, Space, and Defense will require an understanding of the requirements for the preparation and execution of the audit process as defined in these revised standards. Management and implementers of AS9100:2016 Rev. D within these organizations must also be aware of what these changes may mean for their company.
Technical Paper
Fangfang Wang, Peter Johnson, Hugh Davies, Bronson Du
Introduction Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain and driver fatigue. Recently introduced active suspension truck seats have been shown to reduce WBV exposures up to 50% relative to industry standard air-suspension seats, but drivers do not universally prefer these active suspension seats and their higher costs concern some companies. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Methods Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation.
Technical Paper
Lisa Steinbach, Ercan Altinsoy, Robert Rosenkranz
In today's urban environment inhabitants are permanently exposed to elevated noise levels, which are mostly dominated by traffic noise. The current electrification of vehicles might affect the traffic noise in city centers. The aim of this work was to determine the pedestrian reaction and the annoyance of more realistic traffic situations. For this purpose both combustion and electric vehicle noise situations and mixed scenarios of both concepts were generated. The differences in the perceived annoyance were investigated with perception studies. It was found that in some cases the order of the annoyance ratings will change: a single electric vehicle, which was perceived as least annoying, was evaluated as the most annoying noise by the increase to eight vehicles. The background noise also has an impact on the perception of annoyance and the warning effect.
Technical Paper
Rasheed Khan, Mahdi Ali, Eric C. Frank
Vehicle voice recognition systems have become an essential tool for hands free communication. As such, it has become more and more important to have reliable, consistent voice recognition in a vehicle. Vehicle voice recognition system performance is based on a variety of factors, including the speakers' gender & background noise. Male and female voice characteristics are inherently different, and some of these variations are investigated in this work. In this work, three vehicles have been tested during five different steady state road conditions (70 mph, 45 mph, Idle HVAC off, Idle HVAC on, vehicle off). Twelve speakers (six male and six female) were recorded announcing twenty mono- and multi-syllable call commands. Each speaker was recorded three times for repeatability, along with the vehicle voice recognition system response. Based on the resulting success rates, the least-recognized commands were synthesized to resemble the best detected commands from the different genders.
Journal Article
Michael Roan, M. Lucas Neurauter, Douglas Moore, Dan Glaser
Hybrid and electric vehicles (HVs and EVs) have demonstrated low noise levels relative to their Internal Combustion Engine (ICE) counterparts, particularly at low speeds. As the number of HVs/EVs on the road increases, so does the need for data quantifying auditory detectability by pedestrians; in particular, those who are vision impaired. Manufacturers have begun to implement additive noise solutions designed to increase vehicle detectability while in electric mode and/or when traveling below a certain speed. A detailed description of the real-time acoustic measurement system, the corresponding vehicular data, development of an immersive noise field, and experimental methods pertaining to a recent evaluation of candidate vehicles is provided herein. Listener testing was completed by 24 legally blind test subjects for four vehicle types: an EV and HV with different additive noise approaches, an EV with no additive noise, and a traditional ICE vehicle.
Journal Article
Mohamed El morsy, Gabriela Achtenova
Gear fault diagnosis is important in the vibration monitoring of any rotating machine. When a localized fault occurs in gears, the vibration signals always display non-stationary behavior. In early stage of gear failure, the gear mesh frequency (GMF) contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. This paper presents the value of optimal wavelet function for early detection of faulty gear. The Envelope Detection (ED) and the Energy Operator are used for gear fault diagnosis as common techniques with and without the proposed optimal wavelet to verify the effectiveness of the optimal wavelet function. Kurtosis values are determined for the previous techniques as an indicator parameter for the ability of early gear fault detection. The comparative study is applied to real vibration signals.
Technical Paper
Asif Basha Shaik Mohammad, Ravindran Vijayakumar, Nageshwar rao.P
The high noise and vibration levels, to which drivers of agricultural tractor are often exposed for long periods of time, have a significant part in the driver’s fatigue and may lead to substantial hearing impairment and health problems. For these reasons, the noise and vibration comfort has become an important criterion in the design of the driver’s cabin and a determining factor in the acceptance and sales potential of agricultural tractors. Therefore, it is essential for an optimal cabin design to have time and cost effective analysis tools for the assessment of the noise and vibration characteristics of various design alternatives at both the early design stages and the prototype testing phase. Airborne excitation and Structure Borne excitation are two types of dynamic cabin excitations mainly cause the interior noise in a driver’s cabin.
Technical Paper
Matthew Maunder, Benjamin Munday
Excitement, image and emotion are key attributes for cars, particularly those with higher power ratings. Engine sound has traditionally acted as the car’s voice, conveying these attributes to the driver and passengers along with the brand image. Engine sound also underpins the dynamic driving experience by giving instant feedback about how a car is operating, enhancing the connection between driver and vehicle. For decades, the automotive industry has engineered engine sound to achieve these benefits, thereby defining the ‘language’ of car sound. Electric vehicles deliver strong and responsive performance but naturally lack the acoustic feedback that internal combustion engines provide. While this gives advantages in terms of comfort and environmental noise, the benefits of engine sound are lost. Carefully controlled acoustic feedback brings tangible and valuable benefits both for the dynamic driving experience and to convey the brand image.
We’re working to solve the STEM crisis and building the next generation of engineers and scientists with our Kindergarten-College programs supported by the SAE Foundation: - A World In Motion® (AWIM) Kindergarten-8 - Collegiate Design Series™ (CDS) College Help us inspire curiosity in STEM: find out more at today.
Viewing 1 to 30 of 8136


  • Range:
  • Year: