Viewing 1 to 30 of 4566
2017-12-12 ...
  • December 12-13, 2017 (8:30 a.m. - 4:30 p.m.) - Puyallup, Washington
  • March 5-6, 2018 (8:30 a.m. - 4:30 p.m.) - Durham, North Carolina
  • June 18-19, 2018 (8:30 a.m. - 4:30 p.m.) - Warrendale, Pennsylvania
Training / Education Classroom Seminars
Individuals responsible for quality management system, implementation, and transition to the AS9100:2016 series of standards for Aviation, Space, and Defense will require an understanding of the requirements for the preparation and execution of the audit process as defined in these revised standards. Management and implementers of AS9100:2016 Rev. D within these organizations must also be aware of what these changes may mean for their company.
Technical Paper
Renjie Li, Shengbo Li, Hongbo Gao, Keqiang Li, Bo Cheng, Deyi Li
Abstract Vehicle automation is a fundamental approach to reduce traffic accidents and driver workload. However, there is a notable risk of pushing human drivers out of the control loop before automation technology fully matures. Cooperative driving (or vehicle co-piloting) is a novel paradigm which is defined as the vehicle being jointly navigated by a human driver and an automatic controller through shared control technology. Indirect shared control is an emerging shared control method, which is able to realize cooperative driving through input complementation instead of haptic guidance. In this paper we first establish an indirect shared control method, in which the driver’s commanded input and the controller’s desired input are balanced with a weighted summation. Thereafter, we propose a predictive model to capture driver adaptation and trust in indirect shared control.
WIP Standard
A review of icing materials that would be educational to a designer of a UAV ice protection system is provided. Additionally, the differences between unmanned and manned ice protection systems are explored along with a discussion on how these differences can be addressed.
WIP Standard
This SAE Standard applies to mobile construction-type lifting cranes utilizing rope-supported, conventional and luffing type lattice boom crane structures.
Technical Paper
Michael Schultz
Abstract Passenger boarding is always part of the critical path of the aircraft turnaround: both efficient boarding and online prediction of the boarding progress are essential for a reliable turnaround progress. However, the boarding progress is mainly controlled by the passenger behavior. A fundamental scientific approach for aircraft boarding enables the consideration of individual passenger behaviors and operational constraints in order to develop a sustainable concept for enabling a prediction of the boarding progress. A reliable microscopic simulation approach is used to model the passenger behavior, where the individual movement is defined as a one-dimensional, stochastic, and time/space discrete transition process. The simulation covers a broad range of behaviors and boarding strategies as well as the integration of new technologies and procedures.
WIP Standard
This recommended practice applies to mobile construction type cranes with cantilevered, telescopic booms when used in lifting crane service.
WIP Standard
This standard covers oxygen masks and breathing valves used with both panel mounted and mask mounted demand and pressure-demand oxygen regulators. Mask mounted oxygen regulators are covered under other standards, but when the mask mounted regulator incorporates an integral exhalation valve, the performance of this valve shall meet the requirements of this standard.
WIP Standard
This SAE Recommended Practice provides test protocols with performance requirements for Camera Monitor Systems to replace existing statutorily required inside and outside rear-view mirrors for US market road vehicles. This practice expands specific technical content while retaining harmonization with the FMVSS 111 Rear Visibility standard, and other international standards. This is accomplished by defining required roadway fields of view as specific fields of view (FOV) displayed inside the vehicle. Specific testing protocols and/or specifications are added to enhance ease of use using straightforward language and any specifications are intended to be independent of different camera and display technologies unless otherwise explicitly stated.
The information in this document is intended to apply to commercial jet transport category airplanes that incorporate plastic (polycarbonate or acrylic) lenses on exterior light assemblies, or are being considered for such an application as opposed to glass lens designs. Exterior lighting applications include position light assemblies, anticollision light asemblies, and landing light assemblies. However, much of the material provided herein is general in nature and is directly applicable to many aircraft categories including, but not limited to, helicopters, general aviation aircraft, and military aircraft.
This SAE Aerospace Recommended Practice (ARP) provides minimum standards and environmental design requirement recommendations for lighting and control in galley areas. It also addresses electrical shock hazard in galley areas. The use of "shall" in this document expresses provisions that are binding. Non-mandatory provisions use the term "should."
This document presents minimum criteria for the design and installation of LED assemblies in aircraft. The use of "shall" in this specification expresses provisions that are binding. Nonmandatory provisions use the term "should."
Viewing 1 to 30 of 4566


  • Range:
  • Year: