Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 4347
2015-10-06
Event
Humans are machines are interacting and operating as one unit and the need to have intuitive controls keep increasing with the escalation of machine features. The operator not only has to control several different functions but also has to monitor several information sources and make informed decisions in real-time. Information, especially safety critical information, needs to be prioritized and displayed to the machine operators and provide them with intuitive actionable options.
2015-06-15
Technical Paper
2015-01-2338
Dong Guo, Quan Shi, Peng Yi
In-vehicle noise is composed of a variety of tonal (frequency-related) components and the tonal components play an important role in the improvement of interior vehicle sound quality. Much research has been focused on the suppression of sound pressure level and achieved certain positive effects. However, in some operating conditions, customers still perceive the tonal components and complain about the vehicle quality even the sound pressure level is relatively low. Therefore, a better understanding of how tonal components are perceived is necessary for automotive designers. To do so, psychoacoustics results about human hearing mechanism to tonal components are comprehensively summed in this study: human hearing response to pure tone, two tones and multiple tones. Then, well-controlled testing stimuli were generated and subjective annoyance testing was conducted. The results show agreement with former researchers’ findings.
2015-06-15
Technical Paper
2015-01-2271
Yong Du Jun, Bong Hyun Park, Kang Seok Seo, Tae Hyun Kim, Myoung Jae Chae
An objective measure is proposed for seat riding comfort evaluation under low frequency (0~2 Hz) vibratory conditions which represents typical roll and pitch motions of driving motor vehicles. The related feeling due to this low frequency vehicle motion is termed ‘hold feeling’ because the seated body may tend to deviate from the defined seating position under such vehicle motion inputs. In the present study, dynamic pressure distribution measurements have been performed with a roll motion simulator at different frequencies between 0.3 and 1.0 Hz, to monitor the interface pressure change behavior of the seat-subject body. Temporal changes in body pressure in terms of the magnitude and the representative locations, and the time delay in pressure change at different regions of the seat are identified to be useful parameters for describing the subject's responses and with the subjective test results.
2015-06-15
Journal Article
2015-01-2285
Arne Nykänen, David Lennström, Roger Johnsson
Subjects who are well aware of what to judge commonly yield more consistent results in laboratory listening tests. This awareness may be raised by explicit instructions and training. However, too explicit instructions or use of only trained subjects may direct experiment results in an undesired way. An alternative is to give fairly open instructions to untrained subjects, but give the subjects a chance to get familiar with the product and context by, for example, riding a representative car under representative driving conditions before entering the laboratory. In this study, sound quality assessments of interior sounds of cars made by two groups were compared. In one group subjects were exposed to the same driving conditions that were later assessed in a laboratory listening test by taking them on a ride in one of the cars to be assessed, just before entering the laboratory. In the other group subjects made the laboratory assessments without prior car riding.
2015-06-15
Journal Article
2015-01-2337
Gordon Ebbitt, Todd Remtema
Speech communication from the front seat to the rear seat in a passenger vehicle can be difficult. This is particularly true in a vehicle with an acoustically absorptive interior. Speech Transmission Index (STI) measurements can quantify the speech intelligibility, but they require specialized signal processing. The STI calculations can be simplified if it is assumed that reverberation and echoes play an insignificant role in an automobile. A simplification of a STI measurement is described that uses a stationary reference speech signal from a talker mannequin in the driver’s seat to create a signal at the rear passenger positions. On-road noise measurements are used for the noise level and the calculated signal to noise ratio is used to calculate a simplified STI value that tracks closely to a full implementation of the STI method for sedans. In fact, this method is very similar to the techniques described in the Articulation Index (AI) and Speech Interference Index (SII) standards.
2015-06-15
Journal Article
2015-01-2216
Dong Chul Park, Eun Soo Jo, Seokgwan Hong, Michael Csakan
Abstract An important trend among vehicle NVH engineers is the production of attractive engine acceleration sound quality for the enhancement of a vehicle's image and performance. In addition, customers have increasing interest and enjoyment in customizing their cars to reflect their personal taste and preferences. The PESS (Personalized Engine Sound System) has been developed for making a unique and individually customizable vehicle concept. The system allows the customers an opportunity to create a variety of engine sounds in a single vehicle using active sound design technology. In this system, three different engine sound concepts are pre-defined, Dynamic, Sporty, and Extreme. Each of the engine sounds can then be adjusted with parameters that determine the timbre, such as main order, rumble, and high order. In addition, the pedal position during acceleration has also been used as a parameter to further personalize the experience.
2015-05-21
Event
2015-05-19
WIP Standard
J2944_201505
This Recommended Practice, Operational Definitions of Driving Performance Measures and Statistics, provides functional definitions of and guidance for performance measures and statistics concerned with driving on roadways. As a consequence, measurements and statistics will be calculated and reported in a consistent manner in SAE and ISO standards, journal articles proceedings papers, technical reports, and presentations so that the procedures and results can be more readily compared. Only measures and statistics pertaining to driver/vehicle responses that affect the lateral and longitudinal positioning of a road vehicle are currently provided in this document. Measures and statistics covering other aspects of driving performance may be included in future editions. For eye glance-related measures and statistics, see SAE J2396 (Society of Automotive Engineers, 2007) and ISO 15007-1 (International Standards Organization, 2002).
2015-05-08
WIP Standard
J2365
This SAE Recommended Practice applies to both Original Equipment Manufacturer (OEM) and aftermarket route-guidance and navigation system functions for passenger vehicles. This recommended practice provides a method for calculating the time required to complete navigation system-related tasks. These estimates may be used as an aid to assess the safety and usability of alternative navigation and route guidance system interfaces to assist in their design. This document does not consider voice-activated controls, voice output from the navigation system, communication between the driver and others, or passenger operation.
2015-05-07
Standard
J1757/1_201505
The scope of this SAE Standard is to provide methods to determine display optical performance in all typical automotive ambient light illumination - with focus on High Ambient Contrast Ratio, which is critical for display legibility in a sunshine environment. It covers indoor measurements and simulated outdoor lighting. It is not the scope of this document to set threshold values for automotive compliance. However some recommended values are presented for reference.
2015-05-05
WIP Standard
J3099
Presents the seating accommodation model used to determine seat track length for accommodation in design.
2015-04-30
Standard
J1174_201504
This SAE Recommended Practice establishes the instrumentation and procedure to be used in measuring the operator ear sound level for engine powered equipment under 30 kW (40 bhp). The sound levels obtained by using this procedure are representative of the sound levels generated by the equipment under typical operating conditions. It is intended to include equipment such as lawn mowers, snow blowers, and tillers. It is not intended to include equipment designed primarily for operation on highways or within factories or buildings, or vehicles such as motorcycles, snowmobiles, and pleasure motorboats that are covered by other SAE Standards or Recommended Practices. This procedure does not cover handheld equipment such as chainsaws, leaf blowers, and trimmers. This SAE Recommended Practice may also be used when measuring the operator ear sound level of similar equipment powered by electricity or other power sources.
Viewing 1 to 30 of 4347

Filter

  • Range:
    to:
  • Year: