Criteria

Text:
Display:

Results

Viewing 1 to 30 of 11450
2018-01-16
Event
2017-09-19
Event
2017-06-05
Technical Paper
2017-01-1766
Dirk von Werne, Stefano Orlando, Anneleen Van Gils, Thierry Olbrechts, Ivan Bosmans
Abstract A methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply with the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on layer analytical and empirical expressions from literature. This includes various types of engine noise - fan, jet, and propeller noise - as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin.
2017-06-05
Technical Paper
2017-01-1781
Joshua Wheeler
Abstract The design and operation of a vehicle’s heating, ventilation, and air conditioning (HVAC) system has great impact on the performance of the vehicle’s Automatic Speech Recognition (ASR) and Hands-Free Communication (HFC) system. HVAC noise provides high amplitudes of broadband frequency content that affects the signal to noise ratio (SNR) within the vehicle cabin, and works to mask the user’s speech. But what’s less obvious is that when the airflow from the panel vents or defroster openings can be directed toward the vehicle microphone, a mechanical “buffeting” phenomenon occurs on the microphone’s diaphragm that distresses the ASR system beyond its ability to interpret the user’s voice. The airflow velocity can be strong enough that a simple windscreen on the microphone is not enough to eliminate the problem. Minimizing this buffeting effect is a vital key to building a vehicle that meets the customer’s expectations for ASR and HFC performance.
2017-06-05
Technical Paper
2017-01-1787
Jan Biermann, Adrien Mann, Barbara Neuhierl, Min-Suk Kim
Abstract Over the past decades, interior noise from wind noise or engine noise have been significantly reduced by leveraging improvements of both the overall vehicle design and of sound package. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are becoming more relevant for perceived quality and passenger comfort. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside and around HVAC systems. This methodology is based on the post-processing of unsteady flow results obtained using Lattice Boltzmann based Method (LBM) Computational Fluid Dynamics (CFD) simulations combined with LBM-simulated Acoustic Transfer Functions (ATF) between the position of the sources inside the system and the passenger’s ears.
2017-06-05
Technical Paper
2017-01-1826
Sagar Deshmukh, Sandip Hazra
Abstract Engine mounting system maintains the position of powertrain in the vehicle with respect to chassis and other accessories during inertia, torque reaction loads and roadway disturbances. The mounting system also plays a role in terms of isolation of the rest of the vehicle and its occupants from powertrain and helps in maintaining vehicle ride and handling condition. This paper investigates the performance comparison between hydromount and switchable hydromount during idle and ride performance. The optimization scheme aims to improve the performance of the mounting system in order to achieve overall powertrain performance and NVH attribute balancing through switchable mount technology.
2017-06-05
Technical Paper
2017-01-1836
Fangfang Wang, Peter Johnson, Hugh Davies, Bronson Du
Abstract Whole-body vibration (WBV) is associated with several adverse health and safety outcomes including low-back pain (LBP) and driver fatigue. The objective of this study was to evaluate the efficacy of three commercially-available air-suspension truck seats for reducing truck drivers’ exposures to WBV. Seventeen truck drivers operating over a standardized route were recruited for this study and three commercially-available air suspension seats were evaluated. The predominant, z-axis average weighted vibration (Aw) and Vibration Dose Values (VDV) were calculated and normalized to represent eight hours of truck operation. In addition, the Seat Effective Amplitude Transmissibility (SEAT), the ratio of the seat-measured vibration divided by the floor-measured vibration, was compared across the three seats. One seat had significantly higher on-road WBV exposures whereas there were no differences across seats in off-road WBV exposures.
2017-06-05
Technical Paper
2017-01-1847
Asif Basha Shaik Mohammad, Ravindran Vijayakumar, Nageshwar rao.P
Abstract Tractor operators prefer to drive more comfortable tractors in the recent years. The high noise and vibration levels, to which drivers of agricultural tractor are often exposed for long periods of time, have a significant part in the driver’s fatigue and may lead to substantial hearing impairment and health problems. Therefore, it is essential for an optimal cabin design to have time and cost effective analysis tools for the assessment of the noise and vibration characteristics of various design alternatives at both the early design stages and the prototype testing phase. Airborne excitation and Structure Borne excitation are two types of dynamic cabin excitations mainly cause the interior noise in a driver’s cabin. Structure-borne excitation is studied in this paper and it consists of dynamic forces, which are directly transmitted to the cabin through the cabin suspension. These transmitted forces introduce cabin vibrations, which in turn generate interior noise.
2017-06-05
Technical Paper
2017-01-1858
James Haylett, Andrew Polte
Abstract Truck and construction seats offer a number of different challenges compared to automotive seats in the identification and characterization of Buzz, Squeak, and Rattle (BSR) noises. These seats typically have a separate air or mechanical suspension and usually a larger number and variety of mechanical adjustments and isolators. Associated vibration excitation tend to have lower frequencies with larger amplitudes. In order to test these seats for both BSR and vibration isolation a low-noise shaker with the ability to test to a minimum frequency of 1 Hz was employed. Slowly swept sine excitation was used to visualize the seat mode shapes and identify nonlinearities at low frequencies. A sample set of seat BSR sounds are described in terms of time and frequency characteristics, then analyzed using sound quality metrics.
2017-06-05
Technical Paper
2017-01-1861
Ismail Benhayoun, Frédéric Bonin, Antoine Milliet de Faverges, Julien Masson
Abstract NVH (Noise Vibration & Harshness) is one of the main focus areas during the development of products such as passenger cars or trucks. Physical test methods have traditionally been used to assess NVH, but the necessity for reducing cost and creating a robust solution early in the design process has driven the increased usage of simulation tools. Development of well-defined methods and tools for NVH analysis allows today’s OEMs to have a virtual engineering based development cycle from concept to test. However, a subset of NVH problems including squeak and rattle (S&R) have not been generally focused upon. In a vehicle, S&R is a recurring problem for interior plastic parts such as an instrument panel or door trim. Since 2012, Altair has been developing S&R Director (SnRD), which is a solution that identifies and combats S&R issues by embedding the Evaluation-Line (E-Line) methodology [1] [2].
Viewing 1 to 30 of 11450

Filter

  • Range:
    to:
  • Year: