Criteria

Text:
Display:

Results

Viewing 1 to 30 of 10059
2015-09-24 ...
  • September 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Rapid advances have been made in the range of available designs and operational parameters as well as in the fundamental understanding of compact heat exchangers (CHEs). Since the majority of modern heat exchangers used for heating and cooling systems for vehicular applications are CHEs, keeping up to date with these advances is essential. This seminar will help you understand and be able to apply comprehensive information about the intricacies of CHE design, performance, operating problems and state-of-the-art-technology for car and truck applications.
2015-03-23 ...
  • March 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components. Specifically, the course will cover heat transfer design considerations related to the following:...
2014-11-11
Technical Paper
2014-32-0044
Simone Vezzù, Carlo Cavallini, Silvano Rech, Enrico Vedelago, Alessandro Giorgetti
Abstract The deposition of thick, pore-free, high-performance copper alloy matrix composite coatings is a topic of interest for several industrial applications, including friction materials, high-strength electrical contacts, and welding electrodes, among others. This study investigates the use of cold spray to deposit CuCrZr/Al2O3 cermet coatings on aluminum alloy 6060. The objective is to integrate copper-based materials with aluminum-based materials, ensuring a high degree of mechanical and thermal contact, using a low temperature process that does not adversely affect the properties of the base materials. This technique can be used to produce integral coolers and aluminum-based bearings for automotive and motorcycle applications. Fused and crushed alumina and gas-atomized CuCrZr powder blends have been used as initial feedstocks, with compositional weight ratios of 65/35 and 80/20 (ceramic/metal). The coatings have been characterized in terms of microstructure and morphology, coating microindentation hardness, cohesion strength, and adhesion strength to the aluminum alloy substrate.
2014-11-11
Technical Paper
2014-32-0028
T Manikandan, S Sarmadh Ameer, A Sivakumar, Davinder Kumar, R Venkatesan, VenkataKalyana Kumar
Abstract The Instant Mileage Assistance (IMA), as the name indicates, is a system to guide the vehicle users to realize maximum fuel economy (mileage). This system is targeted to provide users with instantaneous mileage indication depending on the current driving pattern, correct gear operating zone (in case of a geared vehicle) through gear up/down shift assist indication and the accurate distance the vehicle can travel before the fuel tank is empty, thereby assisting the user in harnessing maximum fuel economy the vehicle can deliver and also safely reach the next refilling station. The instantaneous mileage is calculated by mapping the distance travelled by the vehicle and the respective amount of fuel consumed, during a particular period of time, and is displayed using an instrument cluster. When the fuel level in the tank reaches a known threshold, the distance to empty is in turn calculated from the instantaneous mileage value hence providing a more accurate and realistic indication to the user.
2014-11-11
Technical Paper
2014-32-0080
Jens Steinmill, Ralf Struzyna
Abstract At a micro-CHP unit the target size of the engine controller is not mechanical torque but thermal and mechanical power. Accordingly, these demands must be implemented by the engine controller. This means that on the one hand a mechanical demand is answered under the boundary condition of the highest actual efficiency and that on the other hand thermal demands have to be processed. Since the thermal- and mechanical power output is coupled with the actual efficiency, exceeding the nominal load of the thermal power, the actual efficiency can be regulated in order to answer the demand. This can be done in consideration of the maximum achievable actual efficiency. Limits are set by the combustion stability and thermal protection functions. The functions are modelled with Matlab/Simulink and the ECU code for a rapid control prototyping system is generated. A dynamic engine test bed for internal combustion engines up to 12 kW was built to verify the motor control functions. The measurement technology for all standard measurements of combustion engines has been selected accordingly to the expected measurement range of small engines.
2014-11-11
Technical Paper
2014-32-0108
Sejun Lee, Kyohei Ozaki, Norimasa Iida, Takahiro Sako
Abstract Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0. To study the effect of D-EGR ratio, the number of engine cylinders was considered from 3 to 6, same meaning with D-EGR ratio 0.5-0.2.
2014-11-11 ...
  • November 11, 2014 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 20, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • November 10, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. The In-Vehicle user environment is transitioning from fixed dedicated features to an extensible connected interface that can dramatically increase complexity faced by the driver. This course will provide a systematic design method to develop intuitive...
2014-11-01
Technical Paper
2014-01-9129
Filip Nielsen, Åsa Uddheim, Jan-Olof Dalenbäck
Abstract Fuel consumption of vehicles has received increased attention in recent years; however one neglected area that can have a large effect on this is the energy usage for the interior climate. This study aims to investigate the energy usage for the interior climate for different conditions by measurements on a complete vehicle. Twelve different NEDC tests in different temperatures and thermal states of the vehicle were completed in a climatic wind tunnel. Furthermore one temperature sweep from 43° to −18°C was also performed. The measurements focused on the heat flow of the air, from its sources, to its sink, i.e. compartment. In addition the electrical and mechanical loads of the climate system were included. The different sources of heating and cooling were, for the tested powertrain, waste heat from the engine, a fuel operated heater, heat pickup of the air, evaporator cooling and cooling from recirculation. It was found that a separation of the sources and sink was possible and increased the understanding of the energy usage.
2014-10-24
WIP Standard
AIR1069B
Determine the required minimum oxygen concentration to be breathed prior to, during, and after a loss of cabin pressurization, and determine recommended means necessary to provide the required oxygen concentrations.
2014-10-23
Article
Tata AutoComp Systems Ltd. and Magna International Inc. recently entered into a 50/50 joint venture agreement to provide seating systems to the Indian commercial vehicle (CV) and bus industries. According to a Magna spokesperson, these seats will be newly designed, developed, and manufactured in India for the India market—not current “off-the-shelf” products.
2014-10-23
WIP Standard
AIR5933
This AIR5933 gives an overview of contemporary technologies to determine the oxygen concentration respectively partial pressure in air. The aerospace application and its special constraints have been emphasized regarding weight, power supply, overall size, reliability and safety, cost and useful life.
2014-10-23
WIP Standard
J973
This SAE Recommended Practice is intended to provide any technical person or group interested in ignition system design and/or evaluation with the specific equipment, conditions, and methods which will produce test results definitive and reproducible for his own work and yet sufficiently standardized to be acceptable to other groups working on battery ignition systems for automotive engines.
2014-10-22
Article
The company unveiled reconfigurable clusters and wireless device charging technologies as part of its second-generation “Tech Truck” at the recent IAA Commercial Vehicles event in Hannover, Germany.
2014-10-21
Event
The abundance of personal electronic devices is causing a shift in individual expectations of personal mobility. These expectations are conflicting: consumers desire personalization of their devices, but manufacturers strive for commonality; some consumers view personal mobility as a chore, others as an expression of their individuality. We will explore these dichotomies, and discuss the near and mid-term shifts in the expectation of how consumers will perceive personal mobility devices.
2014-10-21
Event
Dr. Steve Underwood, University of Michigan - Dearborn, will present findings from an ongoing expert forecast on connected, automated, and electric vehicles and their potential for contributing to sustainable mobility in the United States, sponsored by the Graham Environmental Sustainability Institute at the University of Michigan. He will also present the results of the survey of conference attendees. The findings suggest that vehicle solutions like first-and-last mile electric vehicles, self-driving commuter vehicles, and V2I demand management should augment and motivate creative use of the legacy infrastructure in ways that strengthen communities as well as increase worker productivity while improving safety and ultimately ensuring sustainable mobility in United States. The purpose of Dr. Underwood's integrative assessment is to investigate these alternative modalities more completely and to forecast what features of the design will most likely become part of the mobility solution. The expert survey was designed to forecast the future of automated and connected vehicles addressing three levels of automation over a period of years.
2014-10-21
WIP Standard
AIR825/5B
This Aerospace Information Report provides general information to aircraft designers and engineers, regarding LOX, its properties, its storage and its conversion to gas. Much useful information is included herein for aircraft designers regarding important design considerations for a safe and effective installation to an aircraft. The associated ground support equipment needed to support operations of LOX equipped aircraft is also discussed. It is important to realize that LOX equipped aircraft cannot be supported unless this support infrastructure is also available. A significant part of this document will address the specific advantages, disadvantages and precautions relating to LOX systems. These are important issues that must be considered in deciding which oxygen system to install to the aircraft. Also, many commercial and military aircraft use aeromedical LOX equipment that is mostly portable equipment. Aeromedical LOX equipment is not addressed herein as it is beyond the scope of this document.
Viewing 1 to 30 of 10059

Filter

  • Range:
    to:
  • Year: