Criteria

Text:
Display:

Results

Viewing 1 to 30 of 10112
2015-09-24 ...
  • September 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Rapid advances have been made in the range of available designs and operational parameters as well as in the fundamental understanding of compact heat exchangers (CHEs). Since the majority of modern heat exchangers used for heating and cooling systems for vehicular applications are CHEs, keeping up to date with these advances is essential. This seminar will help you understand and be able to apply comprehensive information about the intricacies of CHE design, performance, operating problems and state-of-the-art-technology for car and truck applications.
2015-04-22
Event
LED technology advancement continues in the past year. This leads to broader lighting applications. The latest studies presented in this session cover design strategy, thermal management and reliability related testing. Other topics in this session also centered on continuing improvement for lighting performance and product safety.
2015-04-21
Event
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance and quality of climate control are both critical to customer satisfaction. The system has strong design interaction with other vehicle systems, while its primary objective is to deliver thermal comfort and occupant safety with low energy consumption. Localized Comfort, Secondary Fluids, Air Quality, Controls, System Sizing and HVAC consumer interface are just a few of the recent advances.
2015-04-21
Event
The Thermal Systems Modeling and Simulation session focusses on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers in the session will range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods.
2015-04-21
Event
Proper thermal management can significantly contribute to overall system energy efficiency. This session highlights the latest developments in thermal management energy efficiency.
2015-04-21
Event
Thermal Management represents one of the key aspects of the vehicle development. It ensures that the temperatures in the underhood and underbody areas are in desired ranges, that thermal systems operate as designed, and that no component operation is at risk due to excessive temperatures. This session covers the design of thermal components and systems and their vehicle integration.
2015-04-21
Event
Designing vehicles with good ergonomics is one of the many factors needed to achieve high customer satisfaction. A basic source for comfort (or discomfort) lies in the vehicle’s seats. To design for seat comfort requires knowledge of the size of the driver, the structure of the seat, the position of the seat in the vehicle and the trip duration. Papers offers in this session could include topics such as seat back angle, vehicle packaging and trip duration.
2015-04-21
Event
The purpose of this session is to share experiences and lessons learned to advance the technology in the field of thermal management of electric and hybrid vehicle systems. This session presents papers covering both testing and simulation of hybrid and electric vehicle thermal systems.
2015-04-21
Event
This session considers modeling (zero-D, 1D, 2D, 3D CFD) and experimental papers on: combustion chamber, systems (lubrication, cooling, fuel, EGR); components (oil pumps, coolant pump, fuel injectors, compressors, turbines, turbochargers, torque converters, gear box, fans, bearings, valves, ports, manifolds, turbine housing); heat exchangers (radiators, oil coolers); aftertreatment (SCR, DOC, DOF, exhaust gas cooling); battery cooling (HEV, EV, motor/generator) and controls (passive and active).
2015-04-21
Event
Camera and radar technologies have advanced so much finding applications in active safety systems, rear view monitoring, surround view systems, forensic imaging, vulnerable road user detection etc. The advancements in camera and radar technologies and its applications in commercial vehicles will be discussed in this session.
2015-04-21
Event
This session will feature technical presentations that will discuss new technology and industry insights in automotive interiors. Focus areas include materials, perceived quality, environmental concerns, manufacturing, safety, and durability.
2015-04-20 ...
  • April 20, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • November 10, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. The In-Vehicle user environment is transitioning from fixed dedicated features to an extensible connected interface that can dramatically increase complexity faced by the driver. This course will provide a systematic design method to develop intuitive and safe vehicle interface solutions.
2015-03-23 ...
  • March 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
2015-01-14
Journal Article
2015-26-0136
Deepak Mahajan, Arnab Sandilya, Lokesh Khandelwal, Sameer Srivastava
Automotive floor carpet serves the purpose of insulating air borne noises like road/tire noise, transmission noise and fuel pump noise etc. Most commonly used automotive floor carpet structure is - Molded sound barrier (PE or vinyl etc) decoupled from floor pan with an absorber such as felt. With increasing customer expectations and fuel efficiency requirements, the NVH requirements are increasing as well. The only possible way of increasing acoustic performance (Specifically Sound Transmission Loss, STL) in the mentioned carpet structure is to increase the Barrier material. This solution, however, comes at a great weight penalty. Theoretically, increasing the number of decoupled barriers layers greatly enhances the STL performance of an acoustic packaging for same weight. However, practically this solution presents problems like- ineffectiveness at lower frequencies, sudden dip in performance at modal frequencies.
2015-01-14
Technical Paper
2015-26-0129
Kapil Gupta, MR Vikram, Eugenio Manta
ABSTRACT A turbocharger unit mainly consists of a centrifugal compressor and a turbine coupled together by a solid shaft. This is employed to boost the charge air pressure of engine. Turbocharging in modern diesel and gasoline engines have become a common and essential operation to result higher power outputs, lower emissions, improved efficiency and refinements from a similar capacity of naturally aspirated engine. The automotive turbocharger system is a source of synchronous and asynchronous noises which are particularly very disturbing for the passengers. This need to be eliminated or reduced for passenger comfort. Subjectively, a high whistle noise was audible at passenger cabin during in mid-rpm range drive in all gears in a 4 cylinder diesel vehicle. Objective noise and vibration data confirm the issue as unbalance whistle.
2015-01-14
Technical Paper
2015-26-0234
Ramesh Pathuri, Yuvraj Patil, Prasanna Vyankatesh Nagarhalli
During early phases of vehicle program, evaluation of Air Conditioning (AC) system for its performance (time to comfort) and power consumption has become vital and hence simulation tools have gained tremendous importance. A 1D simulation model can be introduced early in the design process to evaluate several AC system configurations and parametric studies at different test conditions and which results in reduced experimental work. This paper presents a method for AC cool down simulation of passenger car with multi air zone cabin model in KULI. This approach allows the prediction of zone wise (head, body and foot) temperature and humidity distribution in the cabin for parameter studies for transient analysis. The same cabin model can deal with multiple inlets into the cabin, solar radiation, and recirculation for pre-defined cabin types.
2015-01-14
Technical Paper
2015-26-0210
Nilesh Daithankar, Kishor D Udawant, Nagesh Voderahobli Karanth
This paper presents a methodology for predicting thermal comfort inside midibus cabin with an objective to modify the HVAC duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard. The results obtained from CFD and Experimental test were analysed as per EVS EN ISO7730 standard and calculated occupant comfort in terms of thermal comfort parameters like Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD).
2015-01-14
Technical Paper
2015-26-0235
Raju P Soudatti, Ragunathan Amarnath, Ramesh Harish
This paper deals the verification & Validation of passenger seat of buses for life cycle requirement. Through various methodologies adopted from Data collection, CAE verification and physical validation to verify the seat in virtual environment. Generally it is observed that in City Buses most of the time Passenger seat leg mounting area failures occurs in buses used for typically more than 3years. This fatigue failure doesn't get captured in either Anchorage test or limited vibration test. Passenger seats durability should be equal to vehicle life which is 10L or 12 Years of life span. Testing on Physical vibration (Rig) machine is time consuming and costly most of the time Machine availability for testing will be an issue to validate alternate seat proposals. There is need to establish a correlation between Physical testing and CAE simulation so that alternate proposals can be easily and quickly verified using CAE alone.
2015-01-14
Technical Paper
2015-26-0043
Rajesh Kashyap, Vamsidhar Sunkari, Prakash Verma
Regular service of the vehicle is to be done to ensure the factory performance of the vehicle over the entire life of product usage. However, complex nature of the physical processes involved in the service of the vehicle subsystems makes it costly for optimizing the service equipment performance for entire range of operation. Air-conditioning service (ACS) equipment is one such product in the diagnostics domain which deals with compressible, transient and two phase flow in open loop systems. Development of design controls for the service equipment to perform optimally over the entire operational range requires accurate mathematical model of the system under study. Application of mathematical model based approach requires calculation of geometrical details, environment information and fluid properties during the process for estimating the process behavior.
Viewing 1 to 30 of 10112

Filter

  • Range:
    to:
  • Year: