Criteria

Text:
Display:

Results

Viewing 1 to 30 of 10606
2016-10-25 ...
  • October 25, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The In-Vehicle user environment is transitioning from fixed dedicated features to an extensible connected interface that can dramatically increase complexity faced by the driver. This course will provide a systematic design method to develop intuitive and safe vehicle interface solutions. Participants will learn user interaction design steps, tools, and the team synergies required to develop an interface from concept to the final product. The course will use exercises to practice interface design, with example interfaces to cover lessons learned.
2016-10-24
Event
This session considers modeling (zero-D, 1D, 2D, 3D CFD) and experimental papers on: combustion chamber, systems (lubrication, cooling, fuel, EGR); components (oil pumps, coolant pump, fuel injectors, compressors, turbines, turbochargers, torque converters, gear box, fans, bearings, valves, ports, manifolds, turbine housing); heat exchangers (radiators, oil coolers); aftertreatment (SCR, DOC, DOF, exhaust gas cooling); battery cooling (HEV, EV, motor/generator) and controls (passive and active).
2016-06-15
Technical Paper
2016-01-1810
Marie Escouflaire, Nicolas Zerbib, David Mas, Nicolas Papaxanthos, Saad Bennouna, Emmanuel Perrey-Debain, Boureima Ouedraogo, Solène Moreau, Jean Michel Ville
Abstract In the framework of noise reduction of HVAC (Heating, Ventilating and Air Conditioning) systems designed for cars, the present study deals with the numerical prediction of aeroacoustics phenomena encountered inside such devices for industrial purposes, i.e. with a reasonable CPU time. It is then proposed in this paper to assess the validity of the chaining, via Lighthill-Curle analogy, of a DES (Detached Eddy Simulation) resulting from the CFD code OpenFOAM (ESI Group) versus a RANS-LES (Large Eddy Simulation) and a BEM calculation resulting from the Vibro/Aeroacoustics software VA One (ESI Group) on an academic case of air passing through a rectangular diaphragm at a low Mach number. The BEM code being parallelized, the performances of DMP (Distributed Memory Processing) solution will also be assessed.
2016-06-15
Technical Paper
2016-01-1812
Saad Bennouna, Solène Moreau, Jean Michel Ville, Olivier Cheriaux
Abstract The noise radiated inside the car cabin depends on many sources such as the embedded equipments like the Heating, Ventilation and Air Conditioning (HVAC) module. An HVAC is a compact and complex system composed of several elements: blower, flaps, thermal exchangers, ducts… Air provided by an HVAC is blown by a blower passing through different components and then distributed to car cabin areas. Interactions between airflow and the HVAC fixed components generate noises that emerge in the car cabin. CEVAS project, managed by the automotive equipment manufacturer Valeo, is aiming to develop a prediction tool which will provide HVAC noise spectrum and sound quality data. The tool is based, in particular, on aeroacoustic characterization of individual elements and associations of elements.
2016-06-15
Technical Paper
2016-01-1814
Maxime Legros, Jean Michel Ville, Solène Moreau, Xavier Carniel, Christophe Lambourg, Guillaume Stempfel
Abstract The new requirements during the first stages of the conception of a HVAC prompt the designer to integrate the acoustic problematic increasingly upstream. The designer needs to select a coherent components’ choice in order to comply with the specifications in terms of aeraulic and acoustic performances. A tool has been created to guide the designer’s choices based on an acoustic synthesis which is a design and/or diagnosis approach used to analyze and predict the acoustic behavior of a complex system. The synthesis is developed in order to propose an approach which considers the integration effects and some interaction effects. The acoustic synthesis results are the starting point of a psycho-acoustic study providing audio samples of the prediction and indications of the HVAC acceptance by the prospective user. Also, one may compare the results of different acoustic synthesis projects to study the influence of the parameters on the acoustic prediction.
2016-06-15
Technical Paper
2016-01-1851
Arnaud Duval, Minh Tan Hoang, Valérie Marcel, Ludovic Dejaeger
Abstract The noise treatments weight reduction strategy, which consists in combining broadband absorption and insulation acoustic properties in order to reduce the weight of barriers, depends strongly on surface to volume ratio of the absorbing layers in the reception cavity. Indeed, lightweight technologies like the now classical Absorber /Barrier /Absorber layup are extremely efficient behind the Instrument Panel of a vehicle, but most of the time disappointing when applied as floor insulator behind the carpet. This work aims at showing that a minimum of 20 mm equivalent “shoddy” standard cotton felt absorption is requested for a floor carpet insulator, in order to be able to reduce the weight of barriers. This means that a pure absorbing system that would destroy completely the insulation properties and slopes can only work, if the noise sources are extremely low in this specific area, which is seldom the case even at the rear footwells location.
2016-06-15
Technical Paper
2016-01-1853
Timo Hartmann, Gregor Tanner, Gang Xie, David J. Chappell
Abstract Car floor structures typically contain a number of smaller-scale features which make them challenging for vibro-acoustic modelling beyond the low frequency regime. The floor structure considered here consists of a thin shell floor panel connected to a number of rails through spot welds leading to an interesting multi-scale modelling problem. Structures of this type are arguably best modelled using hybrid methods, where a Statistical Energy Analysis (SEA) description of the larger thin shell regions is combined with a finite element model (FEM) for the stiffer rails. In this way the modal peaks from the stiff regions are included in the overall prediction, which a pure SEA treatment would not capture. However, in the SEA regions, spot welds, geometrically dependent features and directivity of the wave field are all omitted. In this work we present an SEA/FEM hybrid model of a car floor and discuss an alternative model for the SEA subsystem using Discrete Flow Mapping (DFM).
2016-06-15
Technical Paper
2016-01-1808
Manfred Kaltenbacher, Andreas Hüppe, Aaron Reppenhagen, Matthias Tautz, Stefan Becker, Wolfram Kuehnel
The cabin noise of modern ground vehicles is highly affected by flow related noise sources. Especially in case of a stationary vehicle, fan-noise and noise generated from the outlet of the air-conditioning system may significantly reduce passenger’s comfort. Thereby, fans generate a highly turbulent flow field and can be identified as the main noise source in air conditioning units. Numerical methods such as Computational Aero Acoustics (CAA) are very capable of locating the sources of sound generation and also to predict the propagation of sound. The simulation and visualization of the occurring phenomena can contribute to a better understanding of the generation mechanisms and help to minimize unwanted noise and to optimize entire components. This contribution focuses on the Computational Fluid Dynamics (CFD) simulation of rotating parts in air conditioning units using the Arbitrary Mesh Interface (AMI), which is implemented in OpenFOAM®.
2016-06-15
Journal Article
2016-01-1778
Gesche Fender, Steffen Marburg, Fabian Duddeck
Abstract One method to lower noise in a cabin is to position damping layers on vibrating panels, thereby reducing their radiated power. To assess the damping effect, criteria like the ERP (equivalent radiated power) are widely employed, which estimate the radiated sound power of a panel without taking into account the actual complex system. Advantageously only a part of the structure has to be modeled, but the optimal solution found on the simplified model then often fails for the complete, coupled system, especially if several variants of a cabin have to be considered. Hence, it is proposed to use the structure-only optimization for identification of a set of candidate solutions for optimal positioning of damping layers. These candidate solutions used as initial designs for the coupled investigations should be well distributed in the design space to avoid being wrongly stuck in an optimum with inferior coupled performance.
2016-06-15
Technical Paper
2016-01-1780
Francesca Ronzio, Theophane Courtois
Abstract In automotive acoustics, body NVH design is traditionally carried out without considering the acoustic trim parts. Nevertheless, the vibro-acoustic interaction of body structure and insulation trim cannot be neglected in the middle frequency range, where structure borne propagation might still be dominating and where classical statistical approaches are generally not able to represent the influence of local changes in stiffness and damping. This, together with the market requirement of lightweight and more efficient sound package solutions, is leading the CAE engineers to evaluate new design approaches dedicated to vehicle components such as dash or floor systems, for which the multi-physics interaction between damping, body stiffness and trim impedance is important.
2016-06-15
Technical Paper
2016-01-1800
Xavier Carniel, Anne Sanon
Abstract The control of sound fields radiated by vibrating structures in a passenger compartment, (especially structures connected to different organs like the engine powertrain, the fan motor unit, seats, the steering column, electrical motors more and more, etc.) is among the functions of the automotive manufacturers. The absence of physical prototypes in the development phase systems led OEMs1 to use tests results obtained on benches following technical specifications from manufacturers. The transition "bench to vehicle" for vibro- acoustic behaviour sets many challenges that this standard intends to clear up. This standard specifies the experimental method to transpose the dynamic forces generated by the global movements of an active component between the vehicle and a test bench. The efforts are first measured on test benches and then transposed from test bench towards the vehicle. The standard is now a French standard (XP R 19-701) and is submitted to ISO process [1].
2016-05-17
Event
Viewing 1 to 30 of 10606

Filter

  • Range:
    to:
  • Year: