Criteria

Text:
Display:

Results

Viewing 1 to 30 of 6473
2017-04-04
Event
Thermal Management represents one of the key aspects of the vehicle development. It ensures that the temperatures in the underhood and underbody areas are in desired ranges, that thermal systems operate as designed, and that no component operation is at risk due to excessive temperatures. This session covers the design of thermal components and systems and their vehicle integration.
2017-04-04
Event
Proper thermal management can significantly contribute to overall system energy efficiency. This session highlights the latest developments in thermal management energy efficiency.
2017-04-04
Event
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance and quality of climate control are both critical to customer satisfaction. The system has strong design interaction with other vehicle systems, while its primary objective is to deliver thermal comfort and occupant safety with low energy consumption. Localized Comfort, Secondary Fluids, Air Quality, Controls, System Sizing and HVAC consumer interface are just a few of the recent advances.
2017-04-04
Event
The purpose of this session is to share experiences and lessons learned to advance the technology in the field of thermal management of electric and hybrid vehicle systems. This session presents papers covering both testing and simulation of hybrid and electric vehicle thermal systems.
2017-04-04
Event
The purpose of this session is to bring awareness among the automotive aerodynamics, thermal and hydraulic systems development community to address the need of reliability analysis and robust design to improve the overall product quality. This session also introduces CAE based optimization of aero-thermal and fluid systems to improve automotive fuel economy. This session presents papers covering both testing and simulation.
2017-04-04
Event
This session considers modeling (zero-D, 1D, 2D, 3D CFD) and experimental papers on: combustion chamber, systems (lubrication, cooling, fuel, EGR); components (oil pumps, coolant pump, fuel injectors, compressors, turbines, turbochargers, torque converters, gear box, fans, bearings, valves, ports, manifolds, turbine housing); heat exchangers (radiators, oil coolers); aftertreatment (SCR, DOC, DOF, exhaust gas cooling); battery cooling (HEV, EV, motor/generator) and controls (passive and active).
2017-04-04
Event
Separate sub-sessions cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions.
2016-11-08
Technical Paper
2016-32-0079
Daisuke Fukui, Yoshinari Ninomiya
With the remarkable rise of gas price and the global air pollution, measures to improve fuel efficiency and reduce emission have become the urgent need in the motorcycle industry following automobile. For the improvement of the engine thermal efficiency that is one of those problems, there is a well-known fact that various research and development are continued from the past. We recognize that the coexistence of the high mobility and fuel efficiency performance of the Community-Based small motorcycles are demanded in the developed country not only developing countries. And we recognize that the coexistence of driveability and emission control of recreation and sports motorcycles is demanded. However, in the development of the engines for small motorcycles, due to differences in engine speed range, emission control, cost, infrastructure, we need some different approaches from the automobile engines which are full of advanced technologies.
2016-11-08
Technical Paper
2016-32-0008
Balagovind Nandakumar Kartha, Srikanth Vijaykumar, Pramod Reddemreddy
Today, nations are in the path of low-emission transformation mandating stricter emission norms with periodic revisions. With the expected introduction of Bharath Stage VI (BS VI) for two wheelers in India by 2020, limitation in primary pollutants namely - Carbon Monoxide (CO), Total Hydro-Carbons (THC) and Nitrogen Oxides (NOx) are reduced by 50%, 75% and 85% respectively in comparison to the existing Bharath Stage IV. The original equipment manufacturers (OEMs) are identifying measures to improve the overall efficiency and raw emissions from the engine through strategies like multi-spark configurations, improved charge induction concepts, liquid cooling, lean combustion etc. With end user demands for performance, low end torque, high power to displacement ratio, quick acceleration and fuel efficiency, the balance with the emission regulation is expected to be challenging.
2016-11-08
Journal Article
2016-32-0033
Tiago J. Costa, Mark Nickerson, Daniele Littera, Jorge Martins, Alexander Shkolnik, Nikolay Shkolnik, Francisco Brito
This paper describes the method used for heat transfer measurement and prediction on the LiquidPiston XMv3 small rotary engine at its current state of development. A 1D engine model (GT-POWER) and a 3D CFD model (CONVERGE), were coupled together with the objective of quantifying the engine heat transfer losses inside the combustion chamber. Experimental data was used to validate and calibrate the 1D engine model. Parameters used in calibration include heat transfer constants, and equivalent critical orifice for “atmospheric” and “inter-chamber” leak areas. These parameters were calibrated to match experimental motoring traces, and then lumped in with heat release parameters while fitting firing traces. The GT-Power model results were used as boundary conditions for the CFD modelling. A detailed chemistry combustion model (SAGE) was used to better calculate flame front propagation and flame quenching at the engine walls, relevant for a predictive heat transfer modelling.
2016-10-25
Event
This session considers modeling (zero-D, 1D, 2D, 3D CFD) and experimental papers on: combustion chamber, systems (lubrication, cooling, fuel, EGR); components (oil pumps, coolant pump, fuel injectors, compressors, turbines, turbochargers, torque converters, gear box, fans, bearings, valves, ports, manifolds, turbine housing); heat exchangers (radiators, oil coolers); aftertreatment (SCR, DOC, DOF, exhaust gas cooling); battery cooling (HEV, EV, motor/generator) and controls (passive and active).
2016-10-17
Technical Paper
2016-01-2262
Atsushi Shimada, Yuzo Shirakawa, Takao Ishikawa
The internal combustion engine wastes large amount of heat energy. The heat energy accounts for about 60% of the fuel energy supplied to an engine. If the heat energy could be converted the output power of an engine, the thermal efficiency of an engine could be improved. On the other hand, the thermal efficiency of an engine has peaked because of the each combustion properties, such as knocking, narrow combustible range in spark ignition (SI) engine. The thermal efficiency of SI engine increases as the compression ratio and the ratio of the specific heat increase. If high octane number fuel is used for the fuel of the engine, the thermal efficiency could be improved. Moreover, if fuel can burn in dilute condition, the thermal efficiency could be improved further. Therefore, an exhaust heat recovery, a high compression combustion, a lean combustion are important methods for the thermal efficiency improvement. These three methods could be combined by using hydrous ethanol as fuel.
2016-10-17
Technical Paper
2016-01-2221
Joshua Kurtis Carroll, Mohammad Alzorgan, Corey Page, Abdel Raouf Mayyas
Electric vehicles (EVs) and plug-in hybrid electric vehicles (PHEVs) are considered as a promising future solution for sustainable transportation. This is due to the reduction in energy consumption when compared to conventional internal combustion engine (ICE) based vehicles. EVs and PHEVs contain an Energy Storage Systems (ESS). This increases the complexity of the system but also provides additional margins and fields for optimization. One of the most important elements of these vehicles is the ESS. The electrochemistry nature of battery systems is inherently sensitive to the temperature shifts. The shifts are controlled by the thermal management system of the traction battery systems, for electric-drive vehicles, which directly affects the overall vehicle dynamics. These dynamics include performance, long-term durability and cost of the battery systems. Hence, thermal management becomes an essential element in the achievement to meet the demand for better performance.
2016-10-17
Technical Paper
2016-01-2161
Gangfeng Tan, Xuefeng Yang, Li Zhou, Kangping Ji, Mengying Yang
Mg2Si1-xSnx thermoelectric material is eco-friendly and of high thermoelectric performance. In this research heat transfer and power generating characteristics of the automobile exhaust heat recovery system based on Mg2Si1-xSnx material were studied. Firstly, the heat transfer model for the exhaust heat recovery system was established. Then, based on primitive characteristics of Mg2Si1-xSnx material under the different Sn/Si ratio, two-phase heat transfer of coolant was adopted and the heat transfer process was analyzed. Finally, when the saturation temperature of coolant in the two-phase zone was respectively 373K and 343K, the heat transfer and power generating characteristic were analyzed for each condition.
2016-10-17
Technical Paper
2016-01-2336
Ken Naitoh, Soichi Ohara, Yuichi Onuma, Kentaro Kojima, Kenya Hasegawa, Tomoya Shirai
Combustion experiments obtained for a small single-point auto-ignition gasoline engine having strongly-asymmetric double piston unit without poppet valves, in which multi-jets injected from eight suction nozzles with pulse collide around the combustion chamber center, showed both a high thermal efficiency comparable to that of today’s diesel engine and also a silent combustion comparable to that of today’s spark-ignition gasoline engines, at the condition of low road and 2000rpm. While this gasoline engine having a medium level of point compression generated by a negative pressure of about 0.04 MPa and also an additional mechanical homogeneous compression ratio of about 8:1 without throttle valves, steady-state experiments of combustion at air-fuel ratios between 20:1 and 40:1 (lean conditions) show apparent increase of exhaust temperature over 100 degrees and pressures over 1.5 MPa, even at the situations without any plugs.
2016-10-17
Journal Article
2016-01-2160
Alexander Bech, Paul J. Shayler, Michael McGhee
A physics based, lumped thermal capacity model of a 1litre, 3 cylinder, turbocharged, directly injected spark ignition engine has been developed to investigate the effects of cylinder deactivation on the thermal behaviour and fuel economy of small capacity, 3 cylinder engines. When one is deactivated, the output of the two firing cylinders is increased by 50%. The largest temperature differences resulting from this are between exhaust ports and between the upper parts of liners of the deactivated cylinder and the adjacent firing cylinder. These differences increase with load. The deactivated cylinder liner cools to near-coolant temperature. Temperatures in the lower engine structure show little response to deactivation. Temperature response times following deactivation or reactivation events are similar. Motoring work for the deactivated cylinder is a minor loss; the net benefit of deactivation diminishes with increasing load.
2016-09-27
Technical Paper
2016-01-8071
Igor Gritsuk, Vladimir Volkov, Yurii Gutarevych, Vasyl Mateichyk, Valeriy Verbovskiy
Abstract The article discusses the use of the combined heating system with phase-transitional thermal accumulator. The peculiarity of the presented system is that it uses thermal energy of exhaust gas, coolant and motor oil, and emissions of the internal combustion engine during its operation to accumulate the thermal energy. The results of experimental studies of the combined heating system are shown. A system and methods for pre-start and after-start heating of the vehicular engine in the investigated system are developed. The structure of the "combined heating” system to study the impact of its structural and adjustment parameters on the performance of thermal development of the vehicular engine is described. The use of the combined heating system within phase-transitional thermal accumulators is compared with the use of standard systems for a truck engine 8FS 9.2 / 8. It reduces the time of coolant and motor oil thermal development by 22.9-57.5% and 25-57% accordingly.
2016-09-27
Technical Paper
2016-01-8079
Zhiwei Zhang, Gangfeng Tan, Mengying Yang, Zhongjie Yang, Mengzuo Han
Abstract The hydraulic retarder is an important auxiliary braking device. With merits such as its high braking torque, smooth braking, low noise, long service life and small size, it is widely used on modern commercial vehicles. Transmission fluid of traditional hydraulic retarder is cooled by engine cooling system, which exhausts the heat directly and need additional energy consumption for the thermal management component. On account of the working characteristics of hydraulic retarder, this study designs a set of waste heat recovery system based on the Organic Rankine Cycle (ORC). Under the premise of ensuring stable performance of hydraulic retarder, waste heat energy in transmission fluid is recycled to supplement energy requirements for cooling system. First of all, a principle model, which is scaled down according to D300 retarder`s thermal power generation ration of 1:100, is established.
Viewing 1 to 30 of 6473

Filter

  • Range:
    to:
  • Year: