Criteria

Text:
Display:

Results

Viewing 1 to 30 of 6330
2015-09-29
Event
Heavy-duty on- and off-highway vehicles face unique thermal management challenges which can be very different from the thermal challenges in other transportation sectors. This session focuses on topics and technologies specific to thermal management for these vehicles.
2015-09-29
Event
Increases in energy cost combined with more stringent emissions standards has made the need to increase overall energy efficiency a critical part of the vehicle development process. The capture and reuse of waste energy is a way of improving overall energy efficiency. This session deals with methods for waste heat recovery and its use for improved energy efficiency.
2015-09-29
Event
There is clear recognition that optimization of thermal systems (powertrain cooling, HVAC systems) has significant implications to Fuel economy of automobiles. The Thermal Simulation/Analysis/Modeling session will focus on application of simulation technologies to development and evaluation of new thermal systems. Presentations will focus on both 1D and 3D simulation tools as applied to steady and transient phenomenon.
2015-09-29
Event
Underhood thermal management and its impact on powertrain cooling is a key aspect of the vehicle development process. Controlling the underhood thermal environment has a significant impact on powertrain cooling. This session is devoted to thermal aspects the underhood environment and its impact on powertrain cooling.
2015-09-29
Event
The purpose of this session is to provide an update on global regulations on vehicle thermal management and HVAC systems.
2015-09-29
Event
Thermal Management represents one of the key aspects of the vehicle development. It ensures that the temperatures in the underhood and underbody areas are in desired ranges, that thermal systems operate as designed, and that no component operation is at risk due to excessive temperatures. This session covers the design of thermal components and systems and their vehicle integration.
2015-09-29
Event
The purpose of this session is to share experiences and lessons learned to advance the technology in the field of thermal management of electric and hybrid vehicle systems. This session presents papers covering both testing and simulation of hybrid and electric vehicle thermal systems.
2015-09-29
Event
Climate control is a defining vehicle attribute often associated with brand image. Thermal performance and quality of climate control are both critical to customer satisfaction. While the primary objective of a climate control system is to deliver thermal comfort and occupant safety with low energy consumption, there are strong design interactions with other vehicle systems. Localized comfort, secondary fluids, air quality, controls, system sizing and HVAC consumer interface are just a few of the recent advances in this rapidly developing topic area.
2015-09-24 ...
  • September 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Rapid advances have been made in the range of available designs and operational parameters as well as in the fundamental understanding of compact heat exchangers (CHEs). Since the majority of modern heat exchangers used for heating and cooling systems for vehicular applications are CHEs, keeping up to date with these advances is essential. This seminar will help you understand and be able to apply comprehensive information about the intricacies of CHE design, performance, operating problems and state-of-the-art-technology for car and truck applications.
2015-09-14 ...
  • September 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
2015-06-24
Event
This session includes a 3D numerical study of bleed air IPS parametric analysis, an update on development and evaluation of an integrated inflight IPS - The JEDI ACE project, and a summary report on certification inflight natural icing test results for validating the PZL Mielec M28 bleed air IPS CFD.
2015-06-15
Technical Paper
2015-01-2249
Saad Bennouna, Said Naji, Olivier Cheriaux, Solene Moreau, Boureima Ouedraogo, Jean Michel Ville
Passengers’ thermal comfort inside car cabin is mainly provided by the heating ventilation and air conditioning system (HVAC). The main part of HVAC modules is placed under the dash board. An HVAC module is a compact system composed of various elements which are subject to airflow. The interaction between airflow and these in-duct elements generates noise inside car cabin. Furthermore, the blower used to blow air inside the cabin must overcome the pressure generated by HVAC elements. Noise is created and its level is linked to flow and pressure. HVAC noise is an important issue for car makers and automotive suppliers wishing to reach passengers’ satisfaction. Furthermore thermal-engine cars are more and more silent. Also hybrid and electric car sells are expanding around the world. HVAC noise became a main issue for automotive actors. In order to reduce its HVAC noises, Valeo and partners worked to develop several methods.
2015-06-15
Technical Paper
2015-01-2323
Abdelhakim Aissaoui, Ravindra S Tupake, Vilas Bijwe, Mohammed Meskine, Franck Perot, Alain Belanger, Rohit J Vaidya
F or the automotive industry, acoustic comfort is of increasing importance and changes in the market make the HVAC system noise quality a question to be addressed as early as possible during the vehicle development process. On one hand, the so-called traditional sources of annoyance such as engine, road-tires contact, exhaust systems and wind-noise have been significantly reduced for most traditional combustion engine vehicles. On the other hand, the rapid expansion of hybrid and electric vehicles and idling stop systems increases the importance of sources such as HVAC systems considered in the past as secondary. At high mass flow rate, the flow-induced contribution from the ducts and registers is the main source of noise in the mid to high frequency ranges and is more important than the HVAC structure borne and blower engine contributions.
2015-06-15
Journal Article
2015-01-2275
Manfred Koberstein, Zhengyu Liu, Curtis Jones, Suhas Venkatappa
In the thermal expansion valve (TXV) refrigerant system, transient high-pitched whistle at 6.18 kHz is often perceived following air-conditioning (A/C) compressor engagements when driving at higher vehicle speed or during vehicle acceleration, especially when system equipped with the high-efficiency compressor or variable displacement compressor. The objectives of this paper are to conduct the noise source identification, investigate the key factors affecting the whistle excitation, and understand the mechanism of the whistle generation. The mechanism is hypothesized that the whistle is generated from the flow/acoustic excitation of the turbulent flow past the shallow cavity, reinforced by the acoustic/structural coupling between the tube structural and the transverse acoustic modes, and then transmitted to evaporator. To verify the mechanism, the transverse acoustic mode frequency is calculated and it is coincided to the one from measurement.
2015-06-15
Journal Article
2015-01-2276
Zhengyu Liu, Donald Wozniak, Manfred Koberstein, Curtis Jones, Jan Xu, Suhas Venkatappa
Refrigerant flow-induced gurgling noise is perceived in automotive refrigerant systems which equipped with variable displacement compressors. In this study, the condition of the gurgling generation is investigated in vehicle level and the fundamental root cause is identified as the two-phase refrigerant flow entering the TXV. By conducting literature review, the acoustic characteristics of the flow patterns and the parameters affecting the flow regimes in horizontal and vertical tubes are summarized, and then the gurgling mechanism is explained as that the intermittent flow is developed at the evaporator inlet. In the end, the improved and feasible design for avoiding the intermittent flow (slug, plug or churn flow) or minimizing its formation is proposed and verified in refrigerant sub-system (RSS) level. Finally, the guidelines for the attenuation and suppression of the gurgle are provided.
2015-06-15
Technical Paper
2015-01-2273
Curtis Jones, Zhengyu Liu, Suhas Venkatappa, James Hurd
This paper presents the methodology of predicting vehicle level automotive air-handling system air-rush noise sound quality (SQ) using the sub-system level measurement. Measurement setup in both vehicle level and sub-system levels are described. To assess the air-rush noise SQ, both 1/3 octave band sound pressure level (SPL) and overall Zwicker's loudness are used. The "Sound Quality Transfer Functions (SQTF)" between sub-system level and vehicle level are developed for the specified climate control modes and vehicle segment defined by J.D. Power & Associates, while the Zwicker's loudness is calculated using the un-weighted predicted 1/3 octave band SPLs by the Matlab-based program. The predicting models are demonstrated in a fairly good agreement with the measured data. The methodology is applied to the development of sub-system SQ requirement for upfront delivery of the optimum design to meet global customer satisfaction.
Viewing 1 to 30 of 6330

Filter

  • Range:
    to:
  • Year: