Criteria

Text:
Display:

Results

Viewing 1 to 30 of 6197
2015-09-24 ...
  • September 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Rapid advances have been made in the range of available designs and operational parameters as well as in the fundamental understanding of compact heat exchangers (CHEs). Since the majority of modern heat exchangers used for heating and cooling systems for vehicular applications are CHEs, keeping up to date with these advances is essential. This seminar will help you understand and be able to apply comprehensive information about the intricacies of CHE design, performance, operating problems and state-of-the-art-technology for car and truck applications.
2015-04-21
Event
Climate control is a defining vehicle attribute and is associated with brand image. Thermal performance and quality of climate control are both critical to customer satisfaction. The system has strong design interaction with other vehicle systems, while its primary objective is to deliver thermal comfort and occupant safety with low energy consumption. Localized Comfort, Secondary Fluids, Air Quality, Controls, System Sizing and HVAC consumer interface are just a few of the recent advances.
2015-04-21
Event
The Thermal Systems Modeling and Simulation session focusses on state of the art simulation technologies for modeling thermal systems and their application in the development and optimization of vehicle thermal management and fuel economy. The papers in the session will range from empirical, 1D modeling methods to three dimensional CFD models as well as coupled methods.
2015-04-21
Event
Proper thermal management can significantly contribute to overall system energy efficiency. This session highlights the latest developments in thermal management energy efficiency.
2015-04-21
Event
Thermal Management represents one of the key aspects of the vehicle development. It ensures that the temperatures in the underhood and underbody areas are in desired ranges, that thermal systems operate as designed, and that no component operation is at risk due to excessive temperatures. This session covers the design of thermal components and systems and their vehicle integration.
2015-04-21
Event
The purpose of this session is to share experiences and lessons learned to advance the technology in the field of thermal management of electric and hybrid vehicle systems. This session presents papers covering both testing and simulation of hybrid and electric vehicle thermal systems.
2015-04-21
Event
This session considers modeling (zero-D, 1D, 2D, 3D CFD) and experimental papers on: combustion chamber, systems (lubrication, cooling, fuel, EGR); components (oil pumps, coolant pump, fuel injectors, compressors, turbines, turbochargers, torque converters, gear box, fans, bearings, valves, ports, manifolds, turbine housing); heat exchangers (radiators, oil coolers); aftertreatment (SCR, DOC, DOF, exhaust gas cooling); battery cooling (HEV, EV, motor/generator) and controls (passive and active).
2015-03-23 ...
  • March 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
2015-01-14
Technical Paper
2015-26-0234
Ramesh Pathuri, Yuvraj Patil, Prasanna Vyankatesh Nagarhalli
During early phases of vehicle program, evaluation of Air Conditioning (AC) system for its performance (time to comfort) and power consumption has become vital and hence simulation tools have gained tremendous importance. A 1D simulation model can be introduced early in the design process to evaluate several AC system configurations and parametric studies at different test conditions and which results in reduced experimental work. This paper presents a method for AC cool down simulation of passenger car with multi air zone cabin model in KULI. This approach allows the prediction of zone wise (head, body and foot) temperature and humidity distribution in the cabin for parameter studies for transient analysis. The same cabin model can deal with multiple inlets into the cabin, solar radiation, and recirculation for pre-defined cabin types.
2015-01-14
Technical Paper
2015-26-0210
Nilesh Daithankar, Kishor D Udawant, Nagesh Voderahobli Karanth
This paper presents a methodology for predicting thermal comfort inside midibus cabin with an objective to modify the HVAC duct design and parametric optimization in order to have improved thermal comfort of occupant. For this purpose the bus cavity is extracted from baseline CAD model including fully seated manikins with various seating positions. Solar Load has been considered in the computational model and passenger heat load is considered as per BSR/ASHRAE 55-1992R standard. CFD simulation predicted the air temperature and velocity distribution inside passenger cabin of the baseline model. The experimental measurements have been carried out as per the guidelines set in APTA-BT-RP-003-07 standard. The results obtained from CFD and Experimental test were analysed as per EVS EN ISO7730 standard and calculated occupant comfort in terms of thermal comfort parameters like Predicted Mean Vote (PMV) and Predicted Percentage Dissatisfied (PPD).
2015-01-14
Technical Paper
2015-26-0043
Rajesh Kashyap, Vamsidhar Sunkari, Prakash Verma
Regular service of the vehicle is to be done to ensure the factory performance of the vehicle over the entire life of product usage. However, complex nature of the physical processes involved in the service of the vehicle subsystems makes it costly for optimizing the service equipment performance for entire range of operation. Air-conditioning service (ACS) equipment is one such product in the diagnostics domain which deals with compressible, transient and two phase flow in open loop systems. Development of design controls for the service equipment to perform optimally over the entire operational range requires accurate mathematical model of the system under study. Application of mathematical model based approach requires calculation of geometrical details, environment information and fluid properties during the process for estimating the process behavior.
2015-01-14
Technical Paper
2015-26-0045
Rico Baumgart, Joerg Aurich, Jan Ackermann, Christoph Danzer
Abstract The development of energy efficient air conditioning systems for electric vehicles is an ever increasing challenge, because the cooling as well as the heating of the passenger compartment reduces the cruising range dramatically. Electric cars are usually equipped with a scroll compressor and a separate electric motor with appropriate power electronics. However, this solution is critical in terms of the installation space, the weight and also the costs. Therefore, an innovative and energy efficient drivetrain structure for electric vehicles was developed, which integrates the motor of the A/C-compressor directly into the drivetrain. Thus it is possible to switch off the compressor motor and to use the main motor for the drive of the compressor at certain driving situations. As a result, the operating point of the main motor can be shifted to a better efficiency.
2015-01-14
Technical Paper
2015-26-0044
Sambhaji Keshaw Jaybhay, Prasanna Nagarhalli, Suresh Tadigadapa, Sangeet Hari Kapoor
Context- In order to enhance fuel efficiency in buses an energy efficient air conditioning system should be deployed. This will lead to reduced parasitic load on the engine and translate into direct fuel saving. Fuel prices are increasing day by day; along with rapid depletion of fuel sources. Alternate fuels like CNG need investments in infrastructure, which is not available easily everywhere. Therefore fuel saving is vital. In case of air conditioned vehicles, the parasitic load mainly consists of power consumed by air conditioning compressor to pump the refrigerant and by blower motors and condenser fans for movement of conditioned air and heat removal respectively. Furthermore roof mounted bus air conditioning systems weigh in the range of 150-220kg (approx.) adding to the payload Necessity- Now days, most mid-size air conditioned buses are equipped with aftermarket solutions.
2015-01-14
Technical Paper
2015-26-0196
Soujanya C, V Sundaram, Sathish Kumar S
Cooling system is one of the important systems of an Engine to maintain the optimum temperatures across engine and its components. Analysis of cooling system at initial phase of product development will help in optimum design of the system. Simulation plays a vital role in optimum design. In the System level simulation it is important to accurately model and discretize the components in the system in order to achieve optimum system level flow balancing and flow prediction. As engine coolant jacket is the major contributor of pressure drop in cooling system, its modelling strategy will have high influence on results predictions across the system. Simulation of engine cooling system with Split engine coolant water jacket is challenging. It is difficult to achieve the simulation results close to bench test due to complexity of the system.
2015-01-14
Technical Paper
2015-26-0156
Anil Kumar Jaswal, MV Rajasekhar, J Perumal, Samir Rawte
Abstract This paper details the methodology used to prevent Thermal events in a vehicle at design and development stages which can lead to vehicle fire or Thermal events. Vehicle Safety is always been in prime focus for designers while introducing newer products in markets for the customers. It is now common to see vehicles catching on fire in roads and in parking places leading to destruction of the surroundings as well as hazard to the passengers. Thermal events can take place due to the heat dissipated by the heat emitters such as Engine, Turbo, Alternator, Exhaust System etc. So the most critical area where Thermal event can take place are under hood which includes the complete engine compartment and under body. The extent of fire depends on the fire source, characteristics of the materials used in constructing and furnishing the vehicle.
2014-12-19
WIP Standard
J2911
This SAE Standard provides manufacturers, testing facilities and providers of technician training with a procedure for certifying compliance with the appropriate standards. Manufacturers or seller who advertise their products as Certified to an SAE J standard shall follow this procedure. Certification of a product is voluntary; however, this certification process is mandatory for those advertising meeting SAE Standard(s) requirements. Only certifying to this standard allows those claiming compliance to advertise that their product (unit), component, or service meets all requirements of the specific SAE standard. Certification of compliance to this and the appropriate standard and use of the SAE label on the product shall only be permitted after all the required information has been submitted to SAE International and it has been posted on the SAE web site.
2014-12-11
Standard
J2912_201412
This SAE Standard applies to refrigerant identification equipment to be used for identifying refrigerant HFC-134a (R-134a) and HFO-1234yf (R-1234yf) refrigerant when servicing a mobile A/C system or for identifying refrigerant in a container to be used to charge a mobile A/C system. Identification of other refrigerants is the option of the equipment manufacturer, although it shall not misidentify refrigerants, per 3.2.
2014-11-23
WIP Standard
AS8040C
This SAE Aerospace Standard (AS) covers combustion heaters used in the following applications: a. Cabin heating (all occupied regions and windshield heating) b. Wing and empennage anti-icing c. Engine and accessory heating (when heater is installed as part of the aircraft) d. Aircraft de-icing
2014-11-18
Magazine
Oil debris monitoring in aero engines In a gas turbine engine, small particles or "chips" are generated at the point of wear, serving as an advanced warning that catastrophic failure will occur if the wear is not addressed. Health monitoring systems, such as oil debris monitoring, are used to find these small particles so that the wear can be resolved before it's too late. Indigenous powertrain development Customer needs and expectations on drivability, fuel economy, and safety has pushed Indian and multinational OEMs to think about the development of powertrains and gearboxes for local needs with global standards. The next wave of crash simulation As computing speed has improved and software itself has made significant speed and performance gains with each release, modeling tools are now quick enough to build high-quality, large, high-detail vehicle models in a very efficient manner.
2014-11-11
Journal Article
2014-32-0044
Simone Vezzù, Carlo Cavallini, Silvano Rech, Enrico Vedelago, Alessandro Giorgetti
Abstract The deposition of thick, pore-free, high-performance copper alloy matrix composite coatings is a topic of interest for several industrial applications, including friction materials, high-strength electrical contacts, and welding electrodes, among others. This study investigates the use of cold spray to deposit CuCrZr/Al2O3 cermet coatings on aluminum alloy 6060. The objective is to integrate copper-based materials with aluminum-based materials, ensuring a high degree of mechanical and thermal contact, using a low temperature process that does not adversely affect the properties of the base materials. This technique can be used to produce integral coolers and aluminum-based bearings for automotive and motorcycle applications. Fused and crushed alumina and gas-atomized CuCrZr powder blends have been used as initial feedstocks, with compositional weight ratios of 65/35 and 80/20 (ceramic/metal).
2014-11-11
Journal Article
2014-32-0050
Tomokazu Nomura, Koichiro Matsushita, Yoshihiko Fujii, Hirofumi Fujiwara
Abstract For detailed temperature estimates in the engine of a running motorcycle, newly researches were conducted on the method for calculation of temperature distribution using a three-dimensional (3D) thermal conductivity simulation after calculating the total balance of heat generation and heat dissipation of the engine using a one-dimensional (1D) thermal simulation. This project is targeted at air-cooled engines in which the cooling conditions vary significantly depending on the external shapes of the engines and the airflow around them. The heat balance is calculated using the 1D thermal simulation taking into account all the routes and processes for dissipation to the atmosphere of the heat that is generated by the combustion in the engine. The 1D engine cycle simulation is applied to calculate the heat transmission to the engine from the combustion. For the calculation of heat transfer within the engine, the engine components are converted to a one-dimensional model.
2014-11-11
Journal Article
2014-32-0080
Jens Steinmill, Ralf Struzyna
Abstract At a micro-CHP unit the target size of the engine controller is not mechanical torque but thermal and mechanical power. Accordingly, these demands must be implemented by the engine controller. This means that on the one hand a mechanical demand is answered under the boundary condition of the highest actual efficiency and that on the other hand thermal demands have to be processed. Since the thermal- and mechanical power output is coupled with the actual efficiency, exceeding the nominal load of the thermal power, the actual efficiency can be regulated in order to answer the demand. This can be done in consideration of the maximum achievable actual efficiency. Limits are set by the combustion stability and thermal protection functions. The functions are modelled with Matlab/Simulink and the ECU code for a rapid control prototyping system is generated. A dynamic engine test bed for internal combustion engines up to 12 kW was built to verify the motor control functions.
2014-11-11
Journal Article
2014-32-0108
Sejun Lee, Kyohei Ozaki, Norimasa Iida, Takahiro Sako
Abstract Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0.
2014-11-01
Journal Article
2014-01-9129
Filip Nielsen, Åsa Uddheim, Jan-Olof Dalenbäck
Abstract Fuel consumption of vehicles has received increased attention in recent years; however one neglected area that can have a large effect on this is the energy usage for the interior climate. This study aims to investigate the energy usage for the interior climate for different conditions by measurements on a complete vehicle. Twelve different NEDC tests in different temperatures and thermal states of the vehicle were completed in a climatic wind tunnel. Furthermore one temperature sweep from 43° to −18°C was also performed. The measurements focused on the heat flow of the air, from its sources, to its sink, i.e. compartment. In addition the electrical and mechanical loads of the climate system were included. The different sources of heating and cooling were, for the tested powertrain, waste heat from the engine, a fuel operated heater, heat pickup of the air, evaporator cooling and cooling from recirculation.
Viewing 1 to 30 of 6197

Filter

  • Range:
    to:
  • Year: