Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3106
2017-11-27 ...
  • November 27-December 1, 2017 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Connected vehicles are increasingly seen as a target for cybersecurity attacks. A key differentiator for the automotive industry is the use of cyber-physical systems, where a successful cybersecurity attack can affect physical entities. Often involving embedded electronics and real time control, these systems require different solutions in addition to established IT security principles and reactive responses to threats. Cybersecurity needs to be designed and built into cyber-physical systems throughout the development lifecycle to provide defense in depth.
2017-10-26 ...
  • October 26-27, 2017 (8:30 a.m. - 4:30 p.m.) - Shanghai, China
Training / Education Classroom Seminars
This course is offered in China only. More and more stringent emission and fuel consumption regulations are pushing the automotive industry towards electrified powertrain and electrified vehicles. This is particularly evident in China, where there is an increased demand for electric (EV) and hybrid electric vehicles (HEV). Infrastructure is being built across the country for convenient charging. It must now be determined how to meet the technical targets for EV/HEV regulations under economic constraints and how to best develop the major ePowertrain components (battery and motor).
2017-10-24 ...
  • October 24-25, 2017 (8:30 a.m. - 4:30 p.m.) - Farmington, Connecticut
Training / Education Classroom Seminars
The task of certifying an aircraft or part can be overwhelming given the lengthy process and the many steps that are required. Understanding the process can greatly enhance the outcome and reduce unnecessary delays or frustrations. This course will provide an overview of the Federal Aviation Administration (FAA) organizational structure, its policies, guidelines and requirements leading to Type and Supplemental Type airworthiness approvals. It will also cover the rule-making process and rules applicable to aircraft parts and products.
2017-10-19 ...
  • October 19-20, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Note: Last day of class ends at approximately 12:30 pm In today’s highly competitive and liability minded environment, Design Reviews (DR) are a must for all major mobility industries such as Automotive, DOD, Aerospace, Agriculture, Recreation, Marine and Rail. While Design Reviews are becoming increasingly important in product liability litigation, they also serve as an effective way to transfer organizational best practices for specific concerns and issues.
2017-10-08
Technical Paper
2017-01-2282
Gen Chen, Wenxin Cai, Jianguang Zhou, Christian Spanner, Heribert Fuchs, Werner Schrei, Karl Weihrauch
Abstract A TGDI (turbocharged gasoline direct injection) engine is developed to realize both excellent fuel economy and high dynamic performance to guarantee fun-to-drive. In order to achieve this target, it is of great importance to develop a superior combustion system for the target engine. In this study, CFD simulation analysis, steady flow test and transparent engine test investigation are extensively conducted to ensure efficient and effective design. One dimensional thermodynamic simulation is firstly conducted to optimize controlling parameters for each representative engine operating condition, and the results serve as the input and boundary condition for the subsequent Three-dimensional CFD simulation. 3D CFD simulation is carried out to guide intake port design, which is then measured and verified on steady flow test bench.
2017-10-08
Technical Paper
2017-01-2198
Zhihong Li, Guoxiu Li, Lan Wang, Hongmeng Li, Jie Wang, Haizhou Guo, Shuangyi He
The electromagnetic valve driving mechanism is the significant equipment, which plays a vital role in the unit pump injection system; therefore, the performance of the electromagnetic valve directly influences the function of the control system. Based on the operation conditions of the unit pump injection system, a steady electromagnetic valve model was modified to study the influence factors of electromagnetic force and the best combination to get the maximum electromagnetic force. The validation model was verified by experiment. The effects of some crucial parameters upon the electromagnetic force were investigated in the present paper, (including working airspace, magnetic pole’s cross-sectional area, coil position, coil turn, the armature thickness). The result shows that the electromagnetic force of the solenoid valve enhanced with the increasing driving current and reduced with the decreasing of working condition.
2017-10-08
Technical Paper
2017-01-2413
Peter King
Abstract A four-chamber Otto cycle rotary engine, the Szorenyi Rotary Engine, has been invented and developed by the Rotary Engine Development Agency (REDA) in Melbourne, Australia. The engine concept has been awarded a U.S. Patent (Number 6,718,938 B2). A prototype engine has been constructed and a successful proof-of-concept engine test was achieved in 2008. The stator of the Szorenyi engine is a similar shape to a Wankel engine. However, the geometric shape of the engine rotor is a rhombus, which deforms as it rotates inside the contour of the mathematically defined stator. This geometry translates to a rotary engine with four combustion chambers. Each revolution of the crankshaft produces one revolution of the rotor; a complete engine cycle in each of the four chambers; and therefore four power strokes. In contrast, the Wankel engine produces one power stroke per crankshaft revolution.
2017-10-08
Technical Paper
2017-01-2414
Dongsheng Zhang, Qilong Lu, Michael Kocsis, Ian Gilbert, Marc Megel, Xihao Liu, Jiaxin Gu, Qingyan Liu, Yanming He
The new BAIC engine, an evolution of the 2.3L 4-cylinder turbocharged PFL gasoline from Saab, was designed, built, and tested with close collaboration between BAIC Motor Powertrain Co., Ltd (BMPC) and Southwest Research Institute (SwRI). The upgraded engine was intended to achieve low fuel consumption and a good balance with high performance and compliance with Euro 6 emissions regulation. Low fuel consumption was achieved primarily through utilizing cooled low pressure loop exhaust gas recirculation (LP-EGR) and dual independent cam phasers, improving intake and exhaust design, optimizing combustion chamber design, and minimizing mechanical friction losses. Cooled LP-EGR helped suppress engine knock and consequently increase compression ratio and improve thermal efficiency of the new engine. Dual independent cam phasers reduced engine pumping losses and helped elevate low-speed torque.
2017-10-08
Journal Article
2017-01-2434
Srinivasan Paulraj, Saravanan Muthiah
Traditionally driveline ratios are selected based on trial and error method of proto vehicle testing. This consumes lot of time and increases overall vehicle development effort. Over last few decades, simulation-based design approach has been extensively used to alleviate this problem. This paper describes torque converter and final drive ratio (FDR) selection at concept phase for new Automatic Transmission (AT) vehicle development. Most of the critical data required for simulating vehicle performance and fuel economy (FE) targets were not available (e.g. shift map, clutch slip map, pedal map, dynamic torque, coast down, etc.) at an initial stage of the project. Hence, the risk for assuming right inputs and properly selecting FDR/Torque converter was particularly high. Therefore, a validated AVL Cruise simulation model based on an existing AT vehicle was used as a base for new AT vehicle development to mitigate the risk due to non-availability of inputs.
2017-10-05 ...
  • October 5-6, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Product development is organizationally a complex undertaking that requires effective coordination within a company and between companies. During product development, teams are confronted with a number of ongoing organizational challenges and there is a high potential for conflict between participants in the process. This course addresses teamwork and other "soft-side" factors that largely determine whether product development programs are successfully completed on schedule. The content is relevant for both OEMs and suppliers.
2017-10-01
Book
He Tang
The evolution and execution of automotive manufacturing are explored in this fundamental manual. It is an excellent reference for entry level manufacturing engineers and also serves as a training guide for nonmanufacturing professionals. The book covers the major areas of vehicle assembly manufacturing and addresses common approaches and procedures of the development process. Having held positions as both a University Professor and as a Lead Engineering Specialist in industry, the author draws on his experience in both theory and application to fill the gap between academic research and industrial practices. This concisely written, comprehensive review discusses the sophisticated principles and concepts of automotive manufacturing from development to applications and includes: • 250 illustrations and 90 tables. • End-of-chapter review questions. • Research topics for in-depth case studies, literature reviews, and/or course projects. • Analytical problems for additional practice.
2017-10-01
Book
Mohamed El-Sayed
Fundamentals of Integrated Vehicle Realization is a unique and solid contribution to the subject of product development, centered on the automotive industry. Automotive manufacturers and suppliers are under pressure to transform themselves and deliver a higher level of product refinement coupled with more functionality. This could lead to the sprouting of organizational structures not in alignment with the required product development phases. Consequently, many product development initiatives may be cancelled or dropped at later stages despite all the efforts and financial investments. Therefore, it is vital that organizational unity be always intact during any transformation. A highly effective organization should always act as one cohesive entity dedicated to serving the customer with creative aptitude, integrative skills, analytical thinking, and synergistic management. Written by Dr.
2017-09-28 ...
  • September 28-29, 2017 (8:30 a.m. - 4:30 p.m.) - Ft. Worth, Texas
  • October 16-17, 2017 (8:30 a.m. - 4:30 p.m.) - Farmington, Connecticut
  • November 13-14, 2017 (8:30 a.m. - 4:30 p.m.) - Toulouse, France
Training / Education Classroom Seminars
ARP4754A substantially revises the industry guidance for the development of aircraft and aircraft systems while taking into account the overall aircraft operating environment and functions. This development process includes validation of requirements and verification of the design implementation for certification and product assurance. ARP4754A provides the practices for showing compliance with regulations and serves to assist companies in developing and meeting its own internal standards though application of the described guidelines.
2017-09-27
Event
The future of safety of Aerospace Systems Engineering and Design requires advanced research on safety issues of increasingly complex airspace systems. Presentations are solicited on safety in Systems Engineering, Design, and Verification and Validation. These sessions will provide a forum for international discussion and information on leading-edge research and developments associated with safety and advanced integrated validation and verification procedures on airspace systems.
2017-09-25 ...
  • September 25-29, 2017 (8:30 a.m. - 4:30 p.m.) - Pontiac, Michigan
  • October 16-20, 2017 (8:30 a.m. - 4:30 p.m.) - Pontiac, Michigan
Training / Education Classroom Engineering Academies
Tuning the many electronic variables to ensure that a vehicle's engine performs according to its mission profile ultimately relies upon a competent calibrator. Because proper calibration is a critical aspect of customer satisfaction and emissions certification, skilled calibrators are in high demand in the auto industry. This Academy is designed to provide a foundation for those interested in entering the field of calibration engineering through hands-on exercises and detailed instruction on the base principles of calibration.
2017-09-23
Technical Paper
2017-01-2009
Kuiyuan Guo, Yan Yan, Juan Shi, Runqing Guo, Yuguang Liu
Abstract In order to speed up the development of vehicle active safety technology in China, C-NCAP plans to add AEB and AEB VRU system as assessment items in 2018. With the purpose of studying the assessment protocol of AEB system, we have carried out 400,000 km road information collection and then we acquired the statistics of the operation conditions of dangerous situations. Combined with the traffic accident data collected by CIDAS, we found that the dangerous situations that we usually met were mainly three types, that was CCRs, CCRm and CCRb. Based on what we mentioned above, we analyzed the three kinds of working conditions and gave the corresponding evaluation method. In addition, combined with the actual situation of China, we added two tests of error function. And then we took the actual road experiment of many models of vehicles.
2017-09-19
Technical Paper
2017-01-2120
David Hawkins
The challenges faced by both industry, government and the armed forces place increasing pressure on availability, budgets and resources necessitating a re-think of PPP and PBL contracting models to create greater integration to enhance performance in support of the war fighter. equally important is the development of increased synergies across international partners. The publication of ISO 44001 the international standard for collaborative business relationships championed and driven by the Institute for collaborative working provide a robust an neutral platform which can sit along side current contracting model and integrate a systemic approach to underpin mission critical relationships and exploit the value of collaborative relationships. AS the architect of the model which is embedded in the new standard the aim of this presentation will be to raise awareness to the benefits of greater focus on the relationships which support performance .
2017-09-19
Technical Paper
2017-01-2086
Justin Lo
Abstract The fast growth of air traffic and the need for lighter and more fuel efficient aircraft is driving the ramp-up of important new aircraft programs. These increases in production rates are driving manufacturers to seek out robust and reliable installation systems. They must also adapt to the unique requirements of composite materials that now have an increasingly important place in the aerospace industry. Moreover, environmental constraints continue to evolve and drive new regulations, such as REACH (Registration, Evaluation, Authorization and Restriction of Chemicals) in Europe. As an example, this regulation is leading to the adoption of non-chromate surface treatments and paints for most applications. The legacy generation of fasteners does not comply with all of these new requirements.
2017-09-19
Technical Paper
2017-01-2046
Pejman Akbari, Ian Agoos
Abstract The Wave Disk Engine (WDE) is a novel engine that has the potential for higher efficiency and power density of power-generation systems. A recent version of wave disk engine architecture known as the two-stage WDE has been studied to address existing challenges of an existing WDE. After describing the engine operation, a cold air-standard thermodynamic model supporting the physical phenomena occurring inside the device is introduced to evaluate performance of the engine. The developed model is general and does not depend on the shape of the wave rotor, it can be applied to radial and axial combustion wave rotors integrated with turbomachinery devices. The analysis starts with predicting internal waves propagating inside the channels of the engine and linking various flow states to each other using thermodynamics relationships. The goal is to find analytical expressions of work output and efficiency in terms of known pressure and temperature ratios.
2017-09-19
Technical Paper
2017-01-2064
Parvez Alam M, Dinesh Manoharan, Satheesh Chandramohan, Sabarish Chakkath, Sunil MAURYA
Abstract In the present market, multiple sophisticate and expensive Thrust Test Rigs for Brushless Motors (BLDC Motor) are available making it impossible to conduct such thrust analysis on a regular and cost effective basis. Moreover the present test rigs are incapable to measure high Thrust values. This needs specialized thrust testing rig which is more expensive. This paper aims at Design & Development of the Small Scale Test Rig Setup for measurement of the thrust of any Brushless DC motor and helps in refining the Selection of motor and propeller. This is a set up based on cost efficiency factor to implement such rigs, test and for comparing the static thrust produced by the BLDC motor. The fairly simple construction contains a weighing machine, a Tachometer and a Wattmeter to measure the Thrust, RPM and the Current Drawn respectively, and provide comprehensive, accurate and efficient data coming from the BLDC Motor including the Propeller and Electronic Speed Control (ESC).
2017-09-12
Book
Jimmy Williams, Jr.
Over the next twenty years, the role and contributions of successfully managed projects will continue to grow in importance to aerospace organizations, especially considering the demands of emerging markets. The accompanying challenges will be how to effectively reduce product and process cost where known (incremental) and unknown (transformational) technological innovation is required. Managing Aerospace Projects brings together ten seminal SAE technical papers that support the vision of a more holistic and integrated approach to highly complex projects. Using the concept of project management levers, Dr.
2017-09-04
Technical Paper
2017-24-0174
Laura Tribioli, Paolo Iora, Raffaello Cozzolino, Daniele Chiappini
Abstract This paper describes the energy management controller design of a mid-sized vehicle driven by a fuel cell/battery plug-in hybrid powertrain, where an experimentally validated high temperature polymer electrolyte membrane fuel cell model is used. The power management strategy results from the application of the Pontryagin's Minimum Principle, where the optimal control parameter is derived in order to minimize fuel consumption under certain constraints. In particular, the vehicle is also equipped by an autothermal reformer and, in order to minimize the hydrogen buffer size, the control algorithm is subject to constraints on the maximum hydrogen buffer level. The effectiveness of the system is analyzed when feeding the autothermal reformer with different hydrocarbon fuels and over different driving conditions. The obtained solutions are compared in terms of hydrogen consumption, fossil fuel consumption, system efficiency, money saving and equivalent CO2 emissions.
2017-09-04
Technical Paper
2017-24-0044
Jeremy Rochussen, Jeff Son, Jeff Yeo, Mahdiar Khosravi, Patrick Kirchen, Gordon McTaggart-Cowan
Abstract Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared absorption, and 2-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The purpose of this research-oriented cylinder head is to improve the connection between thermodynamic and optical engine studies for a wide variety of combustion strategies by facilitating the application of multiple in-cylinder diagnostics.
2017-09-04
Journal Article
2017-24-0147
Marco Chiodi, Andreas Kaechele, Michael Bargende, Donatus Wichelhaus, Christian Poetsch
Abstract In the competition for the powertrain of the future the internal combustion engine faces tough challenges. Reduced environmental impact, higher mileage, lower cost and new technologies are required in order to maintain its global position both in public and private mobility. For a long time, researchers have been investigating the so called Homogeneous Charge Compression Ignition (HCCI) that promises a higher efficiency due to a rapid combustion - i.e. closer to the ideal thermodynamic Otto cycle - and therefore more work and lower exhaust gas temperatures. Consequently, a rich mixture to cool down the turbocharger under high load may no longer be needed. As the combustion does not have a distinguished flame front it is able to burn very lean mixtures, with the potential of reducing HC and CO emissions. However, until recently, HCCI was considered to be reasonably applicable only at part load operating conditions.
Viewing 1 to 30 of 3106

Filter

  • Range:
    to:
  • Year: