Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4171
2015-11-02 ...
  • November 2-6, 2015 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Today's transportation industries are facing multi-disciplinary challenges. The product design and development process challenges often contradict each other, for example cost, weight, quality and performance. A central challenge is the need for cost and mass reduction to compete in the global market, while continuing to meet all new and existing requirements for quality and performance. Accelerated Concept to Product (ACP) Process is a performance-driven, holistic, product design development method intended to create a balance between structure and strength, synchronizing the individual facets of the product development process.
2015-10-29 ...
  • October 29-30, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Preventing future problems and troubleshooting existing problems in today's stamping plants requires greater stamping process knowledge. The link between inputs and outputs isn't as clear as many think, increasing the need for detailed understanding of the variables involved. This course discusses the key inputs and outputs associated with sheet metal stamping, including important elements for controlling the process and making it more robust. The course reviews sheet metal characteristics and their application, especially from a formability standpoint, using many automotive-related examples.
2015-09-29 ...
  • September 29-October 1, 2015 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Today's transportation industries are facing multi-disciplinary challenges. The product design and development process challenges often contradict each other, for example cost, weight, quality and performance. A central challenge is the need for cost and mass reduction to compete in the global market, while continuing to meet all new and existing requirements for quality and performance. Accelerated Concept to Product (ACP) Process is a performance-driven, holistic, product design development method intended to create a balance between structure and strength, synchronizing the individual facets of the product development process.
2015-09-14 ...
  • September 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Advanced High Strength Steels (AHSS) are now commonly used in automotive body structural applications. The high strength of this grade classification is attractive to help reduce mass in the automotive body through reduction in thickness. Strength also supports improvements in safety requirements so that mass increases are minimized. In some specific grades of AHSS, energy absorption is possible in addition to the high strength. This course will review the definition and properties of AHSS and cover several common applications in automotive body structures.
2015-08-10 ...
  • August 10-11, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Plastic - any class of synthetically-produced organic compounds capable of being molded and hardened into a specific shape or form. This course is designed to offer a basic understanding of plastics and plastic processing. Using plastics can be simple, but there is much more behind producing high performance plastic parts. This seminar will walk you through the molding process, provide a comprehensive look at the variables in the manufacturing mix, and review characteristics of typical automotive plastics such as PP, PVC, ABS, and more.
2015-08-03 ...
  • August 3-4, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar introduces participants to all aspects of threaded fasteners including nomenclature, geometric considerations, metallurgy, material properties, applied stresses, and considerations for fatigue, corrosion, brittle fracture and temperature. Methods are developed for the analysis and design of bolted joints under axial and shear loads. Other topics include assembly practice and methods to control preload.
2015-07-27 ...
  • July 27-28, 2015 (8:30 a.m. - 4:31 p.m.) - Warrendale, Pennsylvania
  • September 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Seattle, Washington
Training / Education Classroom Seminars
The September offering of this seminar will be conducted at the Sheraton Seattle Hotel and held in conjunction with the SAE 2015 AeroTech Congress & Exhibition. Register for this offering and you can register to attend the SAE 2015 AeroTech Congress & Exhibition for 25% off the classic member event rate.
2015-05-18 ...
  • May 18-19, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • November 9-10, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Welding is one of the most important and widely used of the joining processes, providing distinct advantages in mechanical performance, ease of implementation, cost and adaptability. This seminar will provide engineers with applicable knowledge related to metallurgy, stress analysis and welding processes which will enable them to consider design, analysis, implementation and inspection of welds for their respective products.
2015-05-01
Journal Article
2015-01-9082
Branislav Sredanovic, Djordje Cica
Abstract The most efficient way to reduce friction and heat generation at the cutting zone is to use advanced cooling and lubricating techniques. In this paper, an experimental study was performed to investigate the capabilities of conventional, minimal quantity lubrication (MQL) and high pressure cooling (HPC) in the turning operations. Process parameters (feed, cutting speed and depth of cut) are used as inputs to the developed artificial neural network (ANN) and the adaptive networks based fuzzy inference systems (ANFIS) model for prediction of cutting forces, tool life and surface roughness. Results obtained by the models have been compared for their prediction capability with the experimentally determined values and very good agreement with experimental results was observed.
2015-04-23
Event
This session deals with the manufacture of detail parts through laser sintering, stereo lithography, fused deposition modeling, and other emerging technologies. The session will explore technologies and methods for producing net or near net parts in various resins, plastics and metals directly from a CAD model that could employ design architectures that couldn't be achieved by other manufacturing methods.
2015-04-22
Event
We are seeking papers related to welding and joining of similar or dissimilar materials of plastics, composites, aluminum, magnesium, titanium, and conventional and advanced high strength steels. Papers related to friction stir (spot) welding, ultrasonic welding, resistance welding, arc welding, laser welding, brazing or soldering, riveting and bolting, and adhesive joining are welcome. Papers related to strength, fracture and fatigue of welds, joints and fasteners are also welcome.
2015-04-14
Technical Paper
2015-01-1313
Donald Jasurda
Abstract The effects of thermal expansion and gravity on assembly processes in automotive manufacturing can and often do cause unexpected variation. Not only do these effects cause assembly issues, they can also create non-conformance and warranty problems later in the product lifecycle. Using 3D CAD models, advances in simulation allow engineers to design out these influences through a combination of tooling, process and tolerance changes to reduce costs. This whitepaper examines the process of simulating the effect of both thermal expansion and gravity on automotive structures. Using real life examples, a number of solutions were determined and tested in a simulated environment to reduce product variation and account for unavoidable environmental variation.
2015-04-14
Technical Paper
2015-01-0715
Terry Lynn Chapin, Van Thomas Walworth
Abstract Balancing the fill sequence of multiple cavities in a rubber injection mold is desirable for efficient cure rates, optimized cure times, and consistent quality of all molded parts. The reality is that most rubber injection molds do not provide a consistent uniform balanced fill sequence for all the cavities in the mold - even if the runner and cavity layout is geometrically balanced. A new runner design technique, named “The Vanturi Effect”, is disclosed to help address the inherent deficiencies of traditional runner and cavity layouts in order to achieve a more balanced fill sequence. Comparative analysis of molded runner samples reveals a significant and positive improvement in runner and cavity fill balancing when the Vanturi Effect is integrated into the runner design.
2015-04-14
Journal Article
2015-01-0537
Hong Tae Kang, Abolhassan Khosrovaneh, Xuming Su, Yung-Li Lee, Mingchao Guo, Chonghua Jiang, Zhen Li
Abstract Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
2015-04-14
Technical Paper
2015-01-0506
Toshiyuki Kondo, Shinichiro Watanabe, Nobuhiro Nanba
Abstract Today, conventional requests for automation and modern requests for flexibility in handling product diversity and changes in production volume regarding assembly operation are increasing. In order to satisfy those, the “Innovative Automation Cell” (Refer to Figure 1) has been proposed as an innovative assembly production system in lieu of an assembly line operation, which has been continuing with the use of automatic conveyance. Furthermore, technical developments were implemented, such as “Real-time Position Attitude Correction Technology” and “High-speed Emergency Recovery System”, as well as “Assembly Operation Support System”, to make an easy system for an operator, so as to minimize reduction of run rate in mass production practices. This article addresses the concept of the “Innovative Automation Cell”, the details of the developed technology, the effects of introduction to mass production, and future issues.
2015-04-14
Technical Paper
2015-01-0505
Miguel Angel Reyes Belmonte, Colin D. Copeland, Drummond Hislop, George Hopkins, Adrian Schmieder, Scott Bredda, Sam Akehurst
Abstract Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
2015-04-14
Technical Paper
2015-01-0551
Qiuren Chen, Haiding Guo, John V. Lasecki, John Hill, Xuming Su, John J. Bonnen
Abstract The fatigue strength and failure behavior of A5754-O adhesively bonded single lap joints by a hot-curing epoxy adhesive were investigated in this paper. The single lap joints tested include balanced substrate joints (meaning same thickness) and unbalanced substrate joints, involving combinations of different substrate thicknesses. Cyclic fatigue test results show that the fatigue strength of bonded joints increase with the increasing substrate thickness. SEM and Energy Dispersive X-ray (EDX) were employed to investigate the failure mode of the joints. Two fatigue failure modes, substrate failure and failure within the adhesive were found in the testing. The failure mode of the joint changes from cohesive failure to substrate failure as the axial load is decreased, which reveals a fatigue resistance competition between the adhesive layer and the aluminum substrate.
2015-04-14
Technical Paper
2015-01-0545
Jeong Kyun Hong
Abstract As the automotive industry seeks to remove weight from vehicle chasses to meet increased fuel economy standards, it is increasingly turning to composites and aluminum. In spite of increasing demands for quality aluminum alloy spot welds that enable more fuel efficient automobiles, fatigue evaluation procedures for such welds are not well-established. This article discusses the results of an evaluation Battelle performed of the fatigue characteristics of aluminum alloy spot welds based on experimental data and observations from the literature. In comparison with spot welds in steel alloys, aluminum alloy spot welds exhibit several significant differences including a different hardness distribution at and around the weld, different fatigue failure modes, and more. The effectiveness and applicability of the Battelle structural stress-based simplified procedure for modeling and simulating automotive spot welds has previously been demonstrated by Battelle investigations.
2015-04-14
Technical Paper
2015-01-1371
Samuel T. Bartlett
Abstract With the many model variations produced on the same production line because of increasing power train options, fuel efficiency targets, performance and customer demands we saw limitations with our existing suspension mount equipment. Layout options were limited due to guided shifts and transfers. Large supporting frame work took up valuable floor space. Model wheelbase sizes and suspension pallets were limited to the model requirements of the original equipment. We needed an adaptable system to install the engine/front suspension assemblies and the rear suspension assemblies. We found a solution by utilizing the capabilities of 6-axis industrial robots to make the core components of the equipment simpler; many of the functions of a traditional machine can now be accomplished by the robot. We were able to vary install position to optimize handling characteristics and accommodate the model-to-model varieties on the same production line.
2015-04-14
Journal Article
2015-01-1722
Edmond Ilia, Giorgio Lanni, Kevin Tutton, Doug Sinclair
The advent of more efficient direct injection turbocharged engines has increased the need for higher performance connecting rods, able to withstand in particular higher compressive loads in operation. In this respect, new high strength materials for powder forged connecting rods were developed and introduced in production with excellent results. Among them, HS170M is currently used to manufacture connecting rods for several high performance engines, which not only have higher strength, but have less variation in their mechanical properties. The results of numerous benchmark studies have shown that powder forged connecting rods manufactured with HS170M are stronger than their steel forged counterparts manufactured with microalloyed steels, are easier to machine and fracture split, and represent a cost effective way to manufacture this important high reliability automotive component.
2015-04-14
Technical Paper
2015-01-1723
Dieter Gabriel, Thomas Hettich
Abstract Fuel economy legislation is requiring further improvements to piston friction reduction as well as additional gains in thermal efficiency. A piston material change from aluminum to steel is enabling advancements in both demands. Furthermore, steel material properties lead to increased piston strength, robustness and durability. All this can be achieved at a lower compression height compared to an aluminum reference piston. Therefore, piston mass can be reduced despite the increase in material density. Since steel pistons require cooling of the combustion bowl region and the ring belt just like the aluminum counterpart, MAHLE implemented a new innovative metal joining technology by using laser welding to generate a cooling gallery. The TopWeld® concept offers design flexibility which cannot be matched by any other welding process.
2015-04-14
Technical Paper
2015-01-1736
Justin Cartwright, Ahmet Selamet, Robert Wade, Keith Miazgowicz, Clayton Sloss
Abstract The heat rejection rates and skin temperatures of a liquid cooled exhaust manifold on a 3.5 L Gasoline Turbocharged Direct Injection (GTDI) engine are determined experimentally using an external cooling circuit, which is capable of controlling the manifold coolant inlet temperature, outlet pressure, and flow rate. The manifold is equipped with a jacket that surrounds the collector region and is cooled with an aqueous solution of ethylene-glycol-based antifreeze to reduce skin temperatures. Results were obtained by sweeping the manifold coolant flow rate from 2.0 to 0.2 gpm at 12 different engine operating points of increasing brake power up to 220 hp. The nominal coolant inlet temperature and outlet pressure were 85 °C and 13 psig, respectively. Data were collected under steady conditions and time averaged. For the majority of operating conditions, the manifold heat rejection rate is shown to be relatively insensitive to changes in manifold coolant flow rate.
2015-04-14
Technical Paper
2015-01-1612
Wei Liu, Gangfeng Tan, Jiafan Li, Xin Li, Fuzhao Mou, Yongqiang Ge
Abstract The hydraulic retarder is a significant auxiliary braking device [1] for the heavy duty vehicle. Traditionally, cooling circulatory system of the hydraulic retarder was coupled with the engine cooling system [2], and the thermal energy of the transmission medium would be cooled by the engine radiator ultimately. For this scheme, radiator's spare heat removal capacity could be fully utilized whereas the cooling system is very complicated and is hard to maintain. Furthermore, the corresponding of thermal management system lags behind the power change of the retarder. In this research, integrated cooling evaporation system is developed for the hydraulic retarder, which makes the cooling water contact with the transmission medium through the stator wall, so that it can rapidly response to the thermal variation of the retarder, keep the stability of the oil temperature and meanwhile reduce the risk of cooling medium leakage.
2015-04-14
Journal Article
2015-01-1611
Wei Liu, Gangfeng Tan, Xuexun Guo, Jiafan Li, Yuanqi Gao, Wei Li
Abstract The hydraulic retarder is the most stabilized auxiliary braking system [1-2] of heavy-duty vehicles. When the hydraulic retarder is working during auxiliary braking, all of the braking energy is transferred into the thermal energy of the transmission medium of the working wheel. Theoretically, the residual heat-sinking capability of the engine could be used to cool down the transmission medium of the hydraulic retarder, in order to ensure the proper functioning of the hydraulic retarder. Never the less, the hydraulic retarder is always placed at the tailing head of the gearbox, far from the engine, long cooling circuits, which increases the risky leakage risk of the transmission medium. What's more, the development trend of heavy load and high speed vehicle directs the significant increase in the thermal load of the hydraulic retarder, which even higher than the engine power.
Viewing 1 to 30 of 4171

Filter

  • Range:
    to:
  • Year: