Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4181
2015-11-09 ...
  • November 9-10, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Welding is one of the most important and widely used of the joining processes, providing distinct advantages in mechanical performance, ease of implementation, cost and adaptability. This seminar will provide engineers with applicable knowledge related to metallurgy, stress analysis and welding processes which will enable them to consider design, analysis, implementation and inspection of welds for their respective products.
2015-11-02 ...
  • November 2-6, 2015 (3 Sessions) - Live Online
Training / Education Online Web Seminars
Today's transportation industries are facing multi-disciplinary challenges. The product design and development process challenges often contradict each other, for example cost, weight, quality and performance. A central challenge is the need for cost and mass reduction to compete in the global market, while continuing to meet all new and existing requirements for quality and performance. Accelerated Concept to Product (ACP) Process is a performance-driven, holistic, product design development method intended to create a balance between structure and strength, synchronizing the individual facets of the product development process.
2015-10-29 ...
  • October 29-30, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Preventing future problems and troubleshooting existing problems in today's stamping plants requires greater stamping process knowledge. The link between inputs and outputs isn't as clear as many think, increasing the need for detailed understanding of the variables involved. This course discusses the key inputs and outputs associated with sheet metal stamping, including important elements for controlling the process and making it more robust. The course reviews sheet metal characteristics and their application, especially from a formability standpoint, using many automotive-related examples.
2015-10-06
Event
The goal of this session is to address developments in energy efficient manufacturing relevant to the commercial vehicle (on and off highway) industries. Specifically, it will focus on examining emerging energy efficient manufacturing technologies, as well as, best practices for established manufacturing methods. Additionally, the session examines innovative design and modeling techniques relevant to energy systems employed in commercial vehicle manufacturing.
2015-09-29 ...
  • September 29-October 1, 2015 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Today's transportation industries are facing multi-disciplinary challenges. The product design and development process challenges often contradict each other, for example cost, weight, quality and performance. A central challenge is the need for cost and mass reduction to compete in the global market, while continuing to meet all new and existing requirements for quality and performance. Accelerated Concept to Product (ACP) Process is a performance-driven, holistic, product design development method intended to create a balance between structure and strength, synchronizing the individual facets of the product development process.
2015-09-14 ...
  • September 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Advanced High Strength Steels (AHSS) are now commonly used in automotive body structural applications. The high strength of this grade classification is attractive to help reduce mass in the automotive body through reduction in thickness. Strength also supports improvements in safety requirements so that mass increases are minimized. In some specific grades of AHSS, energy absorption is possible in addition to the high strength. This course will review the definition and properties of AHSS and cover several common applications in automotive body structures.
2015-08-10 ...
  • August 10-11, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Plastic - any class of synthetically-produced organic compounds capable of being molded and hardened into a specific shape or form. This course is designed to offer a basic understanding of plastics and plastic processing. Using plastics can be simple, but there is much more behind producing high performance plastic parts. This seminar will walk you through the molding process, provide a comprehensive look at the variables in the manufacturing mix, and review characteristics of typical automotive plastics such as PP, PVC, ABS, and more.
2015-08-03 ...
  • August 3-4, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
This seminar introduces participants to all aspects of threaded fasteners including nomenclature, geometric considerations, metallurgy, material properties, applied stresses, and considerations for fatigue, corrosion, brittle fracture and temperature. Methods are developed for the analysis and design of bolted joints under axial and shear loads. Other topics include assembly practice and methods to control preload.
2015-07-27 ...
  • July 27-28, 2015 (8:30 a.m. - 4:31 p.m.) - Warrendale, Pennsylvania
  • September 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Seattle, Washington
Training / Education Classroom Seminars
The September offering of this seminar will be conducted at the Sheraton Seattle Hotel and held in conjunction with the SAE 2015 AeroTech Congress & Exhibition. Register for this offering and you can register to attend the SAE 2015 AeroTech Congress & Exhibition for 25% off the classic member event rate.
2015-05-04
Video
Watch how Dow Automotive teamed up with Schucker to show how structural bonding in modern car body design provides safety and weight benefits. BETAMATE™ structural adhesives help improve vehicle strength while helping to reduce weight and manufacturing costs.
2015-05-01
Journal Article
2015-01-9082
Branislav Sredanovic, Djordje Cica
Abstract The most efficient way to reduce friction and heat generation at the cutting zone is to use advanced cooling and lubricating techniques. In this paper, an experimental study was performed to investigate the capabilities of conventional, minimal quantity lubrication (MQL) and high pressure cooling (HPC) in the turning operations. Process parameters (feed, cutting speed and depth of cut) are used as inputs to the developed artificial neural network (ANN) and the adaptive networks based fuzzy inference systems (ANFIS) model for prediction of cutting forces, tool life and surface roughness. Results obtained by the models have been compared for their prediction capability with the experimentally determined values and very good agreement with experimental results was observed.
2015-04-28
Standard
J126_201504
This SAE Recommended Practice outlines a procedure for selecting the proper specification for carbon steel sheet and strip which are purchased to make an identified part. Specifications considered are: ASTM A109-Steel, Carbon, Cold Rolled Strip. ASTM A569-Steel, Carbon (0.15 maximum percent), Hot Rolled Sheet, Commercial Quality (HRCQ). ASTM A621-Steel, Sheet, Carbon, Hot Rolled, Drawing Quality (HRDQ). ASTM A622-Steel, Sheet, Carbon, Hot Rolled, Drawing Quality, Special Killed (HRDQSK). ASTMA568-Steel, Carbon and High-Strength Low-Alloy Hot Rolled Sheet, and Cold Rolled Sheet, General Requirements. ASTM A366-Steel, Carbon, Cold Rolled Sheet, Commercial Quality (CRCQ). ASTM A619-Steel, Sheet, Carbon, Cold Rolled, Drawing Quality (CRDQ). ASTM A620-Steel, Sheet, Carbon, Cold Rolled, Drawing Quality, Special Killed (CRDQSK). ASTM A749M-Steel, Carbon and High-Strength Low-Alloy, Hot Rolled Strip, General Requirements.
2015-04-28
Standard
J2392_201504
This SAE recommended practice defines and establishes tolerances and attributes of cold rolled strip steels. Differences between cold rolled strip and cold rolled sheet products are discussed so that process designers can make informed material selection decisions.
2015-04-28
Standard
J863_201504
This SAE Recommended Practice describes methods for determining plastic deformation encountered in the forming or drawing of sheet steel.
2015-04-28
Standard
AS567K
This SAE Aerospace Standard (AS) covers devices whose primary function is the retention of fasteners, except for such devices that are integral with the item being retained.
2015-04-23
Event
This session deals with the manufacture of detail parts through laser sintering, stereo lithography, fused deposition modeling, and other emerging technologies. The session will explore technologies and methods for producing net or near net parts in various resins, plastics and metals directly from a CAD model that could employ design architectures that couldn't be achieved by other manufacturing methods.
2015-04-22
Event
We are seeking papers related to welding and joining of similar or dissimilar materials of plastics, composites, aluminum, magnesium, titanium, and conventional and advanced high strength steels. Papers related to friction stir (spot) welding, ultrasonic welding, resistance welding, arc welding, laser welding, brazing or soldering, riveting and bolting, and adhesive joining are welcome. Papers related to strength, fracture and fatigue of welds, joints and fasteners are also welcome.
2015-04-14
Technical Paper
2015-01-1313
Donald Jasurda
Abstract The effects of thermal expansion and gravity on assembly processes in automotive manufacturing can and often do cause unexpected variation. Not only do these effects cause assembly issues, they can also create non-conformance and warranty problems later in the product lifecycle. Using 3D CAD models, advances in simulation allow engineers to design out these influences through a combination of tooling, process and tolerance changes to reduce costs. This whitepaper examines the process of simulating the effect of both thermal expansion and gravity on automotive structures. Using real life examples, a number of solutions were determined and tested in a simulated environment to reduce product variation and account for unavoidable environmental variation.
2015-04-14
Technical Paper
2015-01-0715
Terry Lynn Chapin, Van Thomas Walworth
Abstract Balancing the fill sequence of multiple cavities in a rubber injection mold is desirable for efficient cure rates, optimized cure times, and consistent quality of all molded parts. The reality is that most rubber injection molds do not provide a consistent uniform balanced fill sequence for all the cavities in the mold - even if the runner and cavity layout is geometrically balanced. A new runner design technique, named “The Vanturi Effect”, is disclosed to help address the inherent deficiencies of traditional runner and cavity layouts in order to achieve a more balanced fill sequence. Comparative analysis of molded runner samples reveals a significant and positive improvement in runner and cavity fill balancing when the Vanturi Effect is integrated into the runner design.
2015-04-14
Technical Paper
2015-01-0506
Toshiyuki Kondo, Shinichiro Watanabe, Nobuhiro Nanba
Abstract Today, conventional requests for automation and modern requests for flexibility in handling product diversity and changes in production volume regarding assembly operation are increasing. In order to satisfy those, the “Innovative Automation Cell” (Refer to Figure 1) has been proposed as an innovative assembly production system in lieu of an assembly line operation, which has been continuing with the use of automatic conveyance. Furthermore, technical developments were implemented, such as “Real-time Position Attitude Correction Technology” and “High-speed Emergency Recovery System”, as well as “Assembly Operation Support System”, to make an easy system for an operator, so as to minimize reduction of run rate in mass production practices. This article addresses the concept of the “Innovative Automation Cell”, the details of the developed technology, the effects of introduction to mass production, and future issues.
2015-04-14
Technical Paper
2015-01-0505
Miguel Angel Reyes Belmonte, Colin D. Copeland, Drummond Hislop, George Hopkins, Adrian Schmieder, Scott Bredda, Sam Akehurst
Abstract Pressure and temperature levels within a modern internal combustion engine cylinder have been pushing to the limits of traditional materials and design. These operative conditions are due to the stringent emission and fuel economy standards that are forcing automotive engineers to develop engines with much higher power densities. Thus, downsized, turbocharged engines are an important technology to meet the future demands on transport efficiency. It is well known that within downsized turbocharged gasoline engines, thermal management becomes a vital issue for durability and combustion stability. In order to contribute to the understanding of engine thermal management, a conjugate heat transfer analysis of a downsized gasoline piston engine has been performed. The intent was to study the design possibilities afforded by the use of the Selective Laser Melting (SLM) additive manufacturing process.
2015-04-14
Technical Paper
2015-01-0551
Qiuren Chen, Haiding Guo, John V. Lasecki, John Hill, Xuming Su, John J. Bonnen
Abstract The fatigue strength and failure behavior of A5754-O adhesively bonded single lap joints by a hot-curing epoxy adhesive were investigated in this paper. The single lap joints tested include balanced substrate joints (meaning same thickness) and unbalanced substrate joints, involving combinations of different substrate thicknesses. Cyclic fatigue test results show that the fatigue strength of bonded joints increase with the increasing substrate thickness. SEM and Energy Dispersive X-ray (EDX) were employed to investigate the failure mode of the joints. Two fatigue failure modes, substrate failure and failure within the adhesive were found in the testing. The failure mode of the joint changes from cohesive failure to substrate failure as the axial load is decreased, which reveals a fatigue resistance competition between the adhesive layer and the aluminum substrate.
2015-04-14
Technical Paper
2015-01-0545
Jeong Kyun Hong
Abstract As the automotive industry seeks to remove weight from vehicle chasses to meet increased fuel economy standards, it is increasingly turning to composites and aluminum. In spite of increasing demands for quality aluminum alloy spot welds that enable more fuel efficient automobiles, fatigue evaluation procedures for such welds are not well-established. This article discusses the results of an evaluation Battelle performed of the fatigue characteristics of aluminum alloy spot welds based on experimental data and observations from the literature. In comparison with spot welds in steel alloys, aluminum alloy spot welds exhibit several significant differences including a different hardness distribution at and around the weld, different fatigue failure modes, and more. The effectiveness and applicability of the Battelle structural stress-based simplified procedure for modeling and simulating automotive spot welds has previously been demonstrated by Battelle investigations.
2015-04-14
Technical Paper
2015-01-1371
Samuel T. Bartlett
Abstract With the many model variations produced on the same production line because of increasing power train options, fuel efficiency targets, performance and customer demands we saw limitations with our existing suspension mount equipment. Layout options were limited due to guided shifts and transfers. Large supporting frame work took up valuable floor space. Model wheelbase sizes and suspension pallets were limited to the model requirements of the original equipment. We needed an adaptable system to install the engine/front suspension assemblies and the rear suspension assemblies. We found a solution by utilizing the capabilities of 6-axis industrial robots to make the core components of the equipment simpler; many of the functions of a traditional machine can now be accomplished by the robot. We were able to vary install position to optimize handling characteristics and accommodate the model-to-model varieties on the same production line.
Viewing 1 to 30 of 4181

Filter

  • Range:
    to:
  • Year: