Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 10041
2015-06-09
Event
2015-06-09
Event
2015-06-09
Event
This session will focus on the latest technology developments in materials used for aerospace design, from structures to skin, to include new alloys and composites.
2015-06-09
Event
2015-06-09
Event
2015-04-14
Technical Paper
2015-01-0702
Bita Ghaffari, Jonathan Dekam, Kevin Haddix, Kimberly Lazarz, Sergey Titov, Roman Maev
Abstract Adhesive bonding technology has gained ever-increasing significance in automotive industry, especially with the growing use of aluminum (Al) alloy body structures. The variability in thicknesses of the metal and adhesive layers, as well as in joint geometry, of automotive components has presented challenges in nondestructive evaluation of adhesive joints. Though these challenges were recently overcome for steel-adhesive joints using an ultrasonic pulse-echo technique, the difference in acoustic impedances of steel and Al leads to a lack of robustness in utilizing the same algorithm for Al-adhesive joints. Here, we present the results from using a modified version of this technique to inspect Al-adhesive joints in both laboratory and production environments. A 15-MHz, 52-pixel, 10 mm × 10 mm matrix array of ultrasonic transducers was used to obtain ultrasonic pulse echoes from joint interfaces, analysis of which produced C-scan images of the adhesive bead.
2015-04-14
Technical Paper
2015-01-0687
Guang Wang, Xueyuan Nie, Jimi Tjong
Abstract In order to reduce the weight of an automotive engine, an aluminum (Al) alloy engine block with cast iron liner has been successfully used to replace the gray cast iron engine. For newly emerging Al linerless engine in which the low surface hardness of the aluminum alloy has to be overcome, a few surface processing technologies are used to protect the surface of cylinders. Among them, plasma transferred wire arc (PTWA) thermal spraying coating is becoming popular. Plasma electrolytic oxidation (PEO) coating is also proposed for increasing the wear resistance of aluminum alloy and reducing the friction between the cylinder and piston. In this work, a PEO coating with a thickness of ∼20 μm was prepared, and a high speed pin-on-disc tribometer was used to study the tribological behavior of the coating at oil lubricant conditions. Different surface roughness of the coating and a large range of the sliding speeds were employed for the tests.
2015-04-14
Technical Paper
2015-01-0511
Bradford Johnson, John Henshaw, Nia R. Harrison, S. George Luckey
Abstract Increasing fuel economy is a high priority of the automotive industry due to consumer demand and government regulations. High strength aluminum alloys such as AA7075-T6 can be used in strength-critical automotive applications to reduce vehicle weight and thus improve fuel economy. However, these aluminum alloys are known to be susceptible to stress corrosion cracking (SCC) for thick plate. The level of susceptibility to SCC must be determined before a material is implemented. ASTM standards exist that generate semi-quantitative data primarily for use in screening materials for SCC. For the purposes of this work ASTM G139 (breaking load method) has been used to evaluate sheet AA7075-T6 for use in automotive applications. A tensile fixture applying a constant strain was used to quantitatively measure residual strength of the material after exposure to a corrosive environment.
2015-04-14
Technical Paper
2015-01-0516
Nan Wang, Sergey Golovashchenko, Quochung Le
Abstract Experimental results on influence of trimming conditions on the shape of the sheared surface are combined with the results of stretching sheared samples after trimming. The objective of the research described in this paper is to study the mechanism of fracture initiation and cracks propagation during half-a-dog bone tensile test representing sheared edge stretching condition. One side of the sample had sheared surface obtained by the trimming process while the other side of the sample had a smooth surface. Significant attention was paid to understanding of fracture sources. An interrupted tensile test approach was employed to track fracture initiation and propagation during stretching of sheared surface. The results of the experimental study indicated that multiple sources of fracture were observed in the burr area for trimming with clearances exceeding 10% of the material thickness.
2015-04-14
Technical Paper
2015-01-0520
Takaaki Kitahara, Takuo Imai, Osamu Ishigo, Miodrag Perovic
Abstract There has been a requirement for automotive bearings materials to be free of the toxic material lead, in accordance with ELV regulations and from the perspective of environmental problems. Currently, bismuth is used as a replacement for lead in copper alloy based main journal bearings and connecting rod bearings for automotive engines. In recent years, there has been changing to lead-free materials for truck engine bearings. Compared with automotive engines, lots of contaminations in the oil and local contact between the shaft and bearings can occur in truck engines. The ability to tolerate contamination and local contact is therefore required for truck engine bearings. In this development, we find that the addition of 8 mass% bismuth and 1.5 mass% molybdenum carbide particles into copper-tin alloy is effective for improving the ability which allow the contamination and local contacts.
2015-04-14
Technical Paper
2015-01-0545
Jeong Kyun Hong
Abstract As the automotive industry seeks to remove weight from vehicle chasses to meet increased fuel economy standards, it is increasingly turning to composites and aluminum. In spite of increasing demands for quality aluminum alloy spot welds that enable more fuel efficient automobiles, fatigue evaluation procedures for such welds are not well-established. This article discusses the results of an evaluation Battelle performed of the fatigue characteristics of aluminum alloy spot welds based on experimental data and observations from the literature. In comparison with spot welds in steel alloys, aluminum alloy spot welds exhibit several significant differences including a different hardness distribution at and around the weld, different fatigue failure modes, and more. The effectiveness and applicability of the Battelle structural stress-based simplified procedure for modeling and simulating automotive spot welds has previously been demonstrated by Battelle investigations.
2015-04-14
Journal Article
2015-01-0515
Haiou Jin, Yimin Zeng, Jie Liang, M.S. Kozdras
Abstract New aluminum alloys, based on a commercial Al-Mn-Cu brazing sheet core alloy, with increasing alloying element Mg up to 2 wt.%, have been developed for automotive heat exchanger units in service at above 200°C. The new Al-Mn-Cu-Mg alloys are to be used as the core material in brazing sheets for vacuum and nickel brazing technologies. They were DC cast to 3.75″ lab sized ingots, scalped, re-heated to 520°C, hot rolled to 4.8 - 5mm, and cold rolled down to a final gauge of 1mm. It has been demonstrated by various mechanical and corrosion testing that Mg contributes a strong solid solution hardening effect at both the room and elevated temperatures, without damaging the other mechanical properties or corrosion resistance. Hence the alloys with 1 - 2 wt.% Mg are able to maintain high yield strength above 60 MPa at 200 - 300°C, with no reduction in formability and very limited decrease in corrosion resistance.
2015-04-14
Journal Article
2015-01-0514
Sugrib K. Shaha, Frank Czerwinski, Wojciech Kasprzak, Jacob Friedman, Daolun Chen
Abstract The uniaxial compression test was used to assess the influence of strain amount on the behavior of precipitates and texture of the Al-7%Si-1%Cu-0.5%Mg alloy, modified with micro-additions of V, Zr and Ti. As revealed through metallographic examinations, fracturing and re-orientation of the second-phase particles increased with increasing compression strain. However, the intermetallic particles experienced substantially more frequent cracking than the eutectic silicon. The crystallographic texture was measured and correlated with deformation behavior of the alloy. The weak texture of 11<211> and 111<110> components, detected after casting transformed to a mixture of 1<110>, 112<110> and 111<110> components after room-temperature compression deformation. The intensity of the texture components depended on the strain amount. It is concluded that the texture formation in the studied alloy is controlled by the precipitates formed during solidification of the alloy.
2015-04-14
Journal Article
2015-01-0512
Anthony D. Prescenzi
Abstract Ablation casting is an emerging technology which combines traditional sand molding techniques with rapid cooling due to the use of a water soluble binder. High cooling rates and control of solidification direction allows for exceptional mechanical properties and complex shapes. Through the use of ablation, six different body node castings have been manufactured for the 2016 NSX aluminum space frame. The high mechanical properties allowed these castings to be integrated into the crash structure for energy absorption. Using the traditional casting alloy A356, target mechanical properties were 190 Mpa Yield Strength, 280 Mpa Tensile Strength and 12% min elongation. The high elongation was achieved due to the refined eutectic microstructure produced by high cooling rates. The eutectic microstructure produced by ablation was found to be Level 5 or 6 on the AFS scale. Light weighting could also be achieved when compared to traditional GDC castings.
2015-04-14
Journal Article
2015-01-0510
Joy Hines Forsmark, Zachary Dowling, Kelsey Gibson, Caroline Mueller, Larry Godlewski, Jacob Zindel, James Boileau
Abstract Magnesium die-cast alloys are known to have a layered microstructure composed of: (1) An outer skin layer characterized by a refined microstructure that is relatively defect-free; and (2) A “core” (interior) layer with a coarser microstructure having a higher concentration of features such as porosity and externally solidified grains (ESGs). Because of the difference in microstructural features, it has been long suggested that removal of the surface layer by machining could result in reduced mechanical properties in tested tensile samples. To examine the influence of the skin layer on the mechanical properties, a series of round tensile bars of varying diameters were die-cast in a specially-designed mold using the AM60 Mg alloy. A select number of the samples were machined to different final diameters. Subsequently, all of the samples (as-cast as well as machined) were tested in tension.
2015-04-14
Journal Article
2015-01-0528
Armin Abedini, Cliff Butcher, David Anderson, Michael Worswick, Timothy Skszek
Abstract Two different shear sample geometries were employed to investigate the elastoplastic and failure behaviour of three automotive alloy rolled sheets; a highly anisotropic magnesium alloy (ZEK100) and two relatively isotropic dual phase steels (DP600 and DP780). The performance of the so-called butterfly type specimen (Mohr and Henn 2007, Dunand and Mohr 2011) was evaluated at quasi-static conditions along with the shear geometry of Peirs et al. (2012) using in situ 3-D digital image correlation (DIC) strain measurement techniques. It was shown that both test geometries resulted in similar trends of the load-displacement response; however, the fracture strains obtained using the butterfly specimen were lower for the ZEK100 and DP780. It was demonstrated that the ZEK100 exhibits strong anisotropy in terms of the shear work hardening rate and failure strain.
2015-04-14
Journal Article
2015-01-0556
Wenkai Li, Haitao Cui, Weidong Wen, Xuming Su, Carlos Engler-Pinto
Abstract Ultrasonic fatigue tests (testing frequency around 20 kHz) have been conducted on four different cast aluminum alloys each with a distinct composition, heat treatment, and microstructure. Tests were performed in dry air, laboratory air and submerged in water. For some alloys, the ultrasonic fatigue lives were dramatically affected by the environment humidity. The effects of different factors like material composition, yield strength, secondary dendrite arm spacing and porosity were investigated; it was concluded that the material strength may be the key factor influencing the environmental humidity effect in ultrasonic fatigue testing. Further investigation on the effect of chemical composition, especially copper content, is needed.
2015-04-14
Journal Article
2015-01-0573
Tau Tyan, Yu-Kan Hu, Dana Sun, Leonard Shaner, Matt Niesluchowski, Nand Kochhar, Guofei Chen, Ming Shi
Abstract Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
2015-04-14
Journal Article
2015-01-0537
Hong Tae Kang, Abolhassan Khosrovaneh, Xuming Su, Yung-Li Lee, Mingchao Guo, Chonghua Jiang, Zhen Li
Abstract Due to magnesium alloy's poor weldability, other joining techniques such as laser assisted self-piercing rivet (LSPR) are used for joining magnesium alloys. This research investigates the fatigue performance of LSPR for magnesium alloys including AZ31 and AM60. Tensile-shear and coach peel specimens for AZ31 and AM60 were fabricated and tested for understanding joint fatigue performance. A structural stress - life (S-N) method was used to develop the fatigue parameters from load-life test results. In order to validate this approach, test results from multijoint specimens were compared with the predicted fatigue results of these specimens using the structural stress method. The fatigue results predicted using the structural stress method correlate well with the test results.
2015-04-14
Technical Paper
2015-01-0738
Joseph R. Kish, Zach Cano, Alexandra Kobylecky, Joseph McDermid, Timothy Skszek
Abstract The purpose of this study was to conduct a comparative corrosion assessment of alloys and coating schemes of interest for the fabrication of multi-material lightweight vehicle architectures. Alloys considered for this application included galvanized high strength low alloy steel, aluminum alloy AA6111 and magnesium alloy ZEK100. The coating scheme considered for corrosion protection included a layered paint top-coat scheme that was applied to a pre-treated surface. The pre-treatments included an alloy-specific commercial conversion coating (CC) and a plasma electrolytic deposition (PED) process that was applied only to the ZEK100 material. The corrosion assessment of the scribed coated alloy panels was conducted after 1000 h exposure in the ASTM B117 salt fog environment. Characterization of the mode and extent of corrosion damage observed and the role played by the exposed alloy microstructure utilized both light optical microscopy and electron microscopy.
2015-04-14
Technical Paper
2015-01-1356
Atishay Jain
Abstract Conventional motorcycle swingarm design includes steel tubing and sheet metal structures. Conventional swingarm are inherently over-designed as their design comprises of tubular structures of same cross section through the entire length of the swingarm, whereas the stress induced varies along the length (maximum near the frame pivot). An aluminum alloy swingarm design even when subjected to casting manufacturing constraints, has the potential for better material layout and weight minimization. But obtaining an ideal material layout for maximum performance can be a challenge as it requires a number of time consuming design iteration cycles. This paper aims to use concept based design methodology for design of aluminum alloy swing arm by application of topology optimization techniques to meet styling and structural targets and thus, obtain an end user product.
2015-04-07
Magazine
GM’s CTO driving new paths to technology leadership 'We’re making actual production commitments regarding our advanced-technology strategy, rather than just talking about it,' says GM’s CTO Jon Lauckner. 'We’re absolutely going to be among the leaders, if not the leader, in these areas.' Aluminum prepares for its next big leap Ford’s F-Series blockbuster was just the beginning. New micromills now in pilot phase aim to bring vastly stronger and more formable light-alloy materials at higher capacity, says Alcoa’s Mike Murphy. Slick solutions for friction reduction From new lubricants to ‘smart’ oil pumps and clever bearing technologies, engine designers are attacking every potential source of spin losses and internal friction in the quest for more mechanical work out of less fuel. Next-gen NSX: a twin-turbo, multi-material Ferrari-fighter The production NSX made its much-awaited global debut at NAIAS in January.
2015-03-31
WIP Standard
G15AA
New AMS for Ti-6-4 Seamless, Hydraulic Tubing including Technical, Quality and Testing Requirements
2015-03-30
WIP Standard
AMS6437J
This specification covers an aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
2015-03-30
WIP Standard
AMS6439E
This specification covers a premium-aircraft-quality, low-alloy steel in the form of sheet, strip, and plate.
2015-03-30
WIP Standard
AMS7719E
This specification covers a magnetic nickel-iron alloy in the form of sheet and strip.
2015-03-30
WIP Standard
AMS7717E
This specification covers a magnetically soft nickel-iron alloy in the form of sheet and strip.

These products have been used typically for parts used in magnetic circuits requiring high magnetic permeability and saturation induction with the fabricated parts to be annealed in dry hydrogen, but usage is not limited to such applications.

2015-03-30
WIP Standard
ARP1110C
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide the aerospace industry with recommendations concerning the minimization of stress corrosion cracking in wrought heat-treatable carbon and low alloy steels and in austenitic, precipitation hardenable, and martensitic corrosion-resistant steels and alloys. The detailed recommendations are based on laboratory and field experience and reflect those design practices and fabrication procedures which should avoid in-service stress corrosion cracking.
2015-03-30
WIP Standard
AMS6250M
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, mechanical tubing, and forging stock.
2015-03-30
WIP Standard
AMS6300G
This specification covers an aircraft-quality, low-alloy steel in the form of bars, forgings, and forging stock.
Viewing 1 to 30 of 10041

Filter

  • Range:
    to:
  • Year: