Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3238
2016-06-16
Standard
AMS4045L
This specification covers an aluminum alloy in the form of sheet and plate 0.008 to 4.000 inches, incl (0.20. to 101.6 mm, incl) in thickness (see 8.4).
2016-06-16
Standard
AMS4049M
This specification covers an aluminum alloy in the form of sheet and plate with thickness from 0.008 to 4.000 inch, incl (0.20 to 101.6 mm, incl), clad on two sides (see 8.4).
2016-06-16
Standard
AMS4048P
This specification covers an aluminum alloy in the form of sheet and plate 0.008 to 1.000 inch, incl (0.20 to 25.40 mm, incl) in thickness, clad on two sides, supplied in the annealed (O) condition. When specified, product shall be supplied in the “as fabricated” (F) temper (see 8.4).
2016-06-13
WIP Standard
AMS4359
This specification covers an aluminum alloy in the form of extruded rods, bars, and profiles (shapes) 0.040 to 1.500 inches (1.02 to 38.10 mm), inclusive, in thickness, and produced with maximum cross sectional area of 23.25 in2 (15000 mm2) and a maximum circumscribing circle diameter (circle size) of 15.5 inches (394 mm) (see 8.4.1).
2016-06-07
Standard
AMS4899D
This specification covers a titanium alloy in the form of sheet, strip, and plate up through 4.000 inches (101.60 mm), inclusive.
2016-06-06
Standard
AMS4357
This specification covers an aluminum alloy in the form of die forgings from 2 inches (50.8 mm) to 10 inches (254 mm) in nominal thickness and forging stock of any size (see 8.5).
2016-06-02
Standard
AMS2355L
This specification covers quality assurance sampling and testing procedures used to determine conformance to applicable specification requirements of wrought aluminum alloy and wrought magnesium alloy mill products (except forging stock), and includes quality assurance and testing procedures for rolled, forged, and flash welded rings (see 8.3). Requirements are specified in inch/pound units.
2016-05-17
Standard
AMS4321B
This specification covers an aluminum alloy in the form of die forgings, hand forgings, and forging stock.
2016-05-16
Standard
AMS2409H
This specification covers the engineering requirements for producing a thin tin coating on aluminum alloys by an immersion process.
2016-05-11
Standard
AMS4244C
This specification covers an aluminum alloy in the form of two types of welding wire.
2016-05-11
Standard
AMS4189J
This specification covers an aluminum alloy in the form of welding wire.
2016-05-10
Standard
AMS4327A
This specification covers an aluminum alloy in the form of plate 0.250 to 0.300 inches (6.35 to 7.62 mm), inclusive, in thickness (see 8.6).
2016-05-10
Standard
AMS4149E
This specification covers an aluminum alloy in the form of die and hand forgings 6.000 inches (152.00 mm) and under in nominal thickness at time of heat treatment (see 8.5).
2016-05-03
WIP Standard
D16AE
This specification covers an aluminum alloy in the form of extruded rods, bars, and profiles (shapes) produced with maximum cross sectional area of 56.1 square inches (36 193 mm2) and a maximum circumscribing circle diameter (circle size) or 20.2 inches (513 mm)
2016-05-03
WIP Standard
D16AD
This specification covers an aluminum alloy in the form of extruded rods, bars, and profiles (shapes) produced with maximum cross sectional area of 55.5 square inches (35 806 mm2) and a maximum circumscribing circle diameter (circle size) or 24.4 inches (620 mm)
2016-04-19
Standard
AMS2772G
This specification covers requirements and recommendations for the heat treatment of wrought aluminum alloy raw materials (see 8.2.1) by producers. It supersedes AMS-H-6088 and replaces MIL-H-6088.
2016-04-13
WIP Standard
D16AB
This specification covers an aluminum alloy in the form of plate from 3.000 to 8.000 inches (76.2 to 203.2 mm) in thickness
2016-04-11
Standard
AMS4298A
This specification covers an aluminum alloy in the form of sheet 0.063 to 0.236 inch (1.60 to 6.00 mm), incl, in thickness, clad on both sides (see 8.4).
2016-04-07
Standard
TS251AR-2
No scope available.
2016-04-07
Standard
TS251-2
This specification covers the technical requirements for SAE ITC AS series, blind, Aluminium alloy rivets that are self-plugging & have a mechanically locked, flush break stem, in both the plain & Lock Creator versions.
2016-04-05
WIP Standard
AMS4285F
This specification covers an aluminum alloy in the form of centrifugal castings.
2016-04-05
WIP Standard
AMS4284K
This specification covers an aluminum alloy in the form of permanent mold castings.
2016-04-05
Technical Paper
2016-01-1575
Federico Ballo, Roberto Frizzi, Gianpiero Mastinu, Donato Mastroberti, Giorgio Previati, Claudio Sorlini
Abstract In this paper the lightweight design and construction of road vehicle aluminum wheels is dealt with, referring particularly to safety. Dedicated experimental tests aimed at assessing the fatigue life behavior of aluminum alloy A356 - T6 have been performed. Cylindrical specimens have been extracted from three different locations in the wheel. Fully reversed strain-controlled and load-controlled fatigue tests have been performed and the stress/strain-life curves on the three areas of the wheel have been computed and compared. The constant amplitude rotary bending fatigue test of the wheel has been simulated by means of Finite Element method. The FE model has been validated by measuring the strain at several points of the wheel during the actual test. From the FE model, the stress tensor time history on the whole wheel over a loading cycle has been extracted.
2016-04-05
Technical Paper
2016-01-0353
Suleman Ahmad, Dimitry Sediako, Anthony Lombardi, C. (Ravi) Ravindran, Robert Mackay, Ahmed Nabawy
Abstract Aluminum alloys have been replacing ferrous alloys in automotive applications to reduce the weight of vehicles. The engine block is a striking example of weight reduction, and is made of Al-Si-Cu-Mg (319 type) alloys. The wear resistance in the engine block is enabled by cast iron liners, and these liners introduce tensile residual stress due to a thermo-mechanical mismatch. Typically, an artificial aging treatment effectively reduces residual stress. In this study, neutron diffraction was used to measure the residual stress profiles along the cylinder bridge of a T5 treated 319 aluminum alloy engine block. Results indicated high tensile residual stresses (200-300 MPa) in the hoop and axial orientation at depths of 50-60 mm below the head deck. The high residual stresses were likely due to a combination of minimal stress relief during artificial aging and stress development during post process cooling.
2016-04-05
Journal Article
2016-01-0371
Wenkai Li, Carlos Engler-Pinto, Haitao Cui, Weidong Wen, Xuming Su
Abstract In this paper, fatigue tests on a cast aluminum alloy (AS7GU-T64) were performed under different frequencies and humidity levels. Tests conducted under conventional frequency in laboratory air have been compared to tests conducted under ultrasonic frequency in dry air, saturated humidity and in distilled water. It was observed that the highest and lowest fatigue lives correspond to ultrasonic fatigue tests in dry air and in distilled water, respectively. Unlike specimens tested at conventional frequency, all of the specimens tested at ultrasonic frequency presented a large amount of slip facets on the fatigue crack propagation fracture surface.
2016-04-05
Technical Paper
2016-01-0531
Pulkit Batra, Arpit Bansal, V Jeganathan ArulMoni
Abstract Friction stir processing (FSP) is a method of changing the properties of metal through intense, localized plastic deformation. This deformation is produced by forcibly inserting a non-consumable tool into a workpiece, and revolving the tool in a stirring motion as it is pushed laterally through the workpiece. It comprises of a rotating tool with pin and shoulder which are inserted into a single piece of material and traversed along the desired path to cover the region of interest. Friction between the shoulder and work piece results in localized heating which raises the temperature of the material to the range where it is plastically deformed. During this process, severe plastic deformation occurs and due to thermal exposure of material, it results in a significant evolution in the local microstructure. Carbon nanotubes were dispersed into Al matrix by multipass FSP to fabricate Al6082 T0/Fe-MWCNT.
2016-04-05
Technical Paper
2016-01-0533
Harveer Singh Pali, Naveen Kumar, Kausambi Singh
Abstract In the present investigation AA6082/ SiC MMC composite is fabricated using electromagnetic stir casting technique. Silicon carbide (SiC) of 40 μm size is used as reinforcement and is varied by weight percentage as 0%, 2.5%, 5%, 7.5%, 10% in alloy AA6082. The microstructure of the fabricated composite is studied by scanning electron microscopy (SEM) which shows even distribution of the reinforcement. The mechanical properties improve with SiCp till 7.5%, after that the properties decreases which may be due to presence of porosity during the composite manufacturing. A comparative study of mechanical properties such as tensile strength, hardness and toughness has been done between the composite and base aluminium alloy. After the comparative study it was found that the composite having AA6082/SiC-92.5%/7.5% is best suited. So, it is used for optimization of Electrical Discharge Machining (EDM) process parameters using Taguchi’s design of experiment.
2016-04-05
Journal Article
2016-01-0426
Francisco C. Cione, Armando Souza, Luiz Martinez, Jesualdo Rossi, Evandro Giuseppe Betini, Fabio Rola, Marco A. Colosio
Abstract Studying the formation and distribution of residual stress fields will improve the wheel safety operational criteria among other gains. Many engineering specifications, manufacturing procedures, inspection and quality control have begun to require that the residual stress of a particular component to be evaluated. It is known that these residual stress fields could be added to the effects of a system load (tare weight plus occupation of vehicle, traction, braking and torque combined). The mathematical tools for modeling and simulations using finite elements had evolved following the increasing computing power and hardware cost reduction. On the other hand, the experimental testing, offers specific physical component behavior and with the use of statistical tools, it is possible to predict the real behavior of the component when in operation. The experiments undertaken used the X-ray diffraction technique and the drilling method with rosette type strain gages.
2016-04-05
Journal Article
2016-01-0505
Pai-Chen Lin, Shihming Lo
Abstract A concept of combining friction stir spot welding (FSSW) and clinching, denoted as friction stir clinching (FSC), was proposed to join alclad 2024-T3 aluminum sheets. A tool, having a smooth probe and a flat shoulder, and a die, having a circular cavity and a round groove, were used to make FSC joints. The failure loads and fatigue lives of FSC joints made by various punching depths, rotational speeds, and dwelling times, were evaluated to obtain the admissible processing parameters. Optical micrographs of the FSC joints, before and after failure, were examined to understand the effects of processing parameters on the mechanical interlock and alclad layer distribution, which strongly correlate to the failure load, failure mode, and fatigue life of FSC joints. Finally, the static and fatigue performance of FSC joints made by the admissible processing parameters was obtained. The feasibility of the FSC process for alclad 2024-T3 aluminum sheets was confirmed.
2016-04-05
Technical Paper
2016-01-1085
Ming Chen, Yanjun Wang, Wenrui Wu, Quan Cui, Kai Wang, Lingfang Wang
Abstract The present paper describes a CAE analysis approach to evaluate the thermal-mechanical fatigue (TMF) of the cylinder head of a turbo charged GDI engine with integrated exhaust manifold. It allows design engineers to identify structural weakness at the early stage or to find the root cause of cylinder head TMF failures. At SAIC Motor, in test validation phase a newly developed engine must pass a strict durability test on test bed under thermal cycling conditions so that the durability characteristics can be evaluated. The accelerated dynamometer test is so designed that it gives equivalent cumulative damage as what would occur in the field. The duty cycle includes rated speed full load, rated speed motored and idle speed conditions. A transient none-linear finite element method is used to calculate the plastic deformation and thermal mechanical behaviors of the cylinder head assembly during thermal cycling.
Viewing 1 to 30 of 3238

Filter

  • Range:
    to:
  • Year: