Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3645
2017-04-20
WIP Standard
AMS4258B
This specification covers an aluminum alloy in the form of sheet laminated with two or more layers of unidirectional aramid fiber/epoxy prepreg.
2017-04-20
WIP Standard
AMS4254C
This specification covers aluminum alloy sheet laminated with one or more layers of unidirectional aramid fiber/epoxy prepreg. The outer layers are always aluminum alloy.
2017-04-20
WIP Standard
AMS4302C
This specification covers an aluminum alloy in the form of sheet laminated with one or more layers of unidirectional aramid fiber/epoxy prepreg.
2017-04-20
WIP Standard
GA-D17AA
This is a general agreement to standardize wording of the marking requirements for aluminum weld wire specifications.
2017-04-20
WIP Standard
AMS4021H
This specification covers an alclad aluminum alloy in the form of sheet and plate.
2017-04-20
WIP Standard
AMS4036L
This specification covers an aluminum alloy in the form of sheet and plate clad on one side with a different aluminum alloy.
2017-04-20
WIP Standard
AMS4009C
This specification covers an aluminum alloy in the form of foil.
2017-04-20
WIP Standard
AMS4148F
This specification covers an aluminum alloy in the form of die forgings and forging stock.
2017-04-20
WIP Standard
AMS4631F
This specification covers one type of aluminum bronze in the form of rods, bars, forgings, and forging stock. Primarily for parts requiring strength and wear resistance at moderate temperatures. This material has slightly better corrosion resistance than AMS 4630.
2017-04-20
WIP Standard
AMS4266B
This specification covers an aluminum alloy powder metallurgy product in the form of sheet 0.010 to 0.250 inch (0.25 to 6.35 mm) in nominal thickness.

This sheet has been used typically for parts requiring a combination of intermediate strength, high modulus, and thermal stability up to 750 degrees F (399 degrees C), but usage is not limited to such applications.

2017-04-19
WIP Standard
AMS2420E
This specification covers the requirements for preparation of aluminum and aluminum alloys for soldering by zinc immersion pre-treatment followed by copper plating and tin or tin-zinc alloy plating.
2017-04-19
WIP Standard
AMS2672H
This specification covers the requirements for producing brazed joints on aluminum and alumiinum alloys by torch or furnace brazing.
2017-04-19
WIP Standard
AMS2673F
This specification covers the requirements for producing brazed joints of aluminum and aluminum alloys by immersion in a molten flux bath.
2017-03-28
Technical Paper
2017-01-1645
Marjorie Myers
Harness and terminal manufacturers are working to support the Automotive industry’s need to reduce energy consumption (and costs) via weight savings initiatives by converting from Cu to Al electrical cables within the traditional open style cable harness termination manufacturing environment. As the Automotive industry is fully aware, terminating nominally same sized Al cable to existing Cu cable designed terminals is neither a functional, nor a reliable, equivalent option – termination design changes are required to be able successfully qualify any such Al cable to Cu terminal connections for Automotive applications. In addition, the harness industry are looking for any new Al ‘open’ crimp termination designs to work well within the existing manufacturing and connector/harness design environment; e.g., ‘open’ crimp termination, on par termination process speed, no post-treatment, etc.
2017-03-28
Technical Paper
2017-01-0453
Zane Yang
Considered in this study by the use of finite element model is a unit of assembled stator and one-way clutch (OWC) housed in a test setup, where the inner chamber is maintained at a given elevated temperature while its exterior housing surfaces are exposed to the room temperature. The two key components of dissimilar metals are assembled through the conventional interference fitting at their interface surfaces to form a friction joint at the room temperature. Due to the difference in the thermal expansion coefficients of two dissimilar materials, the outer component of aluminum from this joint tends to expand more than the inner component of steel when the temperature rises, thus leading to a possible relaxation in joining connection at their interface.
2017-03-28
Technical Paper
2017-01-0474
Chady Khalil, Yannick Amosse, Guillaume Racineux
Abstract In this study, a proposed new 3-in-1 process using the magnetic pulse welding (MPW) for welding similar and dissimilar metals and for hybrid joining between FRC and metals is developed. Welding between (a) AA1199 sheets and XES, (b) AA1199 and XSG which is zinc coated steel, (c) 5754-aluminum alloy and XES were performed and (d) hybrid joint between PA66-glass-FRC and 5754-aluminum was achieved. SEM observations and EDX analysis for the weld interface between aluminum and steel showed where detectable very thin layers of intermetallics and the wavy interface pattern typical for impact welding was identified. X-Ray microtomography observation for the joining region in the FRC showed the good state of the composite structure after joining. 3D numerical simulation using LS-Dyna was used for the selection of the welding parameters. Quasi-static lap shear testing for the welds revealed a failure in the weak metal sheet and not in the weld.
2017-03-28
Journal Article
2017-01-0470
Lunyu Zhang, Shin-Jang Sung, Jwo Pan, Xuming Su, Peter Friedman
Abstract Closed-form structural stress solutions are investigated for fatigue life estimations of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole based on three-dimensional finite element analyses. The closed-form structural stress solutions for rigid inclusions under counter bending, central bending, in-plane shear and in-plane tension are first presented. Three-dimensional finite element analyses of the lap-shear specimens with FDS joints without and with gap (with and without clearance hole) are then presented. The results of the finite element analyses indicate that the closed-form structural stress solutions are quite accurate at the critical locations near the FDS joints in lap-shear specimens without and with gap (with and without clearance hole) for fatigue life predictions.
2017-03-28
Journal Article
2017-01-0478
Pai-Chen Lin, WeiNing Chen
Abstract Fatigue analysis of swept friction stir clinch (Swept-FSC) joints between 6061-T6 aluminum (Al) and S45C steel (Fe) sheets was conducted through experimental approaches. Before fatigue tests, a parametric study for the probe geometry of FSC tools was conducted in order to eliminate the hook structure inside the joint and improve the mechanical performance of the joint. Then a series of quasi-static and fatigue tests for Al/Fe Swept-FSC joints in lap-shear (LP) and cross-tension (CT) specimens were conducted. The fatigue data were recorded. The fatigue behavior of Al/Fe Swept-FSC joints in LP and CT specimens were examined through optical and scanning electron microscopes. Experimental results indicated that LP specimens have two failure modes, while CT specimens have only one failure mode. The dominant fatigue crack of each failure mode was identified.
2017-03-28
Journal Article
2017-01-1646
David B. Sarraf, Helge Schmidt
Abstract Aluminum wire is receiving increased attention for automotive applications due to the potential for cost and weight savings. Termination of aluminum wire is problematic due to the tenacious surface oxide on the strands. The oxide is an electrical insulator and is difficult to displace during termination. Consequently, many of the strands within a crimped wire bundle can be electrically isolated from the terminal, which can result in higher than expected crimp resistance, less stable crimp resistance, and the potential for excess heating of the termination. Prior solutions employed additives such as brass powder to puncture the oxide film and form a diffusion bond between strands, or features such as screens or serrations that increase wire deformation and displace the oxide mechanically to promote strand-strand bonding. Both solutions have drawbacks. Additives increase cost and process complexity and can serve as contaminants to adjacent processes.
2017-03-28
Journal Article
2017-01-1644
Kinji Taguchi, Misato kusakari, Yasuhiro Akasofu, Jun Yoshimoto
Abstract The weight of wire harnesses increases with the growing number of systems used in the vehicle in recent years. For the purpose of reducing the weight of wire harnesses, aluminum instead of the conventional copper is getting popular as a wire conductor. The conventional Al wire, however, is not able to be used for small gauge wires such as the sizes of 0.35mm2 and 0.5mm2 and wires used in the engine compartment due to its insufficient conductor strength. For this reason, we tried to develop a stronger aluminum alloy that has conductor strength equivalent to or stronger than that of copper. For the first time in the industry, we have successfully developed a high-strength aluminum alloy wire. Starting with the application of 0.35mm2 wire for engine wire harnesses, we began mass production in April 2015. This paper reports the development of high-strength aluminum alloy that can be used for small gauge wires and wires used in the engine compartment.
2017-03-02
Magazine
Thought leadership at WCX17 Lucid Motors’ David Moseley: EV or ICE, “It is all physics” New eye on the road One of the industry’s hottest tech suppliers is blazing the autonomy trail by crowd-sourcing safe routes and using AI to learn to negotiate the road. Mobileye’s co-founder and CTO explains. Hard, slick and ready to roll A tough, self-renewing catalyst coating developed at Argonne National Laboratory provides unprecedented friction and wear protection for vehicle powertrains, the inventors claim. Sensor ICs, semiconductors and safety To achieve ISO 26262 compliance, engineering practices must be taken to a higher level. The following insights may prove valuable for getting there. New VCR targets 40% BTE Variable-compression ratio with VVA from France’s MCE-5.
2017-02-16
WIP Standard
AMS4485A
This specification covers a magnesium alloy in the form of extruded bars, rods, wire, tubing, and profiles. These extrusions have been used typically for parts requiring a combination of light weight, high yield strength up to 480 °F (250 °C), relatively high corrosion resistance, and good flammability resistance for magnesium alloys,but usage is not limited to such applications.
CURRENT
2017-02-15
Standard
AMS5047G
This specification covers an aluminum-killed carbon steel in the form of sheet and strip.
2017-02-14
Video
When Ford decided to invest in aluminum body structures for its F-Series pickups, they made sure the 2018 Expeditions SUV was included in the product plan. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at the lightweight 2018 Ford Expedition. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
2017-01-27
WIP Standard
AMS4416B
This specification covers an aluminum-lithium alloy in the form of extruded profiles.
CURRENT
2017-01-12
Standard
AMS3415E
This specification covers the requirements for an aluminum brazing flux in granular form.
2017-01-10
Technical Paper
2017-26-0170
Pratik Pillai, Sivakumar Venugopal, Vijaysankar Gopalan
This paper deals with the study of the phenomenon of crevice corrosion of aluminium by using an example of a corrosion failure of a joint in the automobile coolant circuit. A number of joint failures were studied to understand the corrosion pattern and for various metallurgical aspects like chemistry, hardness and microstructure. The corrosion products were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). This analysis indicated that the corrosion products mostly contained Aluminium Oxides with other contaminants like chlorides. The studies revealed that the clamped joint of the aluminium part and rubber hose led to the formation of a crevice with the engine coolant acting as the corrosive medium. The corrosion behavior at the location was affected by environmental factors like temperature, pH and chloride contamination.
2016-10-25
Technical Paper
2016-36-0262
Edney Rejowski, Juliano Pallaoro de Souza, Rafael Bettini Rabello
Abstract Engine development activities are being driven forward primarily by the challenge of continuing to reduce CO2 and exhaust emissions. From the piston/liner system it is well known that Lube Oil Consumption (LOC) is affected by the bore distortion occurrences within Internal Combustion Engines (ICE) that usually demands a redesign on the piston ring pack not in favor to reduce friction losses. This article shows a potential solution to reduce bore distortion and oil evaporation through more efficient heat dissipation from combustion chamber to engine cooling system in a modern aluminum Spark Ignition (SI) block. Electroplated nickel coating applied to the external cast iron surface previous to the casting process enable a metallurgical diffusion layer with the aluminum block material and therefore improve heat conductivity in fired operation conditions compared to conventional cast iron liners.
2016-10-25
Technical Paper
2016-36-0533
Everaldo Afonso Fernandes, Mauro Quaresma Lobato, Washington Clodovil Rocha, Antonio Adelmo Freire Beserra, José Maria do Vale Quaresma
Abstract The search for new materials to automotive industry has been intensified in the last decade. Among these materials is the aluminum which is widely used in the construction of automotive parts, sheet and in the manufacture of cables used in line transmission and distribution of electricity. Aluminum and its alloys have high deformation rate which can be hardened by plastic deformation, and low specific weight and high coefficient of thermal conductivity. This work was carried out in order to study the effect of titanium elements (content of 0.050 wt%) and Nickel (content of 0.030 wt.%) in the alloy Al-0.05wt% Cu [0.24 to 0.28]wt% Fe-0.7wt% Si. The alloys in study have concentrations within the chemical composition limits of alloys series 1XXX with minimum purity of 99.0%. The solidification processes were carried out via the steel mold (format of "U").
2016-10-17
Technical Paper
2016-01-2349
Suresh Kumar Kandreegula, Ram Krishna Kumar Singh, Jham Tikoliya
Abstract To compete with the current market trends there is always a need to arrive at a cost effective and light weight designs. For commercial vehicles, an attempt is made to decrease weight of the current design without compromising its strength & stiffness, considering/bearing all the worst road/engine load cases and severe environmental conditions. The topic was chosen because of interest in higher payloads, lower weight, and higher efficiency. Automotive cylinder head must be lighter in weight, to meet increasingly demanding customer requirements. The design approach for cylinder head has made it difficult to achieve this target. A designer might make some judgment as to where ribs are required to provide stiffness, but this is based on engineering experience and Finite Element Analysis (FEA) of the stand-alone head.
Viewing 1 to 30 of 3645

Filter

  • Range:
    to:
  • Year: