Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3641
2017-03-28
Technical Paper
2017-01-1645
Marjorie Myers
Harness and terminal manufacturers are working to support the Automotive industry’s need to reduce energy consumption (and costs) via weight savings initiatives by converting from Cu to Al electrical cables within the traditional open style cable harness termination manufacturing environment. As the Automotive industry is fully aware, terminating nominally same sized Al cable to existing Cu cable designed terminals is neither a functional, nor a reliable, equivalent option – termination design changes are required to be able successfully qualify any such Al cable to Cu terminal connections for Automotive applications. In addition, the harness industry are looking for any new Al ‘open’ crimp termination designs to work well within the existing manufacturing and connector/harness design environment; e.g., ‘open’ crimp termination, on par termination process speed, no post-treatment, etc.
2017-03-28
Technical Paper
2017-01-0453
Zane Yang
Considered in this study by the use of finite element model is a unit of assembled stator and one-way clutch (OWC) whose inner chamber is maintained at a given temperature of 150 degree C while its exterior housing surfaces are exposed to the room temperature. Two key components of dissimilar metals are assembled, as usual, at the room temperature, through the conventional interface fitting, to form a secured joint by the means of internal friction forces so that torque loads are capable to be transmitted. Due to the dissimilar materials and resulting difference in their thermal expansion coefficients, an outer component of aluminum from this joint tends to expand more than the inner component of steel when the temperature rises. This work is indented to demonstrate that using a combined thermal and structural FEA can play a pivoting role in designing not only a robust product, but also a vital test procedure that can really captures how the product functions.
2017-03-28
Journal Article
2017-01-0470
Lunyu Zhang, Shin-Jang Sung, Jwo Pan, Xuming Su, Peter Friedman
Structural stress solutions for flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole (without and with gap) are investigated. Analytical structural stress solutions at the critical locations of FDS joints based on the analytical solutions for a rigid inclusion in a thin plate under various loading conditions are first obtained. Finite element analyses are then conducted to verify the analytical solutions. The fatigue life estimations of the FDS joints in lap-shear specimens with and without clearance hole (without and with gap) based on the structural stress solutions are in agreement with those of the experimental results.
2017-03-28
Technical Paper
2017-01-0474
Chady Khalil, Yannick Amosse, Guillaume Racineux
Abstract In this study, a proposed new 3-in-1 process using the magnetic pulse welding (MPW) for welding similar and dissimilar metals and for hybrid joining between FRC and metals is developed. Welding between (a) AA1199 sheets and XES, (b) AA1199 and XSG which is zinc coated steel, (c) 5754-aluminum alloy and XES were performed and (d) hybrid joint between PA66-glass-FRC and 5754-aluminum was achieved. SEM observations and EDX analysis for the weld interface between aluminum and steel showed where detectable very thin layers of intermetallics and the wavy interface pattern typical for impact welding was identified. X-Ray microtomography observation for the joining region in the FRC showed the good state of the composite structure after joining. 3D numerical simulation using LS-Dyna was used for the selection of the welding parameters. Quasi-static lap shear testing for the welds revealed a failure in the weak metal sheet and not in the weld.
2017-03-28
Journal Article
2017-01-0478
Pai-Chen Lin, WeiNing Chen
Abstract Fatigue analysis of swept friction stir clinch (Swept-FSC) joints between 6061-T6 aluminum (Al) and S45C steel (Fe) sheets was conducted through experimental approaches. Before fatigue tests, a parametric study for the probe geometry of FSC tools was conducted in order to eliminate the hook structure inside the joint and improve the mechanical performance of the joint. Then a series of quasi-static and fatigue tests for Al/Fe Swept-FSC joints in lap-shear (LP) and cross-tension (CT) specimens were conducted. The fatigue data were recorded. The fatigue behavior of Al/Fe Swept-FSC joints in LP and CT specimens were examined through optical and scanning electron microscopes. Experimental results indicated that LP specimens have two failure modes, while CT specimens have only one failure mode. The dominant fatigue crack of each failure mode was identified.
2017-03-28
Journal Article
2017-01-1644
Kinji Taguchi, Misato kusakari, Yasuhiro Akasofu, Jun Yoshimoto
Weight reduction of vehicles has been undertaken to improve the fuel economy due to possible environmental impact of exhaust gas as well as out of concern over diminished fossil fuel. The weight of wire harnesses increases with the growing number of systems used in the vehicle. For the purpose of reducing the weight of wire harnesses, aluminum instead of the conventional copper is getting popular as a wire conductor. The conventional Al wire, however, is not able to be used for small gauge wires such as the sizes of 0.35mm2 and 0.5mm2 and wires used in the engine compartment due to its insufficient conductor strength. For this reason, we tried to develop a stronger aluminum alloy that has conductor strength equivalent to or stronger than that of copper. For the first time in the industry, we have successfully developed a high-strength aluminum alloy wire. Starting with the application to the 0.35mm2 wire for engine wire harnesses, we started its mass production in April 2015.
2017-03-28
Journal Article
2017-01-1646
David B. Sarraf, Helge Schmidt
The surface oxide that naturally forms on aluminum wires is an electrical insulator and is difficult to displace during crimping. Consequently, many of the strands of within the crimped wire bundle can be electrically isolated from the terminal, which can result in higher than expected crimp resistance, less stable crimp resistance, and the potential for excess heating of the termination. Prior solutions employed additives such as brass powder to puncture the oxide film or features such as serrations that increase deformation and displace the film. Both solutions have drawbacks. Additives increase cost and process complexity and can serve as contaminants to adjacent processes. The required features can be difficult to produce and may require high crimping effort. This present work uses an electric field applied at the moment of crimp formation to puncture the surface oxide and allow the formation of conductive a-spots.
2017-02-16
WIP Standard
AMS4485A
This specification covers a magnesium alloy in the form of extruded bars, rods, wire, tubing, and profiles. These extrusions have been used typically for parts requiring a combination of light weight, high yield strength up to 480 °F (250 °C), relatively high corrosion resistance, and good flammability resistance for magnesium alloys,but usage is not limited to such applications.
CURRENT
2017-02-15
Standard
AMS5047G
This specification covers an aluminum-killed carbon steel in the form of sheet and strip.
2017-02-14
Video
When Ford decided to invest in aluminum body structures for its F-Series pickups, they made sure the 2018 Expeditions SUV was included in the product plan. In this episode of SAE Eye on Engineering, Editor-In-Chief Lindsay Brooke looks at the lightweight 2018 Ford Expedition. SAE Eye on Engineering also airs Monday mornings on WJR 760 AM Detroit's Paul W. Smith Show. Access archived episodes of SAE Eye on Engineering.
2017-01-27
WIP Standard
AMS4416B
This specification covers an aluminum-lithium alloy in the form of extruded profiles.
CURRENT
2017-01-12
Standard
AMS3415E
This specification covers the requirements for an aluminum brazing flux in granular form.
2017-01-10
Technical Paper
2017-26-0170
Pratik Pillai, Sivakumar Venugopal, Vijaysankar Gopalan
This paper deals with the study of the phenomenon of crevice corrosion of aluminium by using an example of a corrosion failure of a joint in the automobile coolant circuit. A number of joint failures were studied to understand the corrosion pattern and for various metallurgical aspects like chemistry, hardness and microstructure. The corrosion products were analyzed using Scanning Electron Microscopy (SEM) and Energy Dispersive X-Ray Spectroscopy (EDS). This analysis indicated that the corrosion products mostly contained Aluminium Oxides with other contaminants like chlorides. The studies revealed that the clamped joint of the aluminium part and rubber hose led to the formation of a crevice with the engine coolant acting as the corrosive medium. The corrosion behavior at the location was affected by environmental factors like temperature, pH and chloride contamination.
2016-10-25
Technical Paper
2016-36-0533
Everaldo Afonso Fernandes, Mauro Quaresma Lobato, Washington Clodovil Rocha, Antonio Adelmo Freire Beserra, José Maria do Vale Quaresma
Abstract The search for new materials to automotive industry has been intensified in the last decade. Among these materials is the aluminum which is widely used in the construction of automotive parts, sheet and in the manufacture of cables used in line transmission and distribution of electricity. Aluminum and its alloys have high deformation rate which can be hardened by plastic deformation, and low specific weight and high coefficient of thermal conductivity. This work was carried out in order to study the effect of titanium elements (content of 0.050 wt%) and Nickel (content of 0.030 wt.%) in the alloy Al-0.05wt% Cu [0.24 to 0.28]wt% Fe-0.7wt% Si. The alloys in study have concentrations within the chemical composition limits of alloys series 1XXX with minimum purity of 99.0%. The solidification processes were carried out via the steel mold (format of "U").
2016-10-25
Technical Paper
2016-36-0262
Edney Rejowski, Juliano Pallaoro de Souza, Rafael Bettini Rabello
Abstract Engine development activities are being driven forward primarily by the challenge of continuing to reduce CO2 and exhaust emissions. From the piston/liner system it is well known that Lube Oil Consumption (LOC) is affected by the bore distortion occurrences within Internal Combustion Engines (ICE) that usually demands a redesign on the piston ring pack not in favor to reduce friction losses. This article shows a potential solution to reduce bore distortion and oil evaporation through more efficient heat dissipation from combustion chamber to engine cooling system in a modern aluminum Spark Ignition (SI) block. Electroplated nickel coating applied to the external cast iron surface previous to the casting process enable a metallurgical diffusion layer with the aluminum block material and therefore improve heat conductivity in fired operation conditions compared to conventional cast iron liners.
2016-10-17
Technical Paper
2016-01-2349
Suresh Kumar Kandreegula, Ram Krishna Kumar Singh, Jham Tikoliya
Abstract To compete with the current market trends there is always a need to arrive at a cost effective and light weight designs. For commercial vehicles, an attempt is made to decrease weight of the current design without compromising its strength & stiffness, considering/bearing all the worst road/engine load cases and severe environmental conditions. The topic was chosen because of interest in higher payloads, lower weight, and higher efficiency. Automotive cylinder head must be lighter in weight, to meet increasingly demanding customer requirements. The design approach for cylinder head has made it difficult to achieve this target. A designer might make some judgment as to where ribs are required to provide stiffness, but this is based on engineering experience and Finite Element Analysis (FEA) of the stand-alone head.
CURRENT
2016-10-17
Standard
AS6116A
This SAE Aerospace Standard (AS) establishes the requirements for externally swaged aluminum tube fittings on aluminum tubing with flareless separable fitting ends for use in hydraulic supply and return aerospace fluid systems including pneumatic, coolants, and fire extinguishers up to a maximum operating pressure of 1500 psig (10340 kPa) and a maximum operating temperature range of -65 to +225 °F (-54 to +107 °C). This specification covers a common aluminum fitting that may be used for a range of operating pressures up to 1500 psi with different tubing materials and tubing wall thicknesses, and is assembled with the same tooling in accordance with AS6124. Table 12 shows applicable aerospace fitting part number standard and tubing materials and operating pressures.
2016-10-04
Event
Topics Include: Friction Stir Welding Advanced Material Joining Advanced Machining Additive Metals Manufacturing Advanced Forming and Fabrication Advanced Alloy Metals Advances in Titanium Advances in Aluminum
2016-10-01
WIP Standard
AMS3604A
This specification establishes requirements for a heat resistant aluminized organic coating with sufficient corrosion and erosion resistance for the finished substrate.
2016-10-01
WIP Standard
AMS4613A
This specification covers an aluminum alloy in the form of sheet and plate.
2016-09-27
Technical Paper
2016-01-2125
Henry Hameister
This paper presents an approach to how existing production systems can benefit from Industry 4.0 driven concepts. This attempt is based on a communication gateway and a cloud-based system, that hosts all algorithms and models to calculate a prediction of the tool wear. As an example we will show the Refill Friction Stir Spot Welding (RFSSW), a solid state joining technique, which is examined at the Institute of Production Engineering (LaFT) of the Helmut-Schmidt-University, University of the Federal Armed Forces Hamburg, for years. RFSSW is a sub-section of friction welding, where a rotating tool that consists out of three parts is used to heat up material to a dough-like state. Since Refill Friction Stir Spot Welding produces a selective dot-shaped connection of overlapping materials, the production requirements are similar to riveting or resistance spot welding.
2016-09-27
Technical Paper
2016-01-2129
Antonio Rubio, Luis Calleja, Javier Orive, Ángel Mújica, Asunción Rivero
Abstract Aluminum skin milling is a very challenging process due to the high quality requirements needed in the aeronautic and aerospace industries. Nowadays, on these markets, there are just two technological approaches able to face the manufacturing of this sort of wide thin blanks: chemical and mechanical milling by means of highly complex machines. Both solutions lead to a high investment requirement that affect directly on the application profitability on these industrial sectors. This paper presents a flexible machining system that allows milling skin shaped parts within required tolerances by means of an innovative universal holding fixture combined with an adaptive toolpath development. This flexible holding fixture can be adapted to the required shape and can hold uniformly the whole sheet surface. Besides, the solution includes an implementation that can adapt the machining toolpath by means of the skin thickness online measurement.
2016-09-18
Technical Paper
2016-01-1937
Taylor Erva, Adam Loukus, Luke Luskin
Abstract Aluminum metal matrix composite brake rotors with a selective ceramic function reinforcement gradient (FRG) have been developed for automotive applications. This paper will highlight the design, manufacturing, and testing of the rotors. Weight saving of an aluminum composite rotor in comparison to an industry standard cast iron rotor is 50-60%. With this material change comes design considerations to manage rotor temperature, rotor surface integrity, and friction. Manufacturing methods to meet these design constraints were needed to develop a viable high performance aluminum composite rotor. High pressure squeeze casting with soluble coring techniques were developed to incorporate the selective FRG MMC rotors. Dynamometer testing was performed, concentrating on brake friction and temperature to evaluate the macro and micro interfaces in the rotors.
2016-09-14
WIP Standard
AMS4880E
This specification covers an aluminum bronze alloy in the form of centrifugal and continuous-cast castings.

These castings have been used typically for bearings requiring abrasion resistance, good ductility, and good retention of hardness at moderate temperatures, but usage is not limited to such applications.

2016-09-14
WIP Standard
AMSQQA225/6B
This specification covers the specific requirements for 2024 aluminum alloy bar, rod and wire produced by rolling, drawing or cold finishing.
2016-09-14
WIP Standard
AMSQQA200/3A
This specification covers the specific requirements for aluminum alloy 2024 bar, rod, shapes, tube, and wire produced by extrusion.
2016-09-14
WIP Standard
AMS4881E
This specification covers a nickel-aluminum bronze alloy in the form of sand or centrifugal castings. These castings have been used typically for parts requiring a combination of high strength and hardness with some ductility and toughness, but usage is not limited to such applications.
2016-09-14
WIP Standard
AMS4599A
This specification covers an aluminum alloy in the form of sheet and plate.
2016-09-14
WIP Standard
AMS4595A
This specification covers a copper-nickel-tin alloy in the form of plate.
Viewing 1 to 30 of 3641

Filter

  • Range:
    to:
  • Year: