Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2803
2017-09-19
Technical Paper
2017-01-2149
Cameron S. Gillespie
Abstract As carbon fiber reinforced plastics (CFRP) become more integrated into the design of large single piece aircraft structures, aircraft manufacturers are demanding higher speed and efficiency in Automated Fiber Placement (AFP) deposition systems. To facilitate the manufacturing of large surface area and low contour parts (wing skins, in this case) at a high production rate, Electroimpact has developed a new AFP head consisting of 20 1.5 inch wide pre-impregnated carbon tows. The new head design has been named the ‘OH20’, short for ‘One and a Half Inch, 20 Tows’. This AFP head format creates a deposition swath over 30 inches wide when all 20 tows are active. A total of four of these AFP heads have been integrated with a quick change robotic tool changer on two high speed, high acceleration, and high accuracy moving beam gantries.
CURRENT
2017-09-13
Standard
ARP5637A
The information in this document is intended to apply to commercial jet transport category airplanes that incorporate plastic (polycarbonate or acrylic) lenses on exterior light assemblies, or are being considered for such an application as opposed to glass lens designs. Exterior lighting applications include position light assemblies, anticollision light asemblies, and landing light assemblies. However, much of the material provided herein is general in nature and is directly applicable to many aircraft categories including, but not limited to, helicopters, general aviation aircraft, and military aircraft.
2017-09-04
Technical Paper
2017-24-0116
Ekarong Sukjit, Pansa Liplap, Somkiat Maithomklang, Weerachai Arjharn
Abstract In this study, two oxygenated fuels consisting of butanol and diethyl ether (DEE), both possess same number of carbon, hydrogen and oxygen atom but difference functional group, were blended with the waste plastic pyrolysis oil to use in a 4-cylinder direct injection diesel engine without any engine modification. In addition, the effect of castor oil addition to such fuel blends was also investigated. Four tested fuels with same oxygen content were prepared for engine test, comprising DEE16 (84% waste plastic oil blended with 16% DEE), BU16 (84% waste plastic oil blended with 16% butanol), DEE11.5BIO5 (83.5% waste plastic oil blended with 11.5% DEE and 5% castor oil) and BU11.5BIO5 (83.5% waste plastic oil blended with 11.5% butanol and 5% castor oil). The results found that the DEE addition to waste plastic oil increased more HC and smoke emissions than the butanol addition at low engine operating condition.
2017-08-30
Event
2017-08-28
WIP Standard
J400
This SAE Recommended Practice covers a laboratory procedure for testing and evaluating the resistance of surface coating to chipping by gravel impact. The test is designed to reproduce the effect of gravel or other media striking exposed paint or coated surfaces of an automobile and has been correlated with actual field results. The specific intent of the test is to evaluate organic surface coatings or systems on flat test panels; however, It may be possible to extend this type of testing to finished parts or other types of materials such as anodized aluminum or plated plastics if the results are interpreted with respect to the limitations and intent implied by the original testing procedures and rating system. This document may involve hazardous materials, operations, and equipment. This document does not purport to address all of the safety problems associated with its use.
CURRENT
2017-08-07
Standard
J576_201708
This SAE Recommended Practice is intended as a guide toward standard practice and is subject to change to keep pace with experience and technical advances. This document establishes additional performance requirements and provides test methods and requirements to evaluate the suitability of plastic material or materials intended for optical applications in motor vehicles. The tests are intended to determine physical and optical characteristics of the material or materials only. Performance expectations of finished assemblies, including plastic components, are to be based on tests for lighting devices, as specified in SAE Standards and Recommended Practices for motor vehicle lighting equipment.
CURRENT
2017-07-17
Standard
AMS3255B
This specification establishes the requirements for an expanded polytetrafluoroethylene (EPTFE) in the form of sealing tape, gaskets, or sheets requiring no mixing or curing.
CURRENT
2017-07-13
Standard
J1717_201707
SAE J1717 is an advisory document suggesting minimum recommended testing, appearance evaluation, and protocol for specifying the recommendations with regard to Singular Unassembled Automotive Interior Trim Parts.
CURRENT
2017-06-16
Standard
J1525_201706
This SAE Recommended Practice describes a lap shear test method for use in measuring the bonding characteristics of automotive-type adhesives for joining fiber reinforced plastics (FRPs) to themselves and to metals.
2017-05-10
Event
CURRENT
2017-05-10
Standard
USCAR44
This specification describes a method and acceptance criteria for testing automotive wire harness retainer clips. Retainer clips are plastic parts that hold a wire harness or electrical connector in a specific position. Typical plastic retainers work by having a set of "branches" that can be inserted into a hole sized to be easy to install but provide acceptable retention. This specification tests retainer clips for mechanical retention when exposed to the mechanical and environmental stresses typically found in automotive applications over a 15-year service life. This specification has several test options to allow the test to match to the expected service conditions. The variability of applications typically arises a) from different ambient temperatures near the clip, different proximity to automotive fluids, different exposure to standing water or water spray and different thicknesses of the holes that the clip is inserted into.
2017-04-06
Event
Presentations of this session will address application and research on coatings for exterior body and plastics (including polycarbonate) as well as vehicle interiors and underbody/underhood. Focus will be on the 3-10 year timeframe.
2017-04-06
Event
Presentations in this session include welding (i.e., friction stir, ultrasonic, resistance, arc, laser, etc.) and joining (i.e., brazing, soldering, riveting, bolting, and adhesives) of similar or dissimilar materials (i.e., plastics, composites, aluminum, magnesium, titanium, and conventional and advanced high strength steels). Strength, fracture, and fatigue implications of these methodologies will be discussed.
2017-04-06
Event
Presentations in this session include welding (i.e., friction stir, ultrasonic, resistance, arc, laser, etc.) and joining (i.e., brazing, soldering, riveting, bolting, and adhesives) of similar or dissimilar materials (i.e., plastics, composites, aluminum, magnesium, titanium, and conventional and advanced high strength steels). Strength, fracture, and fatigue implications of these methodologies will be discussed.
2017-04-06
Event
Presentations of this session will address application and research on coatings for exterior body and plastics (including polycarbonate) as well as vehicle interiors and underbody/underhood. Focus will be on the 3-10 year timeframe.
2017-04-05
Event
Presentations in this session include welding (i.e., friction stir, ultrasonic, resistance, arc, laser, etc.) and joining (i.e., brazing, soldering, riveting, bolting, and adhesives) of similar or dissimilar materials (i.e., plastics, composites, aluminum, magnesium, titanium, and conventional and advanced high strength steels). Strength, fracture, and fatigue implications of these methodologies will be discussed.
2017-03-28
Technical Paper
2017-01-1741
Hyerin Choi, JunHo Song, Jae kwang Lee, Jaeyong Ko
Abstract Recently, it is one of the major problems in the automotive industry that grating is occurred form the place that more than two different materials combined. It is the most severe case that the noise generates between automobile seats and other relative parts (or within seat parts). The purpose of this research verifies and suggests the way to reduce squeak noise between two different parts through the stick-slip test which is regulated by VDA. The two materials - the seat trim cover and the plastic - were selected as major factors. We conducted the test with two different types of seat trim cover (authentic and artificial leather) and plastics (PP and ABS) with 4 levels of embossing size (0 to 3, level ‘0’ is non-embossing. Level 1 is the biggest embossing and it goes through smaller. Level 3 is the smallest embossing size). Test results were reported with 1 to 10 Risk Priority Number (RPN) which was proposed by VDA (Verband der Automotilindustrie).
2017-03-28
Technical Paper
2017-01-0489
Hyunkwon Jo, Jongsoo Kim, Jaemin Park, Heeseung Yang, Hyunmin Park
Abstract Cost reduction is an important issue in the intense competition automotive industry. Interior parts which are mainly consist of plastic have same issue. The manufacturing main processes of plastic products are injection and assemble and the cost of injection depends on injection cycle time. Therefore many studies for the reduction of injection cycle time have been implemented. However the researches based on engineer's experiences have limits so, nowadays many studies utilize CAE. In this paper, the study for the reduction of cycle time focused on injection molding design. To satisfy appearance quality with the reduction of cycle time, the design of injection molding was optimized by using CAE. The result of CAE showed many causes and effects of problems. The optimization of injection molding design improved the quality with the reduction of cycle time. Finally, the product based on CAE showed good quality and cycle time reduction in comparison with previous products.
Viewing 1 to 30 of 2803

Filter

  • Range:
    to:
  • Year: