Criteria

Text:
Display:

Results

Viewing 1 to 30 of 9809
2017-11-28 ...
  • November 28-December 1, 2017 (3 Sessions) - Live Online
Training / Education Online Web Seminars
This web seminar will provide an introduction to the characteristics of sound waves, human perception of sound, sound and vibration measurements, measurement facilities, and various noise sources and noise control principles. It will include an overview of sound pressure, power, intensity, decibels, and frequencies. Practical examples will be used to familiarize participants with the acoustic fundamentals for solving noise and vibration problems and the associated solution principles.
2017-10-02 ...
  • October 2-6, 2017 (8:00 a.m. - 8:00 p.m.) - Troy, Michigan
Training / Education Classroom Engineering Academies
This Engineering Academy covers a variety of vehicle noise control engineering principles and practices. Two specialty tracks are available: Vehicle Interior Noise and Powertrain Noise. While the Powertrain Noise track focuses on NVH issues generated by powertrain noise sources and the design strategies to minimize them, the Vehicle Interior Noise track focuses on the understanding and application of acoustical materials to optimize NVH in the passenger or operator compartment of a vehicle. Considerable attention is given to current measurement and instrumentation technologies and their effective use.
2017-10-02 ...
  • October 2-6, 2017 (8:00 a.m. - 8:00 p.m.) - Troy, Michigan
Training / Education Classroom Engineering Academies
This Engineering Academy covers a variety of vehicle noise control engineering principles and practices. Two specialty tracks are available: Vehicle Interior Noise and Powertrain Noise. While the Vehicle Interior Noise track focuses on the understanding and application of acoustical materials to optimize NVH in the passenger or operator compartment of a vehicle, the Powertrain Noise track focuses on NVH issues generated by powertrain noise sources and the design strategies to minimize them. Noise sources include engines, transmissions/transfer cases, accessories, exhaust, gears, axles, joints, and couplings.
2017-09-29 ...
  • September 29, 2017 (8:30 a.m. - 4:30 p.m.) - Orlando, Florida
Training / Education Classroom Seminars
Brake noise is one of the highest ranked complaints of car owners. Grunts, groans, squeaks, and squeals are common descriptions of the annoying problem which brake engineers spend many hours trying to resolve. Consumer expectations and the high cost of warranty repairs are pushing the optimization of brake NVH performance. This course will provide you with an overview of the various damping mechanisms and tools for analyzing and reducing brake noise. A significant component of this course is the inclusion of case studies which will demonstrate how brake noise squeal issues have been successfully resolved.
2017-09-28 ...
  • September 28, 2017 (8:30 a.m. - 4:30 p.m.) - Orlando, Florida
Training / Education Classroom Seminars
Brake Noise, Vibration, and Harshness (NVH) is recognized as one of the major problems currently faced by the automotive manufacturers and their suppliers, with customers warranty claims of more than $100 million per year for each manufacturer. With increasing consumer braking performance expectations, automotive OEM’s and suppliers need the ability to predict potential problems and identify solutions during the design phase before millions of dollars have been spent in design, prototyping, and manufacturing tooling.
2017-08-15 ...
  • August 15-17, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
This web seminar provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
2017-08-01 ...
  • August 1-10, 2017 (4 Sessions) - Live Online
Training / Education Online Web Seminars
This four-session web seminar provides a detailed understanding of the source – path-receiver relationship for developing appropriate sound package treatments in vehicles, including automobiles, commercial vehicles, and other transportation devices. The course provides a detailed overview of absorption, attenuation (barrier), and damping materials and how to evaluate their performances on material, component, and vehicle level applications. A significant part of this course is the case studies that demonstrate how properly designed sound package materials successfully address vehicle noise issues.
2017-06-17
Journal Article
2017-01-9550
David Neihguk, M. L. Munjal, Arvind Ram, Abhinav Prasad
Abstract A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
2017-06-15 ...
  • June 15-16, 2017 (8:30 a.m. - 4:30 p.m.) - Grand Rapids, Michigan
Training / Education Classroom Seminars
The sound package materials for vehicle noise control seminar provides a detail and thorough analysis of three different classes of acoustical materials – namely absorbers, barriers, and dampers, how they are different from each other, and acoustical properties that materials should possess for optimum vehicle noise control. The seminar addresses new advances in acoustical materials, primarily in absorption materials that impact the vehicle acoustics. The seminar covers ways to evaluate the acoustical performance of these materials using different test methods, including material, component, and vehicle level measurements.
2017-06-15 ...
  • June 15, 2017 (8:30 a.m. - 4:30 p.m.) - Grand Rapids, Michigan
  • November 6, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The influx of different hybrid and electric vehicle configurations has brought about unique NVH challenges from a variety of sources. NVH refinement is an important aspect of powertrain development and the vehicle integration process. While developing the NVH behavior of the vehicle is critical to satisfy customer expectations, it is also important to consider the influence of reduced exterior noise levels on pedestrian safety.
2017-06-05
Technical Paper
2017-01-1753
Jack Hall Riddle, Ya-Juan Bemman, Tom Frei, Sihui Wu, Ishang Padalkar
Abstract Demands for engines to operate at low-frequency firing order are increasing in the automotive market. This requirement is driven by consumer and regulatory demand for vehicles which are more efficient in the use of fuel. As a result, engine and transmission technologies have been developed which permit operation of engines with fewer cylinders at increasingly low RPM’s. The resulting low frequency exhaust noise is more difficult to attenuate than in vehicles in years past. At the same time, vehicles often have less packaging space for mufflers, when larger volume would otherwise be needed to attenuate at lower frequencies. A further challenge is the demand for increasingly refined performance sounds from the exhaust systems of premium cars despite the technical obstacles involved in even maintaining sound quality. Finally, legally permissible sound levels are decreasing in some markets. These market and regulatory demands require new solutions.
2017-06-05
Technical Paper
2017-01-1755
Frank C. Valeri, James T. Lagodzinski, Scott M. Reilly, John P. Miller
Abstract Hybrid powertrain vehicles inherently create discontinuous sounds during operation. The discontinuous noise created from the electrical motors during transition states are undesirable since they can create tones that do not correlate with the dynamics of the vehicle. The audible level of these motor whines and discontinuous tones can be reduced via common noise abatement techniques or reducing the amount of regeneration braking. One electronic solution which does not affect mass or fuel economy is Masking Sound Enhancement (MSE). MSE is an algorithm that uses the infotainment system to mask the naturally occurring discontinuous hybrid drive unit and driveline tones. MSE enables a variety of benefits, such as more aggressive regenerative braking strategies which yield higher levels of fuel economy and results in a more pleasing interior vehicle powertrain sound. This paper will discuss the techniques and signals used to implement MSE in a hybrid powertrain equipped vehicle.
2017-06-05
Technical Paper
2017-01-1754
Kyoung-Jin Chang, Seonghyeon Kim, Dong Chul Park, So Youn Moon, Sunghwan Park, Myung Hwan Yun
Abstract This paper aims to establish a systematic process of developing a brand driving sound. Firstly, principal factors of a brand sound identity are extracted from factor analysis of many sample cars. As a result, brand sound positioning map is drawn using jury test data. Also, the multiple regression analysis of subjective and objective test results is carried. As a result, the principal factors are expressed by objective test data and brand sound positioning map can be easily updated from the measurement data. In addition, what should be improved for designing a target sound is reviewed. Secondly, various technologies of target sound design are discussed to involve the brand identity and vehicle’s character in driving sound. Also, an efficient tool to implement the target sound with an active sound design (ASD) system in a vehicle is introduced. This tool enables to efficiently design, tune and simulate a target sound for ASD system in a laboratory.
2017-06-05
Technical Paper
2017-01-1757
Matthew Maunder, Benjamin Munday
Abstract Excitement, image and emotion are key attributes for cars, particularly those with higher power ratings. Engine sound has traditionally acted as the car’s voice, conveying these attributes to the driver and passengers along with the brand image. Engine sound also underpins the dynamic driving experience by giving instant feedback about how a car is operating, enhancing the connection between driver and vehicle. For decades, the automotive industry has engineered engine sound to achieve these benefits, thereby defining the ‘language’ of car sound. Electric vehicles deliver strong and responsive performance but naturally lack the acoustic feedback that internal combustion engines provide. While this gives advantages in terms of comfort and environmental noise, the benefits of engine sound are lost. Carefully controlled acoustic feedback inside the car’s cabin brings tangible and valuable benefits both for the dynamic driving experience and to convey the brand image.
2017-06-05
Journal Article
2017-01-1758
Seung Min Lee, Dong Chul Park, Seonghyeon Kim, Sang Kwon Lee
Abstract Recently the interior sound is actively generated by the active sound design (ASD) device in a passenger car. Therefore, the objective evaluation method for the sound quality of actively designed sounds is required. In previous research, the sound quality of interior sound has been presented with powerful and pleasant for the existing passenger car. This paper presents a novel approach method for the objective evaluation of powerfulness and pleasantness of actively designed interior sound. The powerfulness has been evaluated based on the degreed of modulation and a quantity of low frequency booming of the sound in the paper. On the other hand, the pleasantness is evaluated based on the slope ratio of harmonic orders per octave in frequency domain. These evaluation methods are successfully applied to the objective evaluation of luxury passenger car.
2017-06-05
Technical Paper
2017-01-1761
Daniel Fernandez Comesana, Graciano Carrillo Pousa, Emiel Tijs
Abstract The automotive industry is currently increasing the noise and vibration requirements of vehicle components. A detailed vibro-acoustic assessment of the supplied element is commonly enforced by most vehicle manufacturers. Traditional End-Of-Line (EOL) solutions often encounter difficulties adapting from controlled environments to industrial production lines due the presence of high levels of noise and vibrations generated by the surrounding machinery. In contrast, particle velocity measurements performed near a rigid radiating surface are less affected by background noise and they can potentially be used to address noise problems even in such conditions. The vector nature of particle velocity, an intrinsic dependency upon surface displacement and sensor directivity are the main advantages over conventional solutions. As a result, quantitative measurements describing the vibro-acoustic behavior of a device can be performed at the final stage of the manufacturing process.
2017-06-05
Technical Paper
2017-01-1817
Steven M. Gasworth, Vasudev Nilajkar, Matteo Terragni
Abstract Polycarbonate (PC) glazing as a one-for-one glass replacement offers a 50% weight reduction, but exhibits several dB lower sound transmission loss (STL) in the low frequency range where tire and engine noise are dominant. In the high frequency range where wind noise is dominant, PC glazing offers an STL at least comparable to its glass counterpart, and an STL exceeding glass when this frequency range encompasses the glass coincidence frequency. However, a key value proposition of PC glazing is the opportunity for feature integration afforded by the injection molding process generally used for forming such glazing. Two-component (2K) molding fuses a second shot of plastic material behind, and along the perimeter of, the transparent PC first shot. This second shot can incorporate features and implement functions that require additional components attached or peripheral to a glass version.
2017-06-05
Technical Paper
2017-01-1800
Robert White
Abstract Several analytical tools exist for estimating a driveshaft’s critical speed, from simple elementary beam theory to sophisticated FEA models. Ultimately, nothing is better than a test, because no one will argue with the outcome from a well-designed measurement. Impact response measurements are easy, but they tend to over predict the critical speed. A test which sweeps the shaft speed up until failure is telling, but the speed causing failure is strongly dependent on even small amounts of variation in rotor unbalance. Waterfall plots of shaft displacement measurements offer the best indication of critical speed, however sometimes the resonance isn’t unmistakable or multiple resonances exist, making the critical speed unclear. A method less susceptible to system variation is offered here, fitting shaft orbit measurements to the theoretical single degree of freedom equation.
2017-06-05
Technical Paper
2017-01-1808
Francis Nardella
Abstract In a previous report, it was shown that power transmission through the camshaft reduced the first mode natural frequency of the power train and translated its convergence with dominant engine excitatory harmonics to a lower engine speed resulting in a marked reduction in torsional vibration while achieving 2/1 gear reduction for a 4-stroke 6-cylinder compression ignition (CI) engine for aviation. This report describes a sweep though 2 and 4-stroke engines with differing numbers of cylinders configured as standard gear reduction (SGRE) and with power transmission through the camshaft (CDSE) or an equivalent dedicated internal driveshaft (DISE). Four and 6-cylinder 4-stroke engines were modeled as opposed boxer engines. Four and 6-cylinder 2-stroke engines and 8, 10 and 12-cylinder 2-stroke and 4-stroke engines were modeled as 180° V-engines. All 2-stroke engines were considered to be piston ported and configured as SGRE or DISE.
2017-06-05
Technical Paper
2017-01-1804
Chulwoo Jung, Hyeon Seok Kim, Hyuckjin Oh, Kwang Hyeon Hwang, Hun Park
Abstract An efficient method to determine optimal bushing stiffness for improving noise and vibration of passenger cars is developed. In general, a passenger vehicle includes various bushings to connect body and chassis systems. These bushings control forces transferred between the systems. Noise and vibration of a vehicle are mainly caused by the forces from powertrain (engine and transmission) and road excitation. If bushings transfer less force to the body, levels of noise and vibration will be decreased. In order to manage the forces, bushing stiffness plays an important role. Therefore, it is required to properly design bushing stiffness when developing passenger vehicles. In the development process of a vehicle, bushing stiffness is decided in the early stage (before the test of an actual vehicle) and it is not validated until the test is performed.
Viewing 1 to 30 of 9809

Filter

  • Range:
    to:
  • Year: