Criteria

Text:
Display:

Results

Viewing 1 to 30 of 9656
2017-10-02 ...
  • October 2-6, 2017 (8:00 a.m. - 8:00 p.m.) - Troy, Michigan
Training / Education Classroom Engineering Academies
This Engineering Academy covers a variety of vehicle noise control engineering principles and practices. Two specialty tracks are available: Vehicle Interior Noise and Powertrain Noise. While the Vehicle Interior Noise track focuses on the understanding and application of acoustical materials to optimize NVH in the passenger or operator compartment of a vehicle, the Powertrain Noise track focuses on NVH issues generated by powertrain noise sources and the design strategies to minimize them. Noise sources include engines, transmissions/transfer cases, accessories, exhaust, gears, axles, joints, and couplings.
2017-10-02 ...
  • October 2-6, 2017 (8:00 a.m. - 8:00 p.m.) - Troy, Michigan
Training / Education Classroom Engineering Academies
This Engineering Academy covers a variety of vehicle noise control engineering principles and practices. Two specialty tracks are available: Vehicle Interior Noise and Powertrain Noise. While the Powertrain Noise track focuses on NVH issues generated by powertrain noise sources and the design strategies to minimize them, the Vehicle Interior Noise track focuses on the understanding and application of acoustical materials to optimize NVH in the passenger or operator compartment of a vehicle. Considerable attention is given to current measurement and instrumentation technologies and their effective use.
2017-08-15 ...
  • August 15-17, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
This web seminar provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
2017-08-01 ...
  • August 1-10, 2017 (4 Sessions) - Live Online
Training / Education Online Web Seminars
This four-session web seminar provides a detailed understanding of the source – path-receiver relationship for developing appropriate sound package treatments in vehicles, including automobiles, commercial vehicles, and other transportation devices. The course provides a detailed overview of absorption, attenuation (barrier), and damping materials and how to evaluate their performances on material, component, and vehicle level applications. A significant part of this course is the case studies that demonstrate how properly designed sound package materials successfully address vehicle noise issues.
2017-06-15 ...
  • June 15-16, 2017 (8:30 a.m. - 4:30 p.m.) - Grand Rapids, Michigan
Training / Education Classroom Seminars
The sound package materials for vehicle noise control seminar provides a detail and thorough analysis of three different classes of acoustical materials – namely absorbers, barriers, and dampers, how they are different from each other, and acoustical properties that materials should possess for optimum vehicle noise control. The seminar addresses new advances in acoustical materials, primarily in absorption materials that impact the vehicle acoustics. The seminar covers ways to evaluate the acoustical performance of these materials using different test methods, including material, component, and vehicle level measurements.
2017-06-15 ...
  • June 15, 2017 (8:30 a.m. - 4:30 p.m.) - Grand Rapids, Michigan
  • November 6, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The influx of different hybrid and electric vehicle configurations has brought about unique NVH challenges from a variety of sources. NVH refinement is an important aspect of powertrain development and the vehicle integration process. While developing the NVH behavior of the vehicle is critical to satisfy customer expectations, it is also important to consider the influence of reduced exterior noise levels on pedestrian safety.
2017-06-05 ...
  • June 5-16, 2017 (6 Sessions) - Live Online
  • December 4-15, 2017 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
2017-04-21 ...
  • April 21, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 29, 2017 (8:30 a.m. - 4:30 p.m.) - Orlando, Florida
Training / Education Classroom Seminars
Brake noise is one of the highest ranked complaints of car owners. Grunts, groans, squeaks, and squeals are common descriptions of the annoying problem which brake engineers spend many hours trying to resolve. Consumer expectations and the high cost of warranty repairs are pushing the optimization of brake NVH performance. This course will provide you with an overview of the various damping mechanisms and tools for analyzing and reducing brake noise. A significant component of this course is the inclusion of case studies which will demonstrate how brake noise squeal issues have been successfully resolved.
2017-04-20 ...
  • April 20, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 28, 2017 (8:30 a.m. - 4:30 p.m.) - Orlando, Florida
Training / Education Classroom Seminars
Brake Noise, Vibration, and Harshness (NVH) is recognized as one of the major problems currently faced by the automotive manufacturers and their suppliers, with customers warranty claims of more than $100 million per year for each manufacturer. With increasing consumer braking performance expectations, automotive OEM’s and suppliers need the ability to predict potential problems and identify solutions during the design phase before millions of dollars have been spent in design, prototyping, and manufacturing tooling.
2017-04-19 ...
  • April 19-26, 2017 (3 Sessions) - Live Online
  • November 28-December 1, 2017 (3 Sessions) - Live Online
Training / Education Online Web Seminars
This web seminar will provide an introduction to the characteristics of sound waves, human perception of sound, sound and vibration measurements, measurement facilities, and various noise sources and noise control principles. It will include an overview of sound pressure, power, intensity, decibels, and frequencies. Practical examples will be used to familiarize participants with the acoustic fundamentals for solving noise and vibration problems and the associated solution principles.
2017-04-11
Journal Article
2017-01-9625
Souhir Tounsi
Abstract In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
2017-04-06
Event
This session sets out to reflect the recent advances on the research, development and practices of Powertrain NVH treatment. The technical papers are of interest to powertrain system designers, testing specialists, NVH experts, and other individuals who evaluate and develop technologies to control powertrain NVH. The coverage includes: engine, engine subsystem and components noise and vibration; powertrain systems noise measurement and instrumentation; powertrain systems noise analysis.
2017-04-06
Event
The design, development, and testing of Valve Train and Variable Valve Actuation mechanisms, devices, and systems; and the impact and control of such systems on thermodynamics, combustion, fuel economy, emissions, noise and vibration, and performance.
2017-04-06
Event
This session sets out to reflect the recent advances on the research, development and practices of Powertrain NVH treatment. The technical papers are of interest to powertrain system designers, testing specialists, NVH experts, and other individuals who evaluate and develop technologies to control powertrain NVH. The coverage includes: engine, engine subsystem and components noise and vibration; powertrain systems noise measurement and instrumentation; powertrain systems noise analysis.
2017-04-05
Event
This session addresses transmission noise, vibration, rattle issues and design solutions.
2017-04-05
Event
This session addresses transmission noise, vibration, rattle issues and design solutions.
2017-04-05
Event
This session sets out to reflect the recent advances on the research, development and practices of Powertrain NVH treatment. The technical papers are of interest to powertrain system designers, testing specialists, NVH experts, and other individuals who evaluate and develop technologies to control powertrain NVH. The coverage includes: engine, engine subsystem and components noise and vibration; powertrain systems noise measurement and instrumentation; powertrain systems noise analysis.
2017-04-05
Event
This session covers the development and application of numerical methods along with test correlation and optimization for NVH issues of full vehicle and vehicle subsystems. All structural components, subsystems and complete systems found in automotive vehicles will be considered. Topics include structure NVH, vibro-acoustics, wind noise and aeroacoustics, intake/exhaust and vehicle interior noise, sound quality etc.
2017-04-04
Event
This session covers the development and application of numerical methods along with test correlation and optimization for NVH issues of full vehicle and vehicle subsystems. All structural components, subsystems and complete systems found in automotive vehicles will be considered. Topics include structure NVH, vibro-acoustics, wind noise and aeroacoustics, intake/exhaust and vehicle interior noise, sound quality etc.
2017-03-28
Technical Paper
2017-01-1052
Paul Zeng, Vincent Solferino, Mark Stickler
Engine ticking noise is one of the key failure modes in today’s direct injection (DI) engines. High ticking noise results in high Things Gone Wrong (TGW) index, which negatively affects customer satisfaction. In this paper, the root cause of the ticking noise from DI injector in direct mounting will be presented. Design principle such as injector impact force to cylinder head and DI injector isolator design with 2 stage stiffness is proposed.
2017-03-28
Technical Paper
2017-01-0172
Suhas Venkatappa, Manfred Koberstein, Zhengyu Liu
Due to regulations related to global warming, the auto industry is transitioning to the use of a new refrigerant R1234yf in many markets/regions. This transition to the new refrigerant was considered to be a minor development effort with main focus on improved sealing, improving cooling capacity with adding content such as Internal Heat Exchanger (IHX) to recoup the lower cooling efficiency of R1234yf compared to R134a. There were no redesigns of major refrigerant system components expected with the introduction of R1234yf. The actual implementation of this refrigerant has proven to be more challenging due to several NVH issues. Some of the challenges related to NVH are driven by the differences in refrigerant characteristics – mass flow rate, velocity of sound in refrigerant.
2017-03-28
Technical Paper
2017-01-0376
Jianyong Liang, Jonathan Powers, Scott Stevens, Behrooz Shahidi
While Advanced High Strength Steels (AHSS) and next generation steel grades offer improved crash safety and reduced weight for vehicles, the global stiffness and NVH performance are often compromised due to reduced material thickness. This paper discusses an advanced method of evaluating the joint effectiveness on contribution to global stiffness and NVH performance of vehicles. A stiffness contribution ratio is proposed initiatively in this research, which evaluates the current contribution of the joints to the global stiffness and NVH performance of vehicles. Another parameter, joint effectiveness factor, has been used by Ford Motor Company to study the potential of each joint on enhancing the global stiffness. The critical joints to enhance the vehicle stiffness and NVH performance can be identified based on above two parameters, and design changes be made to those critical joints to improve the vehicle performance.
2017-03-28
Technical Paper
2017-01-1553
Min Kyoo Kang, Jin Hong Kim, HyuckJin Oh, Wookjin Jang, Sangwoo Lee, Young Hwan Lee
This paper presents a transient nonlinear vibration analysis of a full-vehicle model. The full-vehicle model consists of a powertrain model, a trimmed body, a drive line, and front and rear suspensions with tires, and is driven by combustion forces and runs on a road surface. The fundamental purpose of the transient nonlinear full-vehicle simulation is to replicate customer’s experience in driving situation in the time domain and to understand real-time phenomena. By performing time-domain simulation, it is possible to capture nonlinear behavior of a vehicle such as preloads due to gravitational force, large deformation, and material nonlinearity which cannot be properly considered in the conventional steady state analysis due to intrinsic linearization process. In constructing a full-vehicle, validation process is essential. Validation process is applied with respect to the assembling sequence.
2017-03-28
Technical Paper
2017-01-0443
Yong Hyun Nam, Gwansik Yoon
The sound induced by a closing door is determined by the various components like door latch, door module, door glass installed within the door area. The key components vibrate due to the force from the closing door, and the combined vibration caused by the components determines the sound from the door. In particular, when the door is closed with the door glass down, the vibration and noise of the door glass are louder than those of any other component; this is called door glass rattle - attributed to the loss of the door glass support point. This study not only evaluates the rattle influence level of a door glass support but also introduces an approach to reduce glass rattle noise by using sealing components. 1. Study on Minimization of Vibration A jig was constructed to evaluate the level of influence of the rattle of a door glass support.
Viewing 1 to 30 of 9656

Filter

  • Range:
    to:
  • Year: