Criteria

Text:
Display:

Results

Viewing 1 to 30 of 8756
2015-10-04
Event
This session focuses on innovations for improving brake NVH (Noise, Vibration and Harshness) performance. Papers and presentations involving new methods, theories, techniques, and application examples are welcome.
2015-10-04
Event
The session focusses on the fundamentals of the interaction on the sliding surface and associated friction induced vibrations. From nanoscale interactions of the contacts on the sliding interface to macroscopic methodology to diminish friction induced vibrations, this session comprises new findings and discussion toward a step forward to full understanding of the friction and brake induced vibration.
2015-08-04 ...
  • August 4-6, 2015 (2 Sessions) - Live Online
Training / Education Online Web Seminars
This web seminar provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
2015-06-26 ...
  • June 26, 2015 (8:30 a.m. - 4:30 p.m.) - Grand Rapids, Michigan
Training / Education Classroom Seminars
Most muffler design in the automotive industry is accomplished by using "cut-and-try" methods that rely on what has worked in the past and/or extensive full-scale testing on engines for validation. New computer software aimed at muffler design can shorten the design cycle and yield more effective results. This four hour seminar provides an introduction to the behavior of mufflers and silencers including a description of the two-port approach to muffler design. This seminar covers the acoustic simulation of muffler and silencer systems and the use of experimental methods to measure muffler performance....
2015-06-26 ...
  • June 26, 2015 (8:30 a.m. - 4:30 p.m.) - Grand Rapids, Michigan
  • October 9, 2015 (8:30 a.m. - 4:30 p.m.) - Charleston, South Carolina
Training / Education Classroom Seminars
Brake noise is one of the highest ranked complaints of car owners. Grunts, groans, squeaks, and squeals are common descriptions of the annoying problem which brake engineers spend many hours trying to resolve. Consumer expectations and the high cost of warranty repairs are pushing the optimization of brake NVH performance. This course will provide you with an overview of the various damping mechanisms and tools for analyzing and reducing brake noise. A significant component of this course is the inclusion of case studies which will demonstrate how brake noise squeal issues have been successfully...
2015-06-26 ...
  • June 26, 2015 (8:30 a.m. - 4:30 p.m.) - Grand Rapids, Michigan
Training / Education Classroom Seminars
The influx of different hybrid and electric vehicle configurations has brought about unique NVH challenges from a variety of sources. NVH refinement is an important aspect of powertrain development and the vehicle integration process. While developing the NVH behavior of the vehicle is critical to satisfy customer expectations, it is also important to consider the influence of reduced exterior noise levels on pedestrian safety. This seminar introduces participants to basic NVH principles and unique NVH challenges encountered in the development of HEV, ReEV, and EV including engine start/stop behavior,...
2015-06-25 ...
  • June 25-26, 2015 (8:30 a.m. - 4:30 p.m.) - Grand Rapids, Michigan
Training / Education Classroom Seminars
The sound package materials for vehicle noise control seminar provides a detail and thorough analysis of three different classes of acoustical materials – namely absorbers, barriers, and dampers, how they are different from each other, and acoustical properties that materials should possess for optimum vehicle noise control. The seminar addresses new advances in acoustical materials, primarily in absorption materials that impact the vehicle acoustics. The seminar covers ways to evaluate the acoustical performance of these materials using different test methods, including material, component, and...
2015-06-22
Event
This session is to present numerical and experimental work pertaining to noise due to flow around the vehicle body, such as flow-induced interior noise, flow over protrusions, sunroofs, windows, noise from ventilation systems, or flow noise in exhaust system. Papers on aerodynamics alone without sound are excluded. Numerical studies may include new models or models based on existing theory as long as they are adequately supported by experimental or theoretical verifications.
2015-06-22
Event
This session covers noise sources, measurement techniques, noise attenuation strategies, case studies, prediction and modeling methods, and community regulations related to drive-by noise.
2015-06-22
Event
This session is focused on the vehicle body interior noise issues caused by friction and/or impact due to the vibration of interfacing components. The papers in this session will investigate those issues through the best practice of analytical and experimental applications.
2015-06-22
Event
This session covers noise and vibration sources and paths within a vehicle (automobiles, trucks and recreational vehicles). Example of noise sources included are HVAC system, electric motor powered mechanisms and door closure and example of vibration sources are road and engine. Also included are Whole Body and Hand Arm Vibration experienced by professional drivers as well as acoustical design factors of audio, infotainment, and hands free devices.
2015-06-22
Event
This session is dedicated to the tools and methodology involved in identifying, calculating and modifying various noise and vibration sources and paths in vehicles, aircraft and various consumer products and assist in the design and validation of noise and vibration targets
2015-06-22
Event
This session covers subjective testing and analysis related to automotive noise and vibration, usually referred to as sound quality and vibration quality. The focus is on both subjective and objective tools and methods that can be used either to design sound or vibration quality into the automotive product, or to characterize and eliminate undesired sounds or vibrations.
2015-06-22
Event
This session covers sound source identification and localization, acoustical holography, sound generation mechanisms, measurement techniques related to the sound source and noise propagation, and visualization techniques for sound pressure levels, sound radiation patterns, frequency content, and intensity. Also included are prediction and modeling methods related to the sound source.
2015-06-22
Event
This session addresses the strategies and methods for implementing active noise and vibration control in a vehicle. It will cover sensors and transducers, feedback systems, control algorithms, software for active control, noise and vibration cancellation devices, noise and vibration measurement systems, and case studies.
2015-06-22
Event
This session is intended to provide a forum for review of the engineering standards being developed and their interaction with regulation that may exist on the product or systems.
2015-06-22
Event
This session covers the relationships between vibration and noise that can be generated throughout the vehicle. Included in this session are modal vibration studies related to noise, vibration transfer paths throughout the vehicle, and coupling of vibration and acoustical modes. Both experimental and analytical approaches are included in this session.
2015-06-22
Event
With the wide deployment of mobile devices and inexpensive software there are many new opportunities for engineers to inexpensively make quick test measurements with these devices. This provides new opportunities for people such as CAE engineers to make simple measurements. This session will foster the sharing of attendee’s experiences with these devices. Live demos are encouraged.
2015-04-20 ...
  • April 20, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 8, 2015 (8:30 a.m. - 4:30 p.m.) - Charleston, South Carolina
Training / Education Classroom Seminars
Brake Noise, Vibration, and Harshness (NVH) is recognized as one of the major problems currently faced by the automotive manufacturers and their suppliers, with customers warranty claims of more than $100 million per year for each manufacturer. With increasing consumer braking performance expectations, automotive OEM’s and suppliers need the ability to predict potential problems and identify solutions during the design phase before millions of dollars have been spent in design, prototyping, and manufacturing tooling. This seminar provides an introduction to brake NVH, including a concise summary...
2015-03-17 ...
  • March 17-26, 2015 (4 Sessions) - Live Online
  • September 15-24, 2015 (4 Sessions) - Live Online
Training / Education Online Web Seminars
This four-session web seminar provides a detailed understanding of the source – path-receiver relationship for developing appropriate sound package treatments in vehicles, including automobiles, commercial vehicles, and other transportation devices. The course provides a detailed overview of absorption, attenuation (barrier), and damping materials and how to evaluate their performances on material, component, and vehicle level applications. A significant part of this course is the case studies that demonstrate how properly designed sound package materials successfully address vehicle noise issues....
2014-11-20
Event
All aspects of small engine related noise and vibration are covered in this session including: generation, experimental techniques, measurement, numerical analysis, NVH materials, source identification, NVH quality and novel solutions.
2014-11-20
Event
All aspects of small engine related noise and vibration are covered in this session including: generation, experimental techniques, measurement, numerical analysis, NVH materials, source identification, NVH quality and novel solutions.
2014-11-13 ...
  • November 13-20, 2014 (3 Sessions) - Live Online
  • May 12-19, 2015 (3 Sessions) - Live Online
  • November 10-17, 2015 (3 Sessions) - Live Online
Training / Education Online Web Seminars
This web seminar will provide an introduction to the characteristics of sound waves, human perception of sound, sound and vibration measurements, measurement facilities, and various noise sources and noise control principles. It will include an overview of sound pressure, power, intensity, decibels, and frequencies. Practical examples will be used to familiarize participants with the acoustic fundamentals for solving noise and vibration problems and the associated solution principles.
2014-11-11
Technical Paper
2014-32-0061
Rama Subbu, Baskar Anthony Samy, Piyush Mani Sharma, Prasanna Mahendiran
Abstract Ride comfort, driving stability and drivability are vital factors in terms of vehicle performance and customer satisfaction. Crankshaft unbalance is a source for the vibration that reduces the vehicle performance and it needs to be controlled to some extent such that the vehicle performance will be improved. The IC engine is made up of reciprocating and rotating parts. They produce unbalance forces during their operation and produces vibration in Vehicle. The vibration reduction will be possible by minimizing these unbalance forces and by optimizing the crankshaft of the two wheeled vehicle engine design. Many researches were made to find the causes for the vibration and to reduce it. But still there is a research gap on the testing and simulation of engine components (crankshaft, connecting rod and piston assembly). In this study, an attempt is made to represent the engine vibrations and its isolation to provide a gate way for the future work on it. This study shows the various steps carried out on the multibody modeling of the IC engine components including engine crankshaft and their orientations.
2014-11-11
Technical Paper
2014-32-0105
Atsushi Maruyama, Gaku Naoe
Abstract For a small general purpose engine, the authors have studied on “combustion noise”, the mechanical noise originating from combustion. The purpose of this study is to clarify the mechanisms of combustion noise generation. The engine used in this study was a 4-stroke air-cooled single-cylinder engine with the typical characteristics of 3.5 kW-class small general purpose engines, which was specifically designed for experiments. We analyzed the operational behaviors of parts such as the crankshaft, the flywheel and the crankcase during the time of occurrence of combustion noise. Results of the analysis showed that the primary component of combustion noise in small general purpose engines is radiated from the flywheel connected to the crankshaft, and that the vibration mode that radiates the noise is excited by bending deformation of the crankshaft under explosion load. Based on these results, this paper will also discuss the effect of the stiffness of the main bearings on combustion noise.
2014-11-11
Technical Paper
2014-32-0018
Kenichi Morimoto, Kenichi Tanaka
Abstract There have been a number of attempts to clarify the relationship between motorcycle specifications and shimmy phenomenon. Some of such efforts are based on equations of motion. The methods used in those efforts are suitable for analyzing motions in a fundamental structure. However, when the degree of freedom is large, it is extremely difficult to deliver an equation of motion. Therefore, a practical method cannot be found generally when applying the methods employing equations of motion. We also conducted the analysis of shimmy using multi-body dynamics simulation. The yielded results were useful only for clarifying the differences in shimmy levels among motorcycles. However, they were not helpful to understand the relationships between specifications and shimmy phenomenon. In this study, we focused clarifying these relationships and we took four study steps shown below: 1 Narrowing down the motorcycle specifications affecting shimmy2 Determining physical parameters influential to shimmy3 Investigating how a change of physical parameters affects shimmy using simplified model4 Analyzing how the changes of motorcycle specifications affect the shimmy Following these steps, we clarified the relationships between motorcycle's specifications and shimmy by using only three physical parameters.
2014-11-11
Technical Paper
2014-32-0053
Yoshihiro Nakagawa, Shinya Takahashi, Mikihito Masaki, Ranju Imao
Abstract In brake squeal analyses using FE models, minimizing the discrepancies in vibration characteristics between the measurement and the simulation is a key issue for improving its reproducibility. The discrepancies are generally adjusted by the shape parameters and/or material properties applied to the model. However, the discrepancy cannot be easily adjusted, especially, for the vibration characteristic of the disc model of a motorcycle. One of the factors that give a large impact on this discrepancy is a thermal history of the disc. That thermal history includes the one experienced in manufacturing process. In this paper, we examine the effects of residual stress on the natural frequency of motorcycle discs. The residual stress on the disc surface was measured by X-ray stress measurement method. It was followed by an eigenvalue analysis. In this analysis, we developed a unique method in which the residual stress was substituted by thermal stress. Using this method, the discrepancy between measurement and calculation of the natural frequency was reduced from ±5.2% to ±1.3%.
2014-11-11
Technical Paper
2014-32-0059
Antonio Agresta, Francesca Di Puccio, Paola Forte, Gabriele Benigni
Abstract NVH simulations for an automotive component industry represent a convenient mean to compare different solutions and make decisions on design choices based on the predictions of the component vibro-acoustic behavior. This paper presents the vibro-acoustic characterization and comparison of two fuel rail assemblies (FRAs) by mean of simulations in Ansys Workbench & LMS Virtual.Lab. These simulations required a preliminary finite element (FE) modal analysis on the FRAs. To verify the reliability of the FE models, an experimental modal analysis was performed on one of the two fuel rails in free-free condition. The correlation between FE and test models highlighted some differences: a sensitivity study proved that the differences depend on the modeling of some brazed joints. The results of the following NVH simulations were checked by performing an acoustic impact test on the two FRAs in free-free condition inside an anechoic chamber. The comparison between the test and FE results proved that only a tuned FE model provides reliable results.
Viewing 1 to 30 of 8756

Filter

  • Range:
    to:
  • Year: