Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 7792
2017-10-02 ...
  • October 2-6, 2017 (8:00 a.m. - 8:00 p.m.) - Troy, Michigan
Training / Education Classroom Engineering Academies
This Engineering Academy covers a variety of vehicle noise control engineering principles and practices. Two specialty tracks are available: Vehicle Interior Noise and Powertrain Noise. While the Powertrain Noise track focuses on NVH issues generated by powertrain noise sources and the design strategies to minimize them, the Vehicle Interior Noise track focuses on the understanding and application of acoustical materials to optimize NVH in the passenger or operator compartment of a vehicle. Considerable attention is given to current measurement and instrumentation technologies and their effective use.
2017-10-02 ...
  • October 2-6, 2017 (8:00 a.m. - 8:00 p.m.) - Troy, Michigan
Training / Education Classroom Engineering Academies
This Engineering Academy covers a variety of vehicle noise control engineering principles and practices. Two specialty tracks are available: Vehicle Interior Noise and Powertrain Noise. While the Vehicle Interior Noise track focuses on the understanding and application of acoustical materials to optimize NVH in the passenger or operator compartment of a vehicle, the Powertrain Noise track focuses on NVH issues generated by powertrain noise sources and the design strategies to minimize them. Noise sources include engines, transmissions/transfer cases, accessories, exhaust, gears, axles, joints, and couplings.
2017-08-15 ...
  • August 15-17, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
This web seminar provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
2017-08-01 ...
  • August 1-10, 2017 (4 Sessions) - Live Online
Training / Education Online Web Seminars
This four-session web seminar provides a detailed understanding of the source – path-receiver relationship for developing appropriate sound package treatments in vehicles, including automobiles, commercial vehicles, and other transportation devices. The course provides a detailed overview of absorption, attenuation (barrier), and damping materials and how to evaluate their performances on material, component, and vehicle level applications. A significant part of this course is the case studies that demonstrate how properly designed sound package materials successfully address vehicle noise issues.
2017-06-17
Journal Article
2017-01-9550
David Neihguk, M. L. Munjal, Arvind Ram, Abhinav Prasad
Abstract A production muffler of a 2.2 liter compression ignition engine is analyzed using plane wave (Transfer Matrix) method. The objective is to show the usefulness of plane wave models to analyze the acoustic performance (Transmission Loss, TL) of a compact hybrid muffler (made up of reactive and dissipative elements). The muffler consists of three chambers, two of which are acoustically short in the axial direction. The chambers are separated by an impervious baffle on the upstream side and a perforated plate on the downstream side. The first chamber is a Concentric Tube Resonator (CTR). The second chamber consists of an extended inlet and a flow reversal 180-degree curved outlet duct. The acoustic cavity in the third chamber is coupled with the second chamber through the acoustic impedances of the end plate and the perforated plate.
2017-06-15 ...
  • June 15-16, 2017 (8:30 a.m. - 4:30 p.m.) - Grand Rapids, Michigan
Training / Education Classroom Seminars
The sound package materials for vehicle noise control seminar provides a detail and thorough analysis of three different classes of acoustical materials – namely absorbers, barriers, and dampers, how they are different from each other, and acoustical properties that materials should possess for optimum vehicle noise control. The seminar addresses new advances in acoustical materials, primarily in absorption materials that impact the vehicle acoustics. The seminar covers ways to evaluate the acoustical performance of these materials using different test methods, including material, component, and vehicle level measurements.
2017-04-21 ...
  • April 21, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 29, 2017 (8:30 a.m. - 4:30 p.m.) - Orlando, Florida
Training / Education Classroom Seminars
Brake noise is one of the highest ranked complaints of car owners. Grunts, groans, squeaks, and squeals are common descriptions of the annoying problem which brake engineers spend many hours trying to resolve. Consumer expectations and the high cost of warranty repairs are pushing the optimization of brake NVH performance. This course will provide you with an overview of the various damping mechanisms and tools for analyzing and reducing brake noise. A significant component of this course is the inclusion of case studies which will demonstrate how brake noise squeal issues have been successfully resolved.
2017-04-06
Event
The design, development, and testing of Valve Train and Variable Valve Actuation mechanisms, devices, and systems; and the impact and control of such systems on thermodynamics, combustion, fuel economy, emissions, noise and vibration, and performance.
2017-04-06
Event
This session sets out to reflect the recent advances on the research, development and practices of Powertrain NVH treatment. The technical papers are of interest to powertrain system designers, testing specialists, NVH experts, and other individuals who evaluate and develop technologies to control powertrain NVH. The coverage includes: engine, engine subsystem and components noise and vibration; powertrain systems noise measurement and instrumentation; powertrain systems noise analysis.
2017-04-05
Event
This session addresses transmission noise, vibration, rattle issues and design solutions.
2017-04-05
Event
This session sets out to reflect the recent advances on the research, development and practices of Powertrain NVH treatment. The technical papers are of interest to powertrain system designers, testing specialists, NVH experts, and other individuals who evaluate and develop technologies to control powertrain NVH. The coverage includes: engine, engine subsystem and components noise and vibration; powertrain systems noise measurement and instrumentation; powertrain systems noise analysis.
2017-04-05
Event
This session covers the development and application of numerical methods along with test correlation and optimization for NVH issues of full vehicle and vehicle subsystems. All structural components, subsystems and complete systems found in automotive vehicles will be considered. Topics include structure NVH, vibro-acoustics, wind noise and aeroacoustics, intake/exhaust and vehicle interior noise, sound quality etc.
2017-04-04
Event
This session covers the development and application of numerical methods along with test correlation and optimization for NVH issues of full vehicle and vehicle subsystems. All structural components, subsystems and complete systems found in automotive vehicles will be considered. Topics include structure NVH, vibro-acoustics, wind noise and aeroacoustics, intake/exhaust and vehicle interior noise, sound quality etc.
2017-03-28
Technical Paper
2017-01-0442
Harchetan Singh Aneja, Manas Tripathi, Harmeet Singh, Aashish Parmar
Abstract With the increasing expectation of customer for a quiet and comfortable ride, automobile manufacturers need to continuously work upon to improve automobile powertrain NVH. Today’s customer has become so aware of vehicle related noises that in-tank fuel pump noise is no exception to the checklist of evaluating cabin NVH. In-tank fuel pump, that is responsible for delivering the fuel from fuel storage tank to delivery rail, uses an electric driven motor. The rotating parts such as rotor, etc. produce vibrations that may traverse to tank body & subsequently vehicle body. Since noise is essentially an audible vibration at its root, these structure borne vibrations may be perceived as noise inside passenger cabin. Additionally, the noise may also be produced by fuel flow pulsations if transferred through piping to vehicle body. This paper focuses on various approaches to reduce the fuel pump generated noise heard inside passenger cabin.
2017-03-28
Technical Paper
2017-01-0446
Xiao Chuan Xu, Xiuyong Shi, Jimin Ni, Jiaqi Li, Xiaochuan Xu Sr.
Abstract Oil pump is a critical part of engine lubrication system. The performance and efficiency of oil pump are greatly affected by vibration and noise, which would lead to the pump service life decreasing and pump body easily wearing. Hence the vibration and noise of oil pump is of great importance to study. In this paper, a FEA model of the variable displacement oil pump(VDOP) was established to carry on the modal and noise analysis, while the geometric structure was optimized with test verification. The modal analysis of VDOP was carried out by ABAQUS software, the 3-D unsteady flow field in VDOP was simulated by Pumplinx software, and the sound field was analyzed by ACTRAN acoustic module. Using a special oil pump test bench combined with B&K PULSE vibration and noise test equipment, the NVH and comprehensive performance experiment of the VDOP were carried out here.
2017-03-28
Technical Paper
2017-01-0448
Prakash T. Thawani, Stephen Sinadinos, John Zvonek
Abstract With the advent of EVs/HEVs and implementation of Idle-Stop-Start (ISS) technologies on internal combustion engine (ICE) driven cars/trucks to improve fuel economy and reduce pollution, refrigerant sub-system (RSS) induced noise phenomena like, hissing, gurgling and tones become readily audible and can result in customer complaints and concerns. One of the key components that induce these noise phenomena is the Thermostatic Expansion Valve (TXV). The TXV throttles compressed liquid refrigerant through the evaporator that results in air-conditioning (A/C) or thermal system comfort for occupants and dehumidification for safety, when needed. Under certain operating conditions, the flow of gas and/or liquid/gas refrigerant at high pressure and velocity excites audible acoustical and structural modes inherent in the tubing/evaporator/HVAC case. These modes may often get masked and sometimes enhanced by the engine harmonics and blower noise.
2017-03-28
Technical Paper
2017-01-0449
Yinzhi He, Bin Wang, Zhe Shen, Zhigang Yang, Gunnar Heilmann, Tao Zhang, Guoxu Dong
Abstract Beamforming techniques are widely used today in aeroacoustic wind tunnels to identify wind noise sources generated by interaction between incoming flow and the test object. In this study, a planar spiral microphone array with 120 channels was set out-of-flow at 1:1 aeroacoustic wind tunnel of Shanghai Automotive Wind Tunnel Center (SAWTC) to test exterior wind noise sources of a production car. Simultaneously, 2 reference microphones were set in vehicle interior to record potential sound source signal near the left side view mirror triangle and the signal of driver’s ear position synchronously. In addition, a spherical array with 48 channels was set inside the vehicle to identify interior noise sources synchronously as well. With different correlation methods and an advanced algorithm CLEAN-SC, the ranking of contributions of vehicle exterior wind noise sources to interested interior noise locations was accomplished.
2017-03-28
Technical Paper
2017-01-1070
Da Shao, Xu Sichuan, Aimin Du
Abstract The electromagnetic valve actuator (EMVA) is considered a technological solution for decoupling between crankshaft and camshaft to improve engine performance, emissions, and fuel efficiency. Conventional EMVA consists of two electromagnets, an armature, and two springs has been proved to have the drawbacks of fixed lift, impact noise, complex control method and large power consumption. This paper proposes a new type of EMVA that uses voice coil motor (VCM) as electromagnetic valve actuator. This new camless valvetrain (VEMA) is characterized by simple structure, flexible controllable and low actuating power. VCM provides an almost flat force versus stroke curve that is very useful for high precision trajectory control to achieve soft landing within simple control algorithm.
2017-03-28
Technical Paper
2017-01-1130
Shinya Takamatsu, Nobuharu Imai, Koji Tsurumura, Seiji Yamashita, Hiroaki Tashiro
Abstract The renewed platform of the upcoming flagship front-engine, rear-wheel drive (FR) vehicles demands high levels of driving performance, fuel efficiency and noise-vibration performance. The newly developed driveline system must balance these conflicting performance attributes by adopting new technologies. This article focuses on several technologies that were needed in order to meet the demand for noise-vibration performance and fuel efficiency. For noise-vibration performance, this article will focus on propeller shaft low frequency noise (booming noise). This noise level is determined by the propeller shaft’s excitation force and the sensitivity of differential mounting system. In regards to the propeller shaft’s excitation force, the contribution of the axial excitation force was clarified. This excitation force was decreased by adopting a double offset joint (DOJ) as the propeller shaft’s second joint and low stiffness rubber couplings as the first and third joints.
2017-03-28
Technical Paper
2017-01-0447
Zhe Li, Mike Dong, Dennis Harrigan, Michael Gardner
In gasoline Powertrain systems, the evaporative emission control (EVAP) system canister purge valve (CPV) can be actuated by pulse-width modulated (PWM) signals. The CPV is an electronically actuated solenoid. The PWM controlled CPV, when actuated, creates pressure pulsations in the system. This pulsation is sent back to the rest of the EVAP system. Given the right conditions, the fill limit vent valve (FLVV) inside the fuel tank can be excited. The FLVV internal components can be excited and produce noise. This noise can be objectionable to the occupants. Additional components within the EVAP system may also be excited in a similar way. This paper presents a bench test method using parts from vehicle’s EVAP system and other key fuel system components.
2017-03-28
Technical Paper
2017-01-1121
Deb Bonnerjee, Djamel Bouzit, Javed Iqbal
Abstract Automobile customers are looking for higher performance and quieter comfortable rides. The driveline of a vehicle can be a substantial source of NVH issues. This paper provides an understanding of a driveline noise issue which can affect any variant of driveline architecture (FWD, AWD, RWD and 4X4). This metallic noise is mostly present during the take-off and appropriately termed as ting noise. This noise was not prevalent in the past. For higher fuel economy, OEMs started integrating several components for lighter subsystems. This in effect made the system more sensitive to the excitation. At present the issue is addressed by adding a ting washer in the interface of the wheel hub bearings and the halfshafts. This paper explains the physics behind the excitation and defines the parameters that influence the excitation. The halfshaft and the wheel hub are assembled with a specified hub nut torque.
2017-03-28
Technical Paper
2017-01-1125
Victor Baumhardt, Valdinei Sczibor
Abstract Halfshafts are very important components from vehicle powertrain. They are the element responsible to transmit torque and rotation from transmission to wheels. Its most basic design consists of a solid bar with joints at each extreme. Depending of bar length, the natural frequency of first bending mode might have a modal alignment with engine second order, resulting in undesired noise on vehicle interior. Many design alternatives are available to overpass this particular situation, like adding dampers, use tube shafts or use link-shafts, however, all of them are cost affected. This study proposes an investigation to obtain an optimal profile for a solid shaft, pursuing the lowest possible frequency for the first bending mode by changing its diameter at specific regions. The study is divided in four main stages: initially, a modal analysis of a halfshaft is done at vehicle to determinate its natural frequency when assembled on vehicle.
2017-03-28
Technical Paper
2017-01-0443
Yong Hyun Nam, Gwansik Yoon
The sound induced by a closing door is determined by the various components like door latch, door module, door glass installed within the door area. The key components vibrate due to the force from the closing door, and the combined vibration caused by the components determines the sound from the door. In particular, when the door is closed with the door glass down, the vibration and noise of the door glass are louder than those of any other component; this is called door glass rattle - attributed to the loss of the door glass support point. This study not only evaluates the rattle influence level of a door glass support but also introduces an approach to reduce glass rattle noise by using sealing components. 1. Study on Minimization of Vibration A jig was constructed to evaluate the level of influence of the rattle of a door glass support.
2017-03-28
Technical Paper
2017-01-1064
Mustafa Yıldırım
Abstract Engine design is crucial in terms of NVH. It is the sources of vibration for a vehicle. Nowadays engine tends to being smaller and less stiff and more powerful according to predecessor. Small engines with high power is inherently generates extreme force and vibrations and accordingly generates more noise. Thus engine structure and also engine main components should be designed to prevent this vibration. There are two main sources: One of them is combustion and other is inertia loads. Due to this sources engine structure can cause severe vibration and accordingly this can cause noise via transmitting it into vehicle with both structure and airborne. This paper focused on to reduce engine vibration level with changing the combustion inputs such as cylinder pressure parameters and inertia parameters like piston mass, conrod length and balancing parameters. Design of experiment is used to obtain most robust case in terms of NVH.
Viewing 1 to 30 of 7792

Filter

  • Range:
    to:
  • Year: