Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 7704
2016-09-30 ...
  • September 30, 2016 (8:30 a.m. - 4:30 p.m.) - Scottsdale, Arizona
Training / Education Classroom Seminars
Brake noise is one of the highest ranked complaints of car owners. Grunts, groans, squeaks, and squeals are common descriptions of the annoying problem which brake engineers spend many hours trying to resolve. Consumer expectations and the high cost of warranty repairs are pushing the optimization of brake NVH performance. This course will provide you with an overview of the various damping mechanisms and tools for analyzing and reducing brake noise. A significant component of this course is the inclusion of case studies which will demonstrate how brake noise squeal issues have been successfully resolved.
2016-09-19 ...
  • September 19-20, 2016 (8:30 a.m. - 4:30 p.m.) - Shanghai, China
Training / Education Classroom Seminars
The sound package materials for vehicle noise control seminar provides a detail and thorough analysis of three different classes of acoustical materials – namely absorbers, barriers, and dampers, how they are different from each other, and acoustical properties that materials should possess for optimum vehicle noise control. The seminar addresses new advances in acoustical materials, primarily in absorption materials that impact the vehicle acoustics. The seminar covers ways to evaluate the acoustical performance of these materials using different test methods, including material, component, and vehicle level measurements.
2016-09-18
Technical Paper
2016-01-1944
Seongjoo Lee, JeSung Jeon, ShinWook Kim, ShinWan Kim, Seong Rhee, Wan Gyu Lee, Young Sun Cho, Jeongkyu Kim
It is widely known that brake squeal repeatability and reproducibility are difficult to achieve whether a run on a vehicle on the road, a vehicle on a chassis dynamometer or a single brake on a noise dynamometer. At one time, the same brake may generate only low-frequency squeals (1.5 - 5 kHz) and at another time, only high-frequency squeals (5 - 20 kHz). More specifically, on a chassis dynamometer, the left side may produce only low-frequency squeals (or high-frequency squeals) while the right side produces only high-frequency squeals (or low-frequency squeals), or mixed squeals at different rates. The same phenomenon is observed when brakes are run on a noise dynamometer; more low-frequency squeals at one time or more high-frequency squeals at another time on an apparently same brake system. This study was undertaken to find out what causes these discrepancies.
2016-09-06 ...
  • September 6-15, 2016 (4 Sessions) - Live Online
Training / Education Online Web Seminars
This four-session web seminar provides a detailed understanding of the source – path-receiver relationship for developing appropriate sound package treatments in vehicles, including automobiles, commercial vehicles, and other transportation devices. The course provides a detailed overview of absorption, attenuation (barrier), and damping materials and how to evaluate their performances on material, component, and vehicle level applications. A significant part of this course is the case studies that demonstrate how properly designed sound package materials successfully address vehicle noise issues.
2016-08-02 ...
  • August 2-4, 2016 (2 Sessions) - Live Online
Training / Education Online Web Seminars
This web seminar provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
2016-06-15
Technical Paper
2016-01-1823
Andrea Grosso, Martin Lohrmann
Abstract Operational Transfer Path Analysis (OTPA) assess the possible ways of energy to transfer from the various sources of excitation to a given target location. Applied to vehicle engineering, the OTPA provides indication about dominant sources and path contributions. However, it can only analyze the actual system under test and cannot predict if an improvement can be achieved by applying a counter measure. A careful interpretation of the measurement results is therefore necessary in order to define an effective engineering solution strategy. In this paper the RMA (Response Modification Analysis) technique is used to facilitate a sensitivity analysis, gaining insight whether energy is likely to be rerouted. This gives additional understanding of OTPA results, indicating which counter measure is most effective. The RMA is applied to a real measurement scenario, showing the advantage of the combination of OTPA with RMA for correctly identifying the relevant sources and paths.
2016-06-15
Technical Paper
2016-01-1805
Florian Zenger, Clemens Junger, Manfred Kaltenbacher, Stefan Becker
Abstract A low pressure axial fan for benchmarking numerical methods in the field of aerodynamics and aeroacoustics is presented. The generic fan for this benchmark is a typical fan to be used in commercial applications. The design procedure was according to the blade element theory for low solidity fans. A wide range of experimental data is available, including aerodynamic performance of the fan (fan characteristic curve), fluid mechanical quantities on the pressure and suction side from laser Doppler anemometer (LDA) measurements, wall pressure fluctuations in the gap region and sound characteristics on the suction side from sound power and microphone array measurements. The experimental setups are described in detail, as to ease reproducibility of measurement positions. This offers the opportunity of validating aerodynamic and aeroacoustic quantities, obtained from different numerical tools and procedures.
2016-06-15
Technical Paper
2016-01-1806
Sumon Sinha, Farokh Kavarana, Dan Williams, Kazuya Asao
Abstract A high performance rigid airfoil profile sunroof wind deflector has been developed for high speed freeway driving with the sunroof open. This deflector is clearly superior to the conventional bar type deflector and less expensive compared to tall flexible fabric mesh deflectors applied on high end vehicles today. It provides superior speech intelligibility under high speed driving with sunroof open. The criterion for designing this deflector was to get the highest airspeed possible to span the sunroof opening under all conditions. The customized shape also utilizes flow unsteadiness, including those at the onset of buffeting, in order to condition the shear layer. The airfoil profiled deflector yielded superior mid and high frequency acoustic performance with acceptable low frequency performance. A shorter airfoil deflector was sufficient to keep the external airflow from entering the forward tilted sunroof opening on a mid-size SUV under test.
2016-06-15
Technical Paper
2016-01-1804
Stefan Becker, Katrin Nusser, Marco Oswald
Abstract Aim of the ongoing development of passenger cars is to predict the interior acoustics early in the development process. A significant noise component results from the flow phenomena in the area of the side window. Wind noise is a physical problem that involves the three complicated aspects each governed by different physics: The complex turbulent flow field in the wake of the a-pillar and the side mirror is characterized by velocity and pressure fluctuations. The flow field generates sound which is transmitted into the passenger cabin. In addition to that, it excites the structure, resulting in a radiation of structure-borne noise into the interior of the car. Therefore, the sound generation is governed by fluid dynamics of the air flow. The sound transmission through the structure due to vibrations is determined by structural mechanics of the body structure. The sound propagation inside the cabin is influenced by interior room acoustics.
2016-06-15
Technical Paper
2016-01-1803
Hannes Frank, Claus-Dieter Munz
Avoiding narrowband components in the acoustic spectrum is one of the most critical objectives in the automotive aeroacoustic optimization process. The underlying physical mechanisms are not completely understood. In a preceding numerical and experimental investigation, we performed large eddy simulations of an early-development stage realistic side-view mirror, where tonal noise was captured and the principle mechanisms were identified. In this contribution, we present simulations on a simplified two-dimensional geometry that is based on these findings. It is shown that the basic flow topology relevant for tonal noise generation on the original side-view mirror as well as the tonal noise source is reproduced in the 2D case. Furthermore, we present comparisons with measurements and the necessity and influence of a splitter plate downstream of the 2D body to avoid large scale vortex shedding.
2016-06-15
Journal Article
2016-01-1801
Jonathan Vaudelle, Florian Godard, Florian Odelot, Anne Sanon
Abstract Acoustic comfort inside the vehicle is required whenever a wiper system is in function: front wiper motor noise is of great influence on the global comfort and its perception inside the car is 100% due to transmission of vibrations through wiper system fixation points on the vehicle. As any active source, both car manufacturer and system supplier need to be involved, at early stages of project development, in order to master the vibroacoustic integration of the system into the vehicle. This paper presents an experimental methodology dedicated to the front wiper system that offers the possibility to estimate the acoustic comfort inside the vehicle during project deployment phase, when modifications can still be proposed. Based on the XP-R-19701 standard, the procedure allows to measure, on a bench, the dynamic forces transmitted via the fixation points and details how to transpose them to the vehicle, taking into account the different specificities of the wiper system.
2016-06-15
Technical Paper
2016-01-1802
Mehdi Mehrgou, Franz Zieher, Christoph Priestner
Abstract Recently, hybrid and fully electric drives have been developing widely in variety, power and range. The new reliable simulation approaches are needed, in order to meet the defined NVH targets of these systems and implementing CAE methods for front loading, Design Validation Process (DVP). This paper introduces the application of a novel NVH analysis workflow on an electric vehicle driveline including both electromagnetic and mechanical excitations for an absolute evaluation of the NVH performance. At first, the electromagnetic field is simulated using FEM method to extract the excitations on the stator, rotor bearings as well as the drive torque. Then, the multibody dynamic model of the driveline is built-up, driven by this torque. The effect of eccentricity and skew angle of rotor in electromagnetic excitations are shown.
2016-06-15
Journal Article
2016-01-1799
Corentin Chesnais, Nicolas Totaro, Jean-Hugh Thomas, Jean-Louis Guyader
Abstract The source field reconstruction aims at identifying the excitation field measuring the response of the system. In Near-field Acoustic Holography, the response of the system (the radiated acoustic pressure) is measured on a hologram using a microphones array and the source field (the acoustic velocity field) is reconstructed with a back-propagation technique performed in the wave number domain. The objective of the present works is to use such a technique to reconstruct displacement field on the whole surface of a plate by measuring vibrations on a one-dimensional holograms. This task is much more difficult in the vibratory domain because of the complexity of the equation of motion of the structure. The method presented here and called "Structural Holography" is particularly interesting when a direct measurement of the velocity field is not possible.
2016-06-15
Technical Paper
2016-01-1800
Xavier Carniel, Anne Sanon
Abstract The control of sound fields radiated by vibrating structures in a passenger compartment, (especially structures connected to different organs like the engine powertrain, the fan motor unit, seats, the steering column, electrical motors more and more, etc.) is among the functions of the automotive manufacturers. The absence of physical prototypes in the development phase systems led OEMs1 to use tests results obtained on benches following technical specifications from manufacturers. The transition "bench to vehicle" for vibro- acoustic behaviour sets many challenges that this standard intends to clear up. This standard specifies the experimental method to transpose the dynamic forces generated by the global movements of an active component between the vehicle and a test bench. The efforts are first measured on test benches and then transposed from test bench towards the vehicle. The standard is now a French standard (XP R 19-701) and is submitted to ISO process [1].
2016-06-15
Technical Paper
2016-01-1796
Aurélien Cloix, Jean-Luc Wojtowicki
Abstract The current paper is based on the French research program TESSA (“Transfert des Efforts des Sources Solidiennes Actives”). A specific task within TESSA project consists in the characterization of the measurements variability between several laboratories, of the blocked forces on a water pump of a heat engine. This paper focuses only on the measurements carried out at Vibratec laboratory. Two kinds of measurements have been carried out: direct measurements, using force sensors, which is the target of the inter-laboratory measurements, and an inverse method without force sensor requirements. Reproducibility and repeatability tests have been done in order to quantify the measurement variability within the same laboratory, in preparation for the inter-laboratory disparity analysis.
2016-06-15
Technical Paper
2016-01-1798
Quentin Buisson, Jean-Louis Guyader, Serge Puvilland, Xavier Carniel, Maximilien Soenen
Abstract The goal of the present study is to provide a simple method to compare structure borne noise sources in order to choose the most efficient one, considering the transmission of dynamic forces. It is well known that mechanical sources are not only dependent of the source itself but also of the receiving structure, in addition real sources cannot be reduced to a transverse force acting on the structure but more complicated effect like moment excitation must be taken into account. The advantage of the reception plate method is to characterize the source globally by the level of vibration of the reception plate whatever the type of excitation, the idea is basically to characterize mechanical sources as it is done for acoustical sources in reverberant rooms. A reception plate test bench has been developed to determine the power injected by mechanical sources. Two prototype plates have been designed in order to have different receiving mobilities.
2016-06-15
Technical Paper
2016-01-1794
Jonathan Caprile, Claire Chaufour, Pierre Emile Chartrain
Abstract In automotive NVH, the noise generated by a powertrain is still one of the major noise sources especially at low and mid vehicle velocity. For this reason automotive OEMs are continuously focusing on methods to efficiently analyze this noise source. For this purpose, a well-established simulation methodology can provide results thoroughly, within a limited amount of time and with a reduced cost contrary to experiments which are involved in late design phases and are more expensive. This paper aims at presenting an approach to simulate efficiently the acoustic radiation from automotive components. With this aim in mind, the acoustic response of a realistic powertrain unit subjected to working conditions ranging from 1000 RPM to 4500 RPM is studied until 3000 Hz. Several radiating boundary conditions will be assessed in order to detect the most efficient set-up for this kind of problem and to extract the optimized modeling guidelines.
2016-06-15
Journal Article
2016-01-1795
Charly Faure, Charles Pezerat, Frédéric Ablitzer, Jérôme Antoni
In this paper, a local method of structure-borne noise source characterization is presented. It is based on measurements of transverse displacement and local structural operator knowledge and allows to localize and quantify sources without any need of boundary condition information. To fix the instability caused by measurement noise, the regularization step inherent to inverse problem is realized with a probabilistic approach, within the Bayesian framework. When a priori distributions about noise and sources are considered as Gaussian, the Bayesian regularization is equivalent to the well-known Tikhonov regularization. The optimization of the regularization is then performed by the Gibbs Sampling (GS) algorithm, which is part of Markov Chain Monte Carlo (MCMC) techniques. The whole probability of the regularized solution is inferred, providing access to confidence intervals.
2016-06-15
Technical Paper
2016-01-1792
Aurélien Lonni, Olivier Tanneau
Abstract Nowadays, downsizing and turbochargers are more frequently used, mostly for petrol engines. It can lead to an increase of NVH issues related to the turbos, such as the hiss noise propagation in the air ducts. Hutchinson, among all its activities, supplies rubber and plastic parts for the car industry, especially in fluid management systems. The turbocharger’s airborne noise issue has now been tackled for ten years by implementing acoustic devices in the line and providing solutions to car manufacturers with our hot-side rubber ducts. In this paper, will be first presented the main HP air loop NVH issues, and then explained an approach to design technical solutions. Generally speaking, the noise propagates inside the hot side air hoses, crosses the weakest parts of the system by acoustic emissivity to reach finally the driver and passengers’ ears.
2016-06-15
Journal Article
2016-01-1791
Noé F. Melo, Claus Claeys, Elke Deckers, Bert Pluymers, Wim Desmet
Abstract The NVH performance of conventional panels and structures is mainly driven by their mass. Silence often requires heavy constructions, which conflicts with the emerging trend towards lightweight design. To face the challenging and often conflicting task of merging NVH and lightweight requirements, novel low mass and compact volume NVH solutions are required. Vibro-acoustic metamaterials with stopband behavior come to the fore as possible novel NVH solutions combining lightweight requirements with superior noise and vibration insulation, be it at least in some targeted and tunable frequency ranges, referred to as stopbands. Metamaterials are artificial materials or structures engineered from conventional materials to exhibit some targeted performance that clearly exceeds that of conventional materials. They consist typically of (often periodic) assemblies of unit cells of non-homogeneous material composition and/or topology.
2016-06-15
Technical Paper
2016-01-1821
Lin Du, Mats Abom, Mikael Karlsson, Magnus Knutsson
Abstract To tune the acoustics of intake systems resonators are often used. A problem with this solution is that the performance of these resonators can be affected a lot by flow. First, for low frequencies (Strouhal-numbers) the acoustic induced vorticity across a resonator inlet opening will create damping, which can reduce the efficiency. Secondly, the vorticity across the opening can also change the end-correction (added mass) for the resonator, which can modify the resonance frequency. However, the largest problem that can occur is whistling. This happens since the vortex-sound interaction across a resonator opening for certain Strouhal-numbers will amplify incoming sound waves. A whistling can then be created if this amplified sound forms a feedback loop, e.g., via reflections from system boundaries or the resonator. To analyse this kind of problem it is necessary to have a model that allows for both sound and vorticity and their interaction.
2016-06-15
Technical Paper
2016-01-1822
Drasko Masovic, Franz Zotter, Eugene Nijman, Jan Rejlek, Robert Höldrich
Abstract Radiation of sound from an open pipe with a hot mean flow presents one of the classic problems of acoustics in inhomogeneous media. The problem has been especially brought into focus in the last several decades, in the context of noise control of vehicle exhaust systems and jet engines. However, the reports on the measurements of the radiated sound field are still rare and scattered over different values of subsonic and supersonic flow speeds, cold and hot jets, as well as different sound frequency ranges. This paper focuses on low Mach number values of the mean flow speed and low frequencies of the incident (plane) sound waves inside an unflanged cylindrical pipe with a straight cut. It presents the results of the far-field radiation pattern measurements and compares them with an existing analytical model from the literature. The mean flow inside the pipe reached Mach number values up to 0.25 and temperature up to 300°C.
2016-06-15
Technical Paper
2016-01-1820
Mikael Karlsson, Magnus Knutsson, Mats Abom
Abstract This work explores how fluid driven whistles in complex automotive intake and exhaust systems can be predicted using computationally affordable tools. Whistles associated with unsteady shear layers (created over for example side branches or perforates in resonators) are studied using vortex sound theory; vorticity in the shear layer interacts with the acoustic field while being convected across the orifice. If the travel time of a hydrodynamic disturbance over the orifice reasonably matches a multiple of the acoustic period of an acoustic feedback system, energy is transferred from the flow field to the acoustic field resulting in a whistle. The actual amplitude of the whistle is set by non-linear saturation phenomena and cannot be predicted here, but the frequency and relative strength can be found. For this not only the mean flow and acoustic fields needs to be characterized separately, but also the interaction of the two.
2016-06-15
Journal Article
2016-01-1819
Antonio J. Torregrosa, Alberto Broatch, Vincent Raimbault, Jerome Migaud
Abstract Intake noise has become one the main concerns in the design of highly-supercharged downsized engines, which are expected to play a significant role in the upcoming years. Apart from the low frequencies associated with engine breathing, in these engines other frequency bands are also relevant which are related to the turbocharger operation, and which may radiate from the high-pressure side from the compressor outlet to the charge air cooler. Medium frequencies may be controlled with the use of different typologies of resonators, but these are not so effective for relatively high frequencies. In this paper, the potential of the use of multi-layer porous materials to control those high frequencies is explored. The material sheets are located in the side chamber of an otherwise conventional resonator, thus providing a compact, lightweight and convenient arrangement.
2016-06-15
Technical Paper
2016-01-1818
Raimo Kabral, Lin Du, Mats Abom, Magnus Knutsson
Abstract The concept of IC engine downsizing is a well-adapted industry standard, enabling better fuel conversion efficiency and the reduction of tailpipe emissions. This is achieved by utilizing different type of superchargers. As a consequence, the additional charger noise emission, at the IC engine inlet, can become a problem. In order to address such problem, the authors of this work have recently proposed a novel dissipative silencer for effective and robust noise control of the compressor. Essentially, it realizes an optimal flow channel impedance, referred to as the Cremer impedance. This is achieved by means of a straight flow channel with a locally reacting wall consisting of air cavities covered by an acoustic resistance, e.g., a micro-perforated panel (MPP). In this paper, an improved optimization method of this silencer is presented. The classical Cremer impedance model is modified to account for mean flow dependence of the optimal wave number.
2016-06-15
Journal Article
2016-01-1817
Juergen Veit, Paco Langjahr, Stephan Brandl, Bernhard Graf
Abstract Due to more challenging future emission legislations and the trend towards downsizing, the number of turbocharged (TC) engines, especially petrol engines, is steadily increasing. The usage of TC has high risk to cause different noise phenomena apparent in the vehicle interior which are often perceived as annoying for the passengers. In order to further improve consideration of TC topics in the development, objective judgment and monitoring of TC noise issues is of high importance. Therefore, objective parameters and corresponding tools that are especially focusing on TC noise phenomena have to be developed. One main target of these tools is to deliver an objective TC assessment in an efficient way and with minimum additional effort. Application of the criteria presented in this publication therefore allows acoustic engineers to judge the NVH behavior and annoyance of the TC with respect to its vehicle interior noise contribution.
2016-06-15
Technical Paper
2016-01-1816
Heiki Tiikoja, Fabio Auriemma, Jüri Lavrentjev
Abstract In this paper the propagation of acoustic plane waves in turbulent, fully developed flow is studied by means of an experimental investigation carried out in a straight, smooth-walled duct. The presence of a coherent perturbation, such as an acoustic wave in a turbulent confined flow, generates the oscillation of the wall shear stress. In this circumstance a shear wave is excited and superimposed on the sound wave. The turbulent shear stress is modulated by the shear wave and the wall shear stress is strongly affected by the turbulence. From the experimental point of view, it results in a measured damping strictly connected to the ratio between the thickness of the acoustic sublayer, which is frequency dependent, and the thickness of the viscous sublayer of the turbulent mean flow, the last one being dependent on the Mach number. By reducing the turbulence, the viscous sublayer thickness increases and the wave propagation is mainly dominated by convective effects.
2016-06-15
Journal Article
2016-01-1815
Augusto Della Torre, Gianluca Montenegro, Angelo Onorati
Abstract In the last decades numerical simulations have become reliable tools for the design and the optimization of silencers for internal combustion engines. Different approaches, ranging from simple 1D models to detailed 3D models, are nowadays commonly applied in the engine development process, with the aim to predict the acoustic behavior of intake and exhaust systems. However, the acoustic analysis is usually performed under the hypothesis of infinite stiffness of the silencer walls. This assumption, which can be regarded as reasonable for most of the applications, can lose validity if low wall thickness are considered. This consideration is even more significant if the recent trends in the automotive industry are taken into account: in fact, the increasing attention to the weight of the vehicle has lead to a general reduction of the thickness of the metal sheets, due also to the adoption of high-strength steels, making the vibration of the components a non negligible issue.
Viewing 1 to 30 of 7704

Filter

  • Range:
    to:
  • Year: