Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2521
2017-06-05
Technical Paper
2017-01-1891
Todd Freeman, Kelby Weilnau
Abstract Similar to the automotive industry, the expectations from customers for the noise and vibration performance of personal vehicles such as golf carts, ATV’s, and side-by-side vehicles has continued to evolve. Not only do customers expect these types of vehicles to be more refined and to have acoustic signatures that match the overall performance capabilities of the vehicle, but marketing efforts continue to focus on product differentiators which can include the acoustic and vibration performance. Due to this increased demand for acoustic and vibration performance, additional NVH efforts are often required to meet these expectations. This paper provides a sample of some of the efforts that have occurred to further refine and develop the noise and vibration signature for golf carts.
2017-06-05
Technical Paper
2017-01-1903
Masami Matsubara, Nobutaka Tsujiuchi, Tomohiko Ise, Shozo Kawamura
Abstract The tire is one of the most important parts, which influence the noise, vibration, and harshness of the passenger cars. It is well known that effect of rotation influences tire vibration characteristics, and earlier studies presented formulas of tire vibration behavior. However, there are no studies of tire vibration including lateral vibration on effect of rotation. In this paper, we present new formulas of tire vibration on effect of rotation using a three-dimensional flexible ring model. The model consists of the cylindrical ring represents the tread and the springs represent the sidewall stiffness. The equation of motion of lateral, longitudinal, and radial vibration on the tread are derived based on the assumption of inextensional deformation. Many of the associated numerical parameters are identified from experimental tests.
2017-06-05
Technical Paper
2017-01-1905
Kiran Patil, Javad Baqersad, Jennifer Bastiaan
Abstract Tires are one of the major sources of noise and vibration in vehicles. The vibration characteristic of a tire depends on its resonant frequencies and mode shapes. Hence, it is desirable to study how different parameters affect the characteristics of tires. In the current paper, experimental modal tests are performed on a tire in free-free and fixed conditions. To obtain the mode shapes and the natural frequencies, the tire is excited using a mechanical shaker and the response of the tire to the excitation is measured using three roving tri-axial accelerometers. The mode shapes and resonant frequencies of the tire are extracted using LMS PolyMax modal analysis. The obtained mode shapes in the two configurations are compared using Modal Assurance Criterion (MAC) to show how mode shapes of tires change when the tire is moved from a free-free configuration to a fixed configuration. It is shown that some modes of the tire are more sensitive to boundary conditions.
2017-06-05
Technical Paper
2017-01-1908
Rong Guo, Jun Gao, Xiao-kang Wei, Zhao-ming Wu, Shao-kang Zhang
Abstract The statement of the engine shake problem is presented through comparing the quarter vehicle models with the rigid-connected and flexible-connected powertrain which is supported on the body by a rubber mount. Then the model is extended by replacing the rubber mount as a hydraulic engine mount (HEM) with regard to the inertia and resistance of the fluid within the inertia track. Based on these, a full vehicle model with 14 degree of freedoms (DOFs) is proposed to calculate the engine shake, which consists of 6 of the powertrain, 1 of the fluid within the inertia track of the HEM, 3 of the car body and 4 of the unsprung mass. Simulation analysis based on the proposed model is implemented, through which the conclusion is drawn that the HEM has great influence on the body and seat track response subjected to front wheel inputs, compared with the rubber mount.
2017-06-05
Journal Article
2017-01-1909
Joel Bruns, Jason Dreyer
Abstract The application of hydraulic body mounts between a pickup truck frame and cab to reduce freeway hop and smooth road shake has been documented in literature and realized in production vehicles. Previous studies have demonstrated the potential benefits of these devices, often through iterative prototype evaluation. Component dynamic characterization has also shown that these devices exhibit significant dependence to preload and dynamic amplitude; however, analysis of these devices has not addressed these dependences. This paper aims to understand the amplitude and preload dependence on the spectrally-varying properties of a production hydraulic body mount. This double-pumping, three-spring mount construction has a shared compliant element between the two fluid-filled chambers.
2017-06-05
Technical Paper
2017-01-1752
Kapil Gupta, Arun Choudhary, Rakesh Bidre
Abstract At present, a Dual Mass Flywheel (DMF) system is widely known to provide benefits on driveline induced noise, vibration and drivability over a Single Mass Flywheel (SMF). A well-tuned DMF provides nice isolation of torsional vibrations generated in periodic combustion process of automobile IC engines. Similarly, a torsional vibration damper mounted on driveline component reduces the torsional excitation and results a lower torsional vibration at driveline components. Noise and vibration issues like boom noise and high vibrations at low engine RPM range drive are often resulted due to high engine firing order torsional excitation input to the driveline. More often, this becomes one of the most objectionable noise and vibration issues in vehicle and should be eliminated or reduced for better NVH performance. A 4 cylinder, 4 stroke small diesel engine equipped with SMF is found to have high engine firing order torsional excitation.
2017-06-05
Technical Paper
2017-01-1761
Daniel Fernandez Comesana, Graciano Carrillo Pousa, Emiel Tijs
Abstract The automotive industry is currently increasing the noise and vibration requirements of vehicle components. A detailed vibro-acoustic assessment of the supplied element is commonly enforced by most vehicle manufacturers. Traditional End-Of-Line (EOL) solutions often encounter difficulties adapting from controlled environments to industrial production lines due the presence of high levels of noise and vibrations generated by the surrounding machinery. In contrast, particle velocity measurements performed near a rigid radiating surface are less affected by background noise and they can potentially be used to address noise problems even in such conditions. The vector nature of particle velocity, an intrinsic dependency upon surface displacement and sensor directivity are the main advantages over conventional solutions. As a result, quantitative measurements describing the vibro-acoustic behavior of a device can be performed at the final stage of the manufacturing process.
2017-06-05
Technical Paper
2017-01-1766
Dirk von Werne, Stefano Orlando, Anneleen Van Gils, Thierry Olbrechts, Ivan Bosmans
Abstract A methodology to secure cabin noise and vibration targets is presented. Early in the design process, typically in the Joint Definition Phase, Targets are cascaded from system to component level to comply with the overall cabin noise target in various load cases. During the Detailed Design Phase, 3D simulation models are build up to further secure and refine the vibro-acoustic performance of the cabin noise related subsystems. Noise sources are estimated for the target setting based on layer analytical and empirical expressions from literature. This includes various types of engine noise - fan, jet, and propeller noise - as well as turbulent boundary layer noise. For other noise sources, ECS and various auxiliaries, targets are set such as to ensure the overall cabin noise level. To synthesize the cabin noise, these noise sources are combined with estimates of the noise transfer through panels and the cavity effect of the cabin.
2017-06-05
Technical Paper
2017-01-1768
Yong Xu
Abstract The NVH performance is one of the most important concerns in vehicle development. For all-wheel drive (AWD) vehicles and rear-wheel (RWD) drive vehicles, prop shaft is a major transmission component which may cause various NVH problems. This paper focuses on the vehicle NVH problems caused by the second order excitation force of prop shaft. In order to control the NVH performance of the prop shaft efficiently and fundamentally, this work first studied the rotation kinematical characteristics of prop shaft. Then a rigid-elastic coupling model of vehicle driveline was built with the theory of multi-body dynamics. With this model, the sensitive factors that may affect the second order excitation force were investigated. This paper also describes a case study to verify the conclusions which are revealed from the theoretical calculation and the simulation.
2017-06-05
Journal Article
2017-01-1770
Wallace Hill, Dennis Kinchen, Mark A. Gehringer
Abstract This paper describes the development of an analytical method to assess and optimize halfshaft joint angles to avoid excessive 3rd halfshaft order vibrations during wide-open-throttle (WOT) and light drive-away events. The objective was to develop a test-correlated analytical model to assess and optimize driveline working angles during the virtual design phase of a vehicle program when packaging tradeoffs are decided. A twelve degree-of-freedom (12DOF) system model was constructed that comprehends halfshaft dynamic angle change, axle torque, powertrain (P/T) mount rate progression and axial forces generated by tripot type constant velocity (CV) joints. Note: “tripot” and “tripod” are alternate nomenclatures for the same type of joint. Simple lumped parameter models have historically been used for P/T mount optimization; however, this paper describes a method for using a lumped parameter model to also optimize driveline working angles.
2017-06-05
Journal Article
2017-01-1772
Yawen Wang, Xuan Li, Guan Qiao, Teik Lim
Abstract The prediction and control of gear vibration and noise has become very important in the design of a quiet, high-quality gearbox systems. The vibratory energy of the gear pair caused by transmission error excitation is transmitted structurally through shaft-bearing-housing assembly and radiates off from exterior housing surface. Most of the previous studies ignore the contribution of components flexibility to the transmission error (TE) and system dynamic responses. In this study, a system level model of axle system with hypoid gear pair is developed, aiming at investigating the effect of the elasticity of the shafts, bearings and housing on TE as well as the contribution of flexible bearings on the dynamic responses. The load distribution results and gear transmission errors are calculated and compared between different assumptions on the boundary conditions.
2017-06-05
Journal Article
2017-01-1771
Mohamed El morsy, Gabriela Achtenova
Abstract Gear fault diagnosis is important in the vibration monitoring of any rotating machine. When a localized fault occurs in gears, the vibration signals always display non-stationary behavior. In early stage of gear failure, the gear mesh frequency (GMF) contains very little energy and is often overwhelmed by noise and higher-level macro-structural vibrations. An effective signal processing method would be necessary to remove such corrupting noise and interference. This paper presents the value of optimal wavelet function for early detection of faulty gear. The Envelope Detection (ED) and the Energy Operator are used for gear fault diagnosis as common techniques with and without the proposed optimal wavelet to verify the effectiveness of the optimal wavelet function. Kurtosis values are determined for the previous techniques as an indicator parameter for the ability of early gear fault detection. The comparative study is applied to real vibration signals.
2017-06-05
Journal Article
2017-01-1774
Fabio Luis Marques dos Santos, Tristan Enault, Jan Deleener, Tom Van Houcke
Abstract The increasing pressure on fuel economy has brought car manufacturers to implement solutions that improve vehicle efficiency, such as downsized engines, cylinder deactivation and advanced torque lock-up strategies. However, these solutions have a major drawback in terms of noise and vibration comfort. Downsized engines and lock-up strategies lead to the use of the engine at lower RPMs, and the reduced number of cylinders generates higher torque irregularities. Since the torque generated by the engine is transferred through flexible elements (clutch, torsional damper, gearbox, transmission, tire), these also impact the energy that is transferred to the vehicle body and perceived by the driver. This phenomenon leads to low frequency behavior, for instance booming noise and vibration. This paper presents a combined test and CAE modelling approach (1D/3D) to reverse engineer a vehicle equipped with a CPVA (centrifugal pendulum vibration absorber).
2017-06-05
Technical Paper
2017-01-1773
Jing Yuan
Abstract The dual phase twin synchronous drive has been developed for belt noise reduction. Two identical synchronous belts are arranged parallel side by side with one tooth staggered against other by the half pitch offset. The noise cancellation effect is achieved as one belt tooth engagement coincides with the other belt tooth dis-engagement. A center flange is used as a divider to prevent the belts contacting each other along the axial direction during their entrance and exit of the sprocket. An overall 20 [dBA] noise reduction has been achieved with the dual phase twin belt drive compared to an equal width single belt counterpart. The vibration amplitude of the hub load is also reduced which is directly correlated to the structural borne noise. Comparing to the related dual phase helical tooth belt, the dual phase twin belt is superior in torque carrying capability; and is on par with noise mitigation.
2017-06-05
Technical Paper
2017-01-1775
Mark A. Gehringer, Robert Considine, David Schankin
Abstract This paper describes recently developed test methods and instrumentation to address the specific noise and vibration measurement challenges posed by large-diameter single-piece tubular aluminum propeller (prop) shafts with high modal density. The prop shaft application described in this paper is a light duty truck, although the methods described are applicable to any rotating shaft with similar dynamic properties. To provide a practical example of the newly developed methods and instrumentation, impact FRF data were acquired in-situ for two typical prop shafts of significantly different diameter, in both rotating and stationary conditions. The example data exhibit features that are uniquely characteristic of large diameter single-piece tubular shafts with high modal density, including the particular effect of shaft rotation on the measurements.
2017-06-05
Technical Paper
2017-01-1778
Enrico Galvagno, Antonio Tota, Mauro Velardocchia, Alessandro Vigliani
Abstract This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking. Due to external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, the torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), may lead to NVH issues known as clonk. This study initially focuses on the positive effect on transmission NVH performance of a concurrent application of a braking torque at the driving wheels and of an engine torque increase during these maneuvers; then a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize losses.
2017-06-05
Technical Paper
2017-01-1780
Yong Xu
Abstract In the design or match process of vehicle powertrain system, gearbox rattle is a common NVH problem which directly affects passengers’ judgment on the quality and performance of vehicle. During the development process of a passenger car, prototype vehicles have serious gear rattle problem. In order to efficiently and fundamentally control this problem, this work first studied the characteristics and mechanisms of the gearbox rattle. The study results revealed that the torsional vibration of powertrain system was the root cause of gearbox rattle. Then a simulation model of the full vehicle was built with the aid of Simulink® toolbox, which is a graphical extension to MATLAB® for modeling and simulation of variety of systems. With this model, the sensitivity analysis and parametrical optimization were performed, and the simulation results indicated that the dual-mass flywheel (DMF) was the best measure to control the rattle.
2017-06-05
Technical Paper
2017-01-1785
Paul Bremner, Scott Clifton, Chris Todter
Abstract Measurements of interior wind noise sound pressure level have shown that dBA and Loudness are not adequate metrics of wind noise sound quality due to non-stationary characteristics such as temporal modulation and impulse. A surface microphone array with high spatio-temporal resolution has been used to measure and analyze the corresponding non-stationary characteristics of the exterior aero-acoustic loading. Wavenumber filtering is used to observe the unsteady character of the low wavenumber aero-acoustic loading components most likely to be exciting glass vibration and transmitting sound.
2017-06-05
Technical Paper
2017-01-1799
Nagasuresh Inavolu, Jaganmohan Rao Medisetti, S. Nanda Kumar, J Lingeshkumar, Akshay Loya, Mvgprasad MV
Abstract Engine noise reduction is one of the highest priorities in vehicle development from the viewpoint of meeting stringent noise regulations. Engine noise reduction involves identification of noise sources and suppression of noise by changing the response of sources to input excitations. Noise can originate from several mechanical sources in engine. The present work focuses on systematic study of the behavior or response of engine structure and its ancillaries to engine excitation and thereby assess their contribution to overall engine noise. The approach includes engine noise and vibration measurement and component ranking using engine noise and vibration measurement in a non-anechoic environment, structural analysis of engine including experimental modal testing of engine and its components, etc. Correlation of the above obtained results is performed to identify the noise sources. Later, ranking of critical components was performed based on results of cladding exercise.
2017-06-05
Technical Paper
2017-01-1804
Chulwoo Jung, Hyeon Seok Kim, Hyuckjin Oh, Kwang Hyeon Hwang, Hun Park
Abstract An efficient method to determine optimal bushing stiffness for improving noise and vibration of passenger cars is developed. In general, a passenger vehicle includes various bushings to connect body and chassis systems. These bushings control forces transferred between the systems. Noise and vibration of a vehicle are mainly caused by the forces from powertrain (engine and transmission) and road excitation. If bushings transfer less force to the body, levels of noise and vibration will be decreased. In order to manage the forces, bushing stiffness plays an important role. Therefore, it is required to properly design bushing stiffness when developing passenger vehicles. In the development process of a vehicle, bushing stiffness is decided in the early stage (before the test of an actual vehicle) and it is not validated until the test is performed.
2017-06-05
Technical Paper
2017-01-1803
John Van Baren
Abstract The accumulated damage that a product experiences in the field due to the variety of vibration stresses placed upon it will eventually cause failures in the product. The failure modes resulting from these dynamic stresses can be replicated in the laboratory and correlated to end use environment to validate target reliability requirements. This presentation addresses three fundamental questions about developing accelerated random vibration stress tests.
2017-06-05
Technical Paper
2017-01-1801
Sivasankaran Sadasivam, Aditya Palsule, Ekambaram Loganathan, Nagasuresh Inavolu, Jaganmohan Rao Medisetti
Abstract Powertrain is the major source of noise and vibration in commercial vehicles and has significant contribution on both interior and exterior noise levels. It is vital to reduce the radiated noise from powertrain to meet customer expectations of vehicle comfort and to abide by the legislative noise requirements. Sound intensity mapping technique can identify the critical components of noise radiation from the powertrain. Sound intensity mapping has revealed that oil sump as one of the major contributors for radiated noise from powertrain. Accounting the effect of dynamic coupling of oil on the sump is crucial in predicting its noise radiation performance. Through numerical methods, some amount of work done in predicting the dynamic characteristics of structures filled with fluid.
2017-06-05
Technical Paper
2017-01-1808
Francis Nardella
Abstract In a previous report, it was shown that power transmission through the camshaft reduced the first mode natural frequency of the power train and translated its convergence with dominant engine excitatory harmonics to a lower engine speed resulting in a marked reduction in torsional vibration while achieving 2/1 gear reduction for a 4-stroke 6-cylinder compression ignition (CI) engine for aviation. This report describes a sweep though 2 and 4-stroke engines with differing numbers of cylinders configured as standard gear reduction (SGRE) and with power transmission through the camshaft (CDSE) or an equivalent dedicated internal driveshaft (DISE). Four and 6-cylinder 4-stroke engines were modeled as opposed boxer engines. Four and 6-cylinder 2-stroke engines and 8, 10 and 12-cylinder 2-stroke and 4-stroke engines were modeled as 180° V-engines. All 2-stroke engines were considered to be piston ported and configured as SGRE or DISE.
2017-06-05
Technical Paper
2017-01-1807
Richard DeJong, Gordon Ebbitt
Abstract The SEA model of wind noise requires the quantification of both the acoustic as well as the turbulent flow contributions to the exterior pressure. The acoustic pressure is difficult to measure because it is usually much lower in amplitude than the turbulent pressure. However, the coupling of the acoustic pressure to the surface vibration is usually much stronger than the turbulent pressure, especially in the acoustic coincidence frequency range. The coupling is determined by the spatial matching between the pressure and the vibration which can be described by the wavenumber spectra. This paper uses measured vibration modes of a vehicle window to determine the coupling to both acoustic and turbulent pressure fields and compares these to the results from an SEA model. The interior acoustic intensity radiating from the window during road tests is also used to validate the results.
2017-06-05
Journal Article
2017-01-1806
Laurent Gagliardini
Abstract The input mobility is a crucial structural parameter regarding vibro-acoustic design of industrial objects. Whatever the frequency range, the vibrational power input into a structure -and consequently the average structural-acoustic response- is governed by the input mobility. When packaging structure-borne noise sources, the knowledge of the input mobility at the source connection points is mandatory for noise control. The input mobility is classically computed at the required points as a specific Frequency Response Function (FRF). During an industrial design process, the choice of connection points requires an a priori knowledge of the input mobility at every possible location of the studied structure-borne source, i.e. a mapping of the input mobility. The classical FRF computation at every Degree Of Freedom (DOF) of the considered structure would lead to consider millions of load cases which is beyond current computational limits.
2017-06-05
Technical Paper
2017-01-1805
Krzysztof Prażnowski, Jaroslaw Mamala
Abstract The vibrations of the sprung mass of a passenger car, traveling along a road surface, are random. They also form its main source but there are besides other factors to consider. The resulting force ratio is overlapped by other phenomena occurring at the interface of the pneumatic tire with the road surface, such as non-uniformity of tires, shape deformations and imbalances. The resulting additional inertia force acts on the kinematic force that was previously induced on the car body. The vibrations of the sprung mass of the car body at the time can be considered as a potential source of diagnostic information, but getting insight their direct identification is difficult. Moreover, the basic identification is complicated because of the forces induced due to the random interference from road roughness. In such a case, the ratio defined as SNR assumes negative values.
2017-06-05
Journal Article
2017-01-1811
Jouji Kimura, Tatsuya Tanaka, Kenjiro Hakomoto, Kousuke Kawase, Shinichiro Kobayashi
Abstract Since the sizes of the flywheel and clutch have been enlarged due to downsizing of diesel engines, the mass and moment of inertia at the crankshaft rear end have increased. Consequently, the serious bending stresses have appeared in the crankshaft rear. This paper describes the characteristics of those serious bending stresses, based on the mechanism for whirl resonance. The whirl resonance is largely impacted by the mass of the flywheel and clutch and by the distance from the crank-journal center of the rear end to the center of gravity of the flywheel and clutch.
2017-06-05
Journal Article
2017-01-1810
Shinichiro Kobayashi, Kenjiro Hakomoto, Kousuke Kawase, Makoto Kidokoro, Jouji Kimura
Abstract As the issue of global warming has become more serious, needs for downsizing or weight saving of an engine has been getting stronger, and forces exerted on engine parts, especially force on a crankshaft, have been getting larger and larger. In addition, since a crankshaft is a heavy engine part, needs for saving weight have been getting stronger and stronger. Therefore, determining the mechanism of high stress generation in a crankshaft system is urgently needed. This paper describes the characteristics and mechanism of a severe bending stress caused by the whirl of crankshaft rear end of an inline 6-cylinder medium-duty diesel engine. The authors measured bending stress on the fillets of the crankshaft, and found severe levels of sharp peaks in the stress curves for the crankshaft rear. To figure out why the severe levels of sharp peaks appear, they analyzed and studied the measured data.
Viewing 1 to 30 of 2521

Filter

  • Range:
    to:
  • Year: