Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 2420
2017-04-04
Event
This session addresses transmission noise, vibration, rattle issues and design solutions.
2017-01-15
Book
This is the electronic format of the Journal.
2017-01-10
Journal Article
2017-26-0233
Solairaj Perumal, Abhay Kumar, Arun Mahajan, Dinesh Redkar, Sureshkumar Balakrishnan
The tractor engine related mounting brackets are very critical due to different aspects of vehicle performance, durability and noise. These mounting bracket have been designed as a framework to support engine external parts like muffler, exhaust tail pipe, fuel filter, alternator etc. Vibration and fatigue has been continuously a concern which may lead to structural failure and performance issues. Various such failures are faced regularly by automotive industry and finite element based analysis are used to resolve them. The resolution is done by playing with the component thicknesses, material, by providing additional support etc. However, due to large degree of uncertainty associated with the loading, boundary conditions, manufacturing, environmental effects; still there is some probability of failure. This paper focuses on a field failure issue of an exhaust system of a tractor and subsequent concern resolution.
2016-12-05 ...
  • December 5-15, 2016 (6 Sessions) - Live Online
  • June 5-16, 2017 (6 Sessions) - Live Online
  • December 4-15, 2017 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Finite Element Analysis (FEA) has been used by engineers as a design tool in new product development since the early 1990's. Until recently, most FEA applications have been limited to static analysis due to the cost and complexity of advanced types of analyses. Progress in the commercial FEA software and in computing hardware has now made it practical to use advanced types as an everyday design tool of design engineers. In addition, competitive pressures and quality requirements demand a more in-depth understanding of product behavior under real life loading conditions.
2016-11-16
Event
All aspects of small engine related noise and vibration are covered in this session including: generation, experimental techniques, measurement, numerical analysis, NVH materials, source identification, NVH quality and novel solutions.
2016-11-15
Event
All aspects of small engine related noise and vibration are covered in this session including: generation, experimental techniques, measurement, numerical analysis, NVH materials, source identification, NVH quality and novel solutions.
2016-11-08
Technical Paper
2016-32-0042
Bhaarath Rajagopal Jeyapaal, Vamsi Krishna, Kannan Marudachalam
Abstract Vibrations have become an increasingly important attribute for determining the quality of automotive products. Particularly, this becomes more acute in the case of tactile vibrations of powered two-wheelers - motorcycles and scooters. This paper deals with vibrations of a scooter vehicle. Scooters are normally a two-wheeler with a four stroke single cylinder spark ignited engine. Vibrations of a scooter are mainly caused by the inertial imbalance forces of the engine, combustion forces and road undulations. Vibrations due to road undulations are mostly reduced by toggle link mechanism, resilient mounts of the engine and the shock absorbing suspension of the frame. The power train assembly is designed in such a way that the inertial imbalance forces in the power train assembly are distributed at a required angle called the ellipse angle.
2016-11-08
Technical Paper
2016-32-0044
Gaku Naoe
Abstract One of the issues involved in compression ignition combustion is the increase in combustion noise from engine mechanical systems caused by rapid combustion. When the fuel used is natural gas, with its high ignition temperature, the compression is increased relative to gasoline, so that combustion becomes even more rapid. The present research pursues the issue of noise by clarifying the distinctive features of combustion noise through tests focused on the two topics of stroke-bore ratio (S/B ratio) and ignition timing for engine structures deformation mode. From these results, we verified combustion noise trend and occurrence factor.
2016-10-17
Technical Paper
2016-01-2178
Daniela Siano, Gerardo Valentino, Fabio Bozza, Arturo Iacobacci, Luca Marchitto
Abstract In this paper, a downsized twin-cylinder turbocharged spark-ignition engine is experimentally investigated at test-bench in order to verify the potential to estimate the peak pressure value and the related crank angle position, based on vibrational data acquired by an accelerometer sensor. Purpose of the activity is to provide the ECU of additional information to establish a closed-loop control of the spark timing, on a cycle-by-cycle basis. In this way, an optimal combustion phasing can be more properly accomplished in each engine operating condition. Engine behavior is firstly characterized in terms of average thermodynamic and performance parameters and cycle-by-cycle variations (CCVs) at high-load operation. In particular, both a spark advance and an A/F ratio sweep are actuated. In-cylinder pressure data are acquired by pressure sensors flush-mounted within the combustion chamber of both cylinders.
2016-10-17
Journal Article
2016-01-2355
M Sivanesan, G Jayabalaji
Abstract Analytical and numerical study is carried out to study the behavior of stick-slip and judder phenomenon during engaging and disengaging of the automotive clutch. For this purpose, a four degree of freedom torsional power train lumped mass model is developed. This torsional vibration system includes engine-flywheel, clutch, gear box and vehicle drive line, which are connected to each other by shafts. Equation of motion of the system is developed and initially a stability analysis is carried out for various gradients of coefficient of friction using eigen value analysis. Later, a numerical simulation is carried out to analyze the judder and stick-slip phenomenon using commercially available mathematical tool MATLAB. It is observed that the clutch stick-slip is increased with increase in external torque and clutch pressure fluctuations.
2016-09-30
WIP Standard
J1636
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomeric components of loading or deforming at a constant rate and to provide guidance concerning test procedures used to define or specify the load/deformation characteristics of elastomeric components. This characteristic is referred to as static stiffness. This is also referred to as a 'static deflection test.'
2016-09-30
WIP Standard
J1183
The purpose of this SAE Recommended Practice is to review factors that influence the behavior of elastomers under conditions of dynamic stress and to provide guidance concerning laboratory procedures for determining the fatigue characteristics of elastomeric materials and fabricated elastomeric components.
2016-09-30
WIP Standard
J1883
The bushing 'TRAC' code is intended to be a tool that will aid in the definition of the geometric environment for the test, or use, of an elastomeric bushing.
2016-09-30
WIP Standard
J1085
These methods cover testing procedures for defining and specifying the dynamic characteristics of simple elastomers and simple fabricated elastomeric isolators used in vehicle components. Simple, here, is defined as solid (non-hydraulic) components tested at frequencies less than or equal to 25 Hz.
2016-09-27
Technical Paper
2016-01-8116
Mrudula Uday Orpe, Monika Ivantysynova
Abstract Mobile Earth Moving Machinery like Skid-steer loaders have tight turning radius in limited spaces due to a short wheelbase which prevents the use of suspensions in these vehicles. The absence of a suspension system exposes the vehicle to ground vibrations of high magnitude and low frequency. Vibrations reduce operator comfort, productivity and life of components. Along with vibrations, the machine productivity is also hampered by material spillage which is caused by the tilting of the bucket due to the extension of the boom. The first part of the paper focuses on vibration damping. The chassis’ vibrations are reduced by the use of an active suspension element which is the hydraulic boom cylinder which is equivalent to a spring-damper. With this objective, a linear model for the skid steer loader is developed and a state feedback control law is implemented.
2016-09-27
Technical Paper
2016-01-8121
Riccardo Bianchi, Addison Alexander, Andrea Vacca
Abstract Typically, earthmoving machines do not have wheel suspensions. This lack of components often causes uncomfortable driving, and in some cases reduces machine productivity and safety. Several solutions to this problem have been proposed in the last decades, and particularly successful is the passive solution based on the introduction of accumulators in the hydraulic circuit connecting the machine boom. The extra capacitance effect created by the accumulator causes a magnification of the boom oscillations, in such a way that these oscillations counter-react the machine oscillation caused by the driving on uneven ground. This principle of counter-reacting machine oscillations through the boom motion can be achieved also with electro-hydraulic solutions, properly actuating the flow supply to the boom actuators on the basis of a feedback sensors and a proper control strategy.
2016-09-27
Technical Paper
2016-01-8101
Yoshimune Mori, Akifumi Yoshimura, Nobutaka Tsujiuchi, Akihito Ito, Atsushi Fujimoto, Zenzo Yamaguchi, Koichi Honke
Abstract In a typical mechanical product such as an automobile or construction machinery, it is important to identify deformation modes, for which experiments and analyses can result in significant improvements. It is also important to consider how to improve the structure with high rigidity by using a technique such as the strain energy method in conventional design and development. However, the abovementioned method often generates conflicting results with regard to weight saving and cost reduction of development requirements. Transfer path analysis (TPA) using the finite element method (FEM) is an effective way to reduce noise and vibration in the automobile with respect to these issues. TPA can reveal the transfer path from the input to the response of the output point and the contribution of the path, and to efficiently consider improved responses.
2016-09-27
Technical Paper
2016-01-2096
Simon Schnieders, Dirk Eickhorst
Abstract Drilling of high-strength titan material and composites in combination creates complex challenges in order to achieve required productivity and quality. Long spiral chips are characteristically for the titan drilling process, which leads to e.g. chip accumulation, high thermomechanical load, surface damages and excessive tool wear. The basic approach is the substitution of today’s peck drilling as current solution to this problem and the implementation of a vibration assisted drilling, so called micro-peck-drilling-process, to generate a kinematic chip breakage in a significant more efficient way. To meet perfectly the requirements regarding rates, quality and automation level, Broetje-Automation as system integrator has investigated and developed the implementation of different alternative high-performance systems and methods to approach the optimal oscillation movement of the tool.
2016-09-27
Technical Paper
2016-01-2097
Sylvain Laporte, Cosme De Castelbajac, Mathieu Ladonne
Abstract The Vibration Assisted Drilling (VAD) process has been implemented in Automated Drilling Equipment (ADE) on an industrial scale since 2011. Today more than 11000 ADEs are currently used on aircraft assembly lines. As well as drawing up a short report on the use of this new process, the authors make an assessment on new challenges that VAD has to face up. Indeed production rates are increasing and ADE manufacturers improve their technologies, one of the most recent and major development concerning the electrical motorization of the machines. These evolutions are as many opportunities for the VAD provided you have a clever understanding as well as an expert knowledge of the process. Thus the authors propose a new dynamic model of the whole VAD system which integrates the behavior of the part, cutting tool/material pair and the machine. The confrontation of model results and experimental validation tests demonstrates the relevance of the works.
2016-09-27
Technical Paper
2016-01-2136
Oliver Pecat, Tebbe Paulsen, Philipp Katthöfer, Ekkard Brinksmeier, Sascha Fangmann
Abstract Insufficient chip extraction often leads to disruptions of automated drilling processes and will have a negative impact on the surface qualities. One opportunity to avoid chip accumulation is based on a kinematically enforced chip breakage caused by sinusoidal axial oscillations of the drilling tool. Recent investigations have shown that the quality of chip extraction is, amongst others, considerably depending on the chip shape and mass which are defined by the cutting parameters feed, amplitude and frequency. So far only mechanical systems in the form of tool holders have been available on the market, which are restricted to a fixed frequency (oscillation frequency is coupled to the spindle speed). In the present study a spindle with magnetic bearings was used which allows to adjust the oscillation frequency independent of the spindle speed and therefore enables all opportunities to affect the generated chip shapes.
2016-09-18
Technical Paper
2016-01-1933
Mingzhuo Li, Dejian Meng, Lijun Zhang
Abstract Brake judder severely affects the riding comfort and safety of vehicle. For the brake corner system, a rigid-flexible coupling model is established based on ADAMS. In the model, brake pads, caliper, anchor and knuckle are flexible bodies, and the contacts between pads and disc and the contacts between pads and caliper are defined in detail. Meanwhile, the vibration acceleration of the brake corner components and the contact forces between disc and pads are used as evaluation index and the evaluation system of brake judder are improved. The analysis results show that the novel model and evaluation system can be used to predict brake judder effectively.
2016-09-18
Technical Paper
2016-01-1921
Yusuke Sunagawa, Tsuyoshi Kondo
Abstract Brake squeal noise is generally classified into two vibration modes of disc. One is called “out-of plane mode” which vibrates in disc’s out-of-plane direction. The other is “In-plane mode” which vibrates in disc’s in-plane direction, it means the disc is contracted partially or is extended. There are few “In-plane noise” analysis reports from Disc pad standpoint, so it has been unclear how disc pad contributes to “In-plane mode” until now. This paper confirms that we successfully analyzed direct pad vibration mode by laser scanning under in-plane mode condition. Based on these results, we assume that pad stiffness affected in-plane mode and carried out validation tests.
2016-09-18
Journal Article
2016-01-1911
Philippe Dufrenoy, Vincent Magnier, Yassine WADDAD, Jean-Francois Brunel, Gery DE SAXCE
Abstract During friction it is well known that the real contact area is much lower to the theoretical one and that it evolves constantly during braking. It influences drastically the system’s performance. Conversely the system behavior modifies the loading conditions and consequently the contact surface area. This interaction between scales is well-known for the problematic of vibrations induced by friction but also for the thermomechanical behavior. Indeed, it is necessary to develop models combining a fine description of the contact interface and a model of the whole brake system. This is the aim of the present work. A multiscale strategy is propose to integrate the microscopic behavior of the interface in a macroscopic numerical model. Semi-analytical resolution is done on patches at the contact scale while FEM solution with contact parameters embedded the solution at the microscale is used. Asperities and plateaus are considered at the contact interface.
2016-09-18
Journal Article
2016-01-1939
Toshikazu Okamura
Abstract Brake judder is one of the most serious problems in automotive-brake systems. It is basically a forced vibration caused by the friction-surface geometry of a brake disc, and therefore, disc rotors play a significant role in judder. There are two types of judder: cold and hot. Hot judder is caused by the thermo-mechanical deformation of a brake disc due to high-speed braking. There are several shapes of deformation, e.g., coning and circumferential waviness. Circumferential waviness is caused by thermo-mechanical buckling and typically found as a butterfly shape in a 2nd rotational-order and hot-spotting. In a previous paper, two groups of disc castings with different material homogeneity were machined intentionally to have two kinds of dimensional variations.
2016-09-18
Journal Article
2016-01-1931
Aaron Völpel, Georg Peter Ostermeyer
Abstract In today’s research and development of brake systems the model-based prediction of complex vibrations and NVH phenomena plays an important role. Despite the efforts, the high dimensional computational simulation models only provide a limited part of the results gained through experimental measurements. Several reasons are discussed by the industry and academic research. One potential source of these inadequacies is the very simple formulation of the friction forces in the simulation models. Due to a significant shorter computation time (by orders of magnitude), the complex eigenvalue analysis has been established, in comparison to the transient analysis, as the standard method in the case of industrial research, where systems with more than one million degrees of freedom are simulated.
2016-09-01
Magazine
Solving the Greenhouse Gas puzzle While automakers and policymakers debate the TAR, engineers and product planners prepare for the steep climb to meet GHG and CAFE rules beyond 2022. Revving up thermal characterization in the component lab The latest generation of high-speed infrared cameras can capture airbag deployments and other fast-moving actions quickly and accurately. C3 consortium aims for soot solution A newly formed group of companies led by CFD specialists Convergent Science targets exhaust particulate reduction in the combustion chamber. Inside the autonomous vehicle With less focus on driver needs, comfort, safety, and occupant productivity will become key. Editorial: Bad gas?
2016-07-27
WIP Standard
J1455
The scope of this recommended practice encompasses the range of environments which influence the performance and reliability of the electronic equipment designed for heavy duty on and off road vehicles, as well as any appropriate stationary applications which also use these vehicle derived components. A few examples of such vehicles are on and off highway trucks, trailers, buses, construction equipment and agricultural equipment including implements.
CURRENT
2016-07-12
Standard
AMS3807C
This specification covers aluminum foil tape with a pressure sensitive adhesive.
Viewing 1 to 30 of 2420

Filter

  • Range:
    to:
  • Year: