Criteria

Text:
Display:

Results

Viewing 1 to 30 of 15409
Training / Education
2015-10-05
The challenges associated with using composites as a replacement for aluminum reside primarily in the complex manufacturing processes and technologies for fabricating composite parts. The high cost of composites material and its manufacturing complexity have been inhibitors to the wide transfer of this technology to the non-aerospace market. The search for solutions to high manufacturing costs and efficient manufacturing processes have resulted in intense research by government, aerospace industry companies, and space agencies worldwide. This one day seminar will introduce participants to composites technologies that have applications beyond aerospace, including such markets as trucks, automobiles, and wind turbines.
Training / Education
2015-03-09
Through the years there has been a significant and increasing volume of fraudulent and counterfeit electronic parts entering the aerospace supply chain. Left undetected, these parts can pose significant performance, reliability, and safety risks. In response to these threats, the SAE AS6081 Counterfeit Electronic Parts Avoidance – Distributors standard was developed to provide uniform requirements, practices, and methods to mitigate the risk of electronics distributors purchasing and supplying these counterfeit electronic parts throughout the aerospace supply chain. This course will begin with a one-hour, pre-recorded session that covers background information on the proliferation of counterfeit electronics.
Training / Education
2014-12-15
This seminar introduces participants to all aspects of threaded fasteners including nomenclature, geometric considerations, metallurgy, material properties, applied stresses, and considerations for fatigue, corrosion, brittle fracture and temperature. Methods are developed for the analysis and design of bolted joints under axial and shear loads. Other topics include assembly practice and methods to control preload.
Event
2014-11-19
This session focuses on hardware not associated with the engine and drivetrain that supports the purpose of the vehicle such as suspensions, lighting, dampers, marine hulls, steering, vehicle frame, and heating and cooling systems.
Technical Paper
2014-11-11
Manikandan T, S Sarmadh Ameer, A Sivakumar, Davinder Kumar, R Venkatesan, VenkataKalyana kumar
The proposed paper is on advanced vehicle information panel which shall display instant mileage zone in which the user is operating with inputs from engine crank sensor and vehicle speed sensor alone. And moreover, gear assistance and throttle assistance through visuals is provided. Mileage data for different engine loading at different Speeds is pre-calculated at standard conditions and fed into a micro-controller. In real time, the engine loading, by means of intelligent software, is sensed by engine crank sensor and based on the pre-fed value, the mileage zone of the vehicle at that particular instant is to be displayed using an information panel. Based on the relation between speed sensor and engine crank sensor when the vehicle is running, the gear in which the vehicle is running is to be calculated. For a vehicle running in a certain gear and in certain speed, the ideal engine loading and mileage zone is predefined. So when the user is riding in a certain gear with certain engine load, the micro controller compares that with the programmed data which is the ideal condition data, and assists the user, in case the rider is not riding the vehicle as per the ideal data, by gear up/down prompt or throttle up/down prompt by means of the said information panel.
Technical Paper
2014-11-11
Manikandan T, S Sarmadh Ameer, A Sivakumar, Samaraj Dhinagar
The proposed paper is on electrical energy conservation in a two wheeler. Electrical energy generation adds a maximum of 10% excess load torque on an engine and hence saving electrical energy would ultimately reduce the consumption of fuel. Load Control Module is a single intelligent device which is placed in between electrical energy generation and consumption. The Module controls and distributes energy to the corresponding loads depending on parameters like battery voltage, engine RPM, overhead light illumination levels and load usage time. The Module prioritizes battery charging for maintaining the life of the battery. The Module has a microcontroller and it is programmed with algorithm for prioritization and energy distribution with respect to input conditions. A vehicle fitted with the Load Control Module was tested in city driving cycle (CDC) condition as per ARAI (Automotive Research Association of India) standard and it was found that the electrical loading decreased to about 30% when compared to vehicle with uncontrolled loading.
Technical Paper
2014-11-11
Alessandro Franceschini, Emanuele Pellegrini, Raffaele Squarcini
Nowadays the challenge in design auxiliary device for automotive small engine is focused on the packaging reduction and on the increase of the performances. This requirements are in contrast to each other and in order to fulfil the project specifications, new and more refined design tools and procedures need to be developed. This paper presents a calculation loop developed by Pierburg Pump Technology Italy S.p.a. (PPT). It supports the design of a variable displacement oil pump component for engine applications. The work is focused on the fatigue life evaluation of a joint, which transmits the drive torque from the engine to the oil pump. The aim of the procedure is to calculate the onset of the surface fatigue phenomenon in the hexagonal joint which drives the oil pump, taking into account the axes misalignment and the flat to flat clearance. The study has involved several matters, experimental measures, CFD, MBA and FEM analyses. A calculation procedure has been set up in order to consider all the necessary loads applied on the joint.
Training / Education
2014-11-05
Through the years there has been a significant and increasing volume of fraudulent and counterfeit electronic parts entering the aerospace supply chain. Left undetected, these parts can pose significant performance, reliability, and safety risks. In response to these threats, the SAE AS6081 Counterfeit Electronic Parts Avoidance – Distributors standard was developed to provide uniform requirements, practices, and methods to mitigate the risk of electronics distributors purchasing and supplying these counterfeit electronic parts throughout the aerospace supply chain. This two-day seminar will begin with background information on the proliferation of counterfeit electronics and the development of a consensus standard for the procurement, detection, reporting, and disposition of these parts.
Training / Education
2014-11-04
Counterfeit electronic parts have been found in almost every sector of the electronics industry and continue to be an increasing threat to electronic hardware. This threat poses significant performance, reliability and safety risks. Aerospace industry organizations, in particular, must produce and continually improve safe and reliable products that meet or exceed customer and regulatory authority requirements. The SAE AS5553 standard was created in response to the significant and increasing volume of counterfeit electronic parts entering the aerospace supply chain and standardizes requirements, practices and methods for counterfeit parts risk mitigation.
Training / Education
2014-10-29
The requirements for producing an FAA approved replacement part can be daunting. Understanding the steps required in the FAA Parts Manufacturer Approval (PMA) process can greatly streamline the approval life-cycle and reduce unnecessary costs and delays, thereby shortening the time and cost to market. This course is designed for those organizations and individuals interested in designing and manufacturing replacement parts for civil aviation aircraft. This two-day course covers the crucial subjects and steps of the FAA-PMA approval process. The instructor will begin with an overview of the Federal Aviation Administration (FAA) organizational structure.
Technical Paper
2014-09-16
Jamie Skovron, Laine Mears, Durul Ulutan, Duane Detwiler, Daniel Paolini, Boris Baeumler, Laurence Claus
Abstract A state of the art proprietary method for aluminum-to-aluminum joining in the automotive industry is Resistance Spot Welding. However, with spot welding (1) structural performance of the joint may be degraded through heat-affected zones created by the high temperature thermal joining process, (2) achieving the double-sided access necessary for the spot welding electrodes may limit design flexibility, and (3) variability with welds leads to production inconsistencies. Self-piercing rivets have been used before; however they require different rivet/die combinations depending on the material being joined, which adds to process complexity. In recent years the introductions of screw products that combine the technologies of friction drilling and thread forming have entered the market. These types of screw products do not have these access limitations as through-part connections are formed by one-sided access using a thermo-mechanical flow screwdriving process with minimal heat. The friction drilling, thread forming process, hereto referred to as “FDS” is an automated continuous process that allows multi-material joining by utilizing a screw as both the tool and the fastener.
Technical Paper
2014-09-16
Samuel Baha II
Hybrid (bolted/bonded) joining is becoming one of the innovative joining processes for light weight structures in the transport industry, especially in the aerospace industry where weight reduction and high joining requirements are permanent challenges. Combining the adhesive bonding with the mechanical joining -riveting for instance- can lead to an enhancement of the properties of the joint compared to the wide established riveting, as a result of a synergistic load bearing interaction between the fastener and the adhesive bondline. The influence of the rivet installation process on a hybrid joint regarding the joint stress state, the change of the bondline thickness as well as its effects on the joint performance and load transfer are some of the factors that drive the users to a better understanding of the hybrid joining process. This paper deals therefore on one hand with the numerical simulation of the rivet installation process in an adhesively bonded joint to understand the phenomena occurring during the installation process and on the other hand with the investigation of the load transfer depending on the joint parameters.
Technical Paper
2014-09-16
Pietro Ladisa, Gabriele Santonico
Abstract The marman interface is widely used in space applications to fit the spacecrafts to the launch vehicle and it is the same interface that allows the integration, test and transport of the satellites (AIT). It is usually designed for launch loads with related flight design safety factors and margins, but this is not always compatible with the handling and transport environment. In particular some criticalities are evidenced during the transport of satellites, where they are mounted in the container in horizontal position therefore subjected to bending loads due to gravity and transport dynamic loads. The study deals with a finite element analysis approach in the calculation and verification of marman clamp bands used for spacecraft AIT operations. The paper describes the details of modeling of the clamp band parts, the involved spacecraft launch vehicle interface ring and the MGSE interface. All these parts are in contact and this configuration has been modeled adopting the most recent non linear contact analysis techniques.
Technical Paper
2014-09-16
Marco Amrhein, Jason Wells, Eric Walters, Seana McNeal, Brett Jordan, Peter Lamm
Abstract Transient operating conditions in electrical systems not only have significant impact on the operating behavior of individual components but indirectly affect system and component reliability and life. Specifically, transient loads can cause additional loss in the electrical conduction path consisting of windings, power electronic devices, distribution wires, etc., particularly when loads introduce high peak vs. average power ratios. The additional loss increases the operating temperatures and thermal cycling in the components, which is known to reduce their life and reliability. Further, mechanical stress caused by dynamic loading, which includes load torque cycling and high peak torque loading, increases material fatigue and thus reduces expected service life, particularly on rotating components (shaft, bearings). This article investigates the aforementioned stress mechanisms and provides analysis techniques and metrics to quantify the impact of transient operating conditions onto system and component reliability and life.
Event
2014-09-09
Standard
2014-08-28
This SAE Standard covers motor vehicle brake fluids of the nonpetroleum type, based upon glycols, glycol ethers, and borates of glycolethers, and appropriate inhibitors, for use in the braking system of any motor vehicle such as a passenger car, truck, bus, or trailer. These fluids are not intended for use under arctic conditions. These fluids are designed for use in braking systems fitted with rubber cups and seals made from styrene-butadiene rubber (SBR), or a terpolymer of ethylene, propylene, and a diene (EPDM).
Standard
2014-08-26
This set of criteria shall be utilized by accredited Certification Bodies (CBs) to establish compliance, and grant certification to AS5553A, Aerospace Standard; Counterfeit Electronic Parts; Avoidance, Detection, Mitigation, and Disposition.
Standard
2014-08-26
Scope is unavailable.
Viewing 1 to 30 of 15409

Filter

  • Range:
    to:
  • Year: