Viewing 1 to 30 of 5807
2018-09-25 ...
  • September 25-October 4, 2018 (4 Sessions) - Live Online
Training / Education Online Web Seminars
Continuously Variable Transmission (CVT) technology is both a theoretical and practical option that addresses a number of system level improvement opportunities within the automotive and mobility industries. Although this technology has been available for many years and is now fully matured as a production ready technology, it is often not fully understood. This web seminar presents a focused view of CVT technology in all its forms and implementations.
2018-05-14 ...
  • May 14-16, 2018 (8:30 a.m. - 4:30 p.m.) - Durham, North Carolina
  • August 6-8, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 3-5, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Starting with a look at the transmission's primary function -- to couple the engine to the driveline and provide torque ratios between the two -- this updated and expanded seminar covers the latest transmission systems designed to achieve the most efficient engine operation. Current designs, the components and sub-systems used, their functional modes, how they operate, and the inter-relationships will be discussed. A manual transmission display will be used to explain ratios and how they function within the driveline.
2018-03-19 ...
  • March 19-23, 2018 (8:00 a.m. - 6:00 p.m.) - Troy, Michigan
Training / Education Classroom Engineering Academies
The Transmission Engineering Academy covers the sciences of automotive passenger car and light truck engineering principles and practices necessary to effectively understand, develop, specify and start the design process. Topics include advances in manual, automatic, automated manual, and continuously variable transmission technology, materials and processes applicable to the major components within these transmissions, calibration of these systems unto themselves and integration into the full vehicle powertrain.
2018-02-28 ...
  • February 28-March 1, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 24-25, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
An efficient, robust, and quiet running drivetrain is as essential to customer satisfaction as styling and interior creature comforts. In this seminar, you will be exposed to various methods that can be used to accomplish this goal. Designed to help you visualize both individual components and the entire drivetrain system - without reference to complicated equations - this seminar focuses on the terms, functions, nomenclature, operating characteristics and effect on vehicle performance for each of the drivetrain components.
Meeting truck autonomy hurdles head-on Combining sensors, inter-vehicle communications and controllers poses major challenges in the effort to bring greater levels of automation to commercial trucking. Simulation key to additive manufacturing analysis Advanced simulation tools help to optimize 3D printing processes before physical build. Making the case for battery-electric fleet power Battery systems edge closer to a tipping point as commercial and heavy-duty fleets broaden their application. Electrified forklifts go big Hoist Liftruck brings full electrification to some of the biggest forklift trucks, motivated only in part by regulatory pressures.
Technical Paper
Sandip Phapale, Pavan Sindgikar, Narayan Jadhav
Abstract Indian automotive market has grown extremely competitive in the recent past. In order to meet the ever growing expectations of the customers, automobile manufacturers are compelled to offer their products under superior quality with supreme comfort. Customers wish of high levels of tactile comfort in the cabin compartment and effortless operation of peripherals will result in negligible fatigue and a pleasant drive, needs to be duly fulfilled. One has to focus more on Gear shift lever and Steering wheel, which are being the most sensitive tactile points in an automobile. The gear shift lever knob is frequently used and significantly influences the perception of the shift comfort for a driver during actual vehicle application.
Technical Paper
Mark Stuhldreher, Youngki Kim, John Kargul, Andrew Moskalik, Daniel Barba
Abstract As part of its midterm evaluation of the 2022-2025 light-duty greenhouse gas (GHG) standards, the Environmental Protection Agency (EPA) has been acquiring fuel efficiency data from testing of recent engines and vehicles. The benchmarking data are used as inputs to EPA’s Advanced Light Duty Powertrain and Hybrid Analysis (ALPHA) vehicle simulation model created to estimate GHG emissions from light-duty vehicles. For complete powertrain modeling, ALPHA needs both detailed engine fuel consumption maps and transmission efficiency maps. EPA’s National Vehicle and Fuels Emissions Laboratory has previously relied on contractors to provide full characterization of transmission efficiency maps. To add to its benchmarking resources, EPA developed a streamlined more cost-effective in-house method of transmission testing, capable of gathering a dataset sufficient to broadly characterize transmissions within ALPHA.
WIP Standard
This SAE Recommended Practice defines the set-up and procedure for conducting the SAE single tooth bending fatigue test. The details of the test fixture to be used (referred henceforth as 'the test fixture' in this document) and gear test sample and the procedures for testing and analyzing the data are presented in this document. The objective of this document is to provide a means to evaluate the effects of material and process variables on the bending fatigue behavior of gears using the test fixture. The bending fatigue life of gear teeth is generally influenced by variations in such factors as geometry, material, microstructure, residual stress profile, surface finish, case depth, surface and core hardness. This test serves as a screening tool to evaluate changes in one or more of these variables to enable optimization of the processing and design of gears.
Technical Paper
Iman Kartolaksono Reksowardojo, Phonethip Trichanh, Kevin Ferdyamin, Mega Zulfikar Akbar
This research aims to investigate the effect of ethanol blends with pure gasoline to the rate of fuel consumption and emissions of fuel injection motorcycle 115 cc with automatic transmission which is the population is dominant in Indonesia. Variations of the bioethanol mixture are 0%, 5%, 10%, and 20% ethanol. The experiment conducted in two different conditions by using three ways catalytic converter (TWC) in the exhaust pipe and without using TWC in the exhaust pipe. First, all engine setting was originally manufacture setting. Second, the AFR is set in stoichiometry condition (λ = 1) and ignition timing set in MBT timing using modified ECU. The experiment performed on the chassis dynamometer and referred on the standard cycle ECE 15. The results of this experiment showed that increment of ethanol content in the fuel makes the rate of fuel consumption and CO2 emission both increased but CO and HC emissions decreased.
Technical Paper
Jürgen Tromayer, Michael Gaber, Roland Kirchberger, Fern Thomassy, Scott McBroom
Abstract Meeting upcoming emission limits such as EURO 5 with comparatively simple and low-cost vehicles will be very challenging. On the engine side, a big effort in terms of fuelling, combustion optimization as well as exhaust gas aftertreatment will be necessary without any doubt. Besides that, additional system optimization potential can be gained by a systematic adaptation of the drive train. One approach is to use a CVT (Continuously Variable Transmission) system to run engines in specific ranges with good fuel economy. However, existing belt driven CVTs show comparatively poor efficiencies. To overcome this drawback, the integration of a novel Continuously Variable Planetary Transmission (CVP), designed and developed by Fallbrook Technologies, was investigated in detail. For this purpose, a longitudinal dynamics simulation in Matlab-Simulink was carried out to compare a standard mass production vehicle drive train with several CVP setups.
Technical Paper
Huang Hui-Hui, Tsai Chien-Hsiung, He Wei-Ta
In this study, the temperature of solid/fluid inside a continuously variable transmission (CVT) of a 400 cc scooter is investigated numerically utilizing ANSYS FLUENT. The moving reference frame (MRF) technique with conjugate heat transfer between gases and solid rotation/translation are implemented to carry out the simulation. The emphasis of the present study is put on the effects of CVT housing configuration, belt’s thermal conductivity, and the heat dissipated from the crankcase on the thermal-flow-field of CVT. The numerical results show that the temperature of the drive/driven pulleys are concurred with those of experimental results. It is found that the proposed design of partition plate inside the CVT housing can direct the flow into belt and prevent the fluid around driven and drive pulley from mixing, and can further decrease the temperatures of the belt and pulley.
Technical Paper
Ashutosh Jahagirdar, Ravindra Kharul, Nitin Bhone, Ashok Kulkarni
Anti-Hop Clutches are popular for bikes above 400 cc. They offer the advantage of better driving stability in lower gears and during down shifting. The currently used designs of such clutches are having different constructions with complex geometry parts and almost 30% more number of parts (compared to standard clutch) are used in some designs to achieve the desired 'Driving Assist' and 'Coasting Slip' effect. The production process used, demands for specialized tools for manufacturing the complex geometry of parts and the price of the clutch assembly is more than double as compared to standard, equivalent design of multi plate wet clutches. These type of clutches are commonly known as - Anti Hop Clutch or Slipper Clutch or Assist and Slip clutches. To achieve same performance benefits with simpler design, less number of parts with a Flexibility to alter the Assist and Slip effect to suit the application, Endurance Technologies Ltd. developed a new concept.
Although not limited to, these installations are normally used on trucks considered as Medium Duty (Class 6 and 7), as well as Heavy Duty (Class 8).
Viewing 1 to 30 of 5807


  • Range:
  • Year: