Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 39058
Training / Education
2015-08-24
Improved understanding and control of ignition and thereby combustion are critical in dealing with the problems of pollutants formation, engine performance, and fuel economy. This seminar will provide you with basic knowledge and recent advances in combustion-initiation (ignition) issues to more intelligently evaluate and harness their potentials. Thermodynamic and fluid mechanical properties of the unburned charge near the spark plug and at the time of ignition strongly affect the quality of the combustion and therefore the emission of the pollutants from the engine. Furthermore, a weak ignition limits engine performance and drivability. The so-called cyclic variability, which affects and bounds the lean and knock limits of an engine design is to a great degree influenced by the ignition system. Equally important, the ignition system can and is being used to provide local in-cylinder information on air-fuel ratio, misfire, knock, and mass fraction burned in each individual cylinder. Hence, great potential exists for applications of this information for individual cylinder control strategy to attain a more fuel efficient and environmentally compatible engine.
Event
2015-06-22
This session includes papers in the areas of static, dynamic, and fatigue characterization of elastomers, bushings, mounts and shock absorbers used in the mobility industry. Particular emphasis is given to new and innovative analysis and testing methodologies to quantify the non-linear properties of these systems in addition to the effects of temperature, frequency, and aging. Papers dealing with specific applications and case studies of existing methodologies are also welcome.
Event
2015-06-22
This session is focused on base engine, mounts, accessories, fuel injection system, combustion system, transmission related design or development noise and vibration topics. The papers of this session will have both experimental and analytical approaches to problem solving.
Event
2015-06-22
The focus of the Structural Analysis session is to share experiences on analyzing, testing, and developing solutions to structural noise and vibration problems from powertrain sources. Analytical modeling, experimental testing and predictive correlation are just a few of the tools used in this endeavor.
Event
2015-06-22
The diesel NVH session is focused on issues related to making diesel engines achieve better NVH characteristics. Topics include both analytical and experimental techniques for developing low noise diesel engines and components. Related topics covered in this session include linear and torsional vibration of diesel engines, as well as features intended to reduce diesel specific intake and exhaust noise problems, such as turbocharger whine.
Training / Education
2015-06-08
The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems. This seminar begins by introducing the highly mathematical field of control systems focusing on what the classical control system tools do and how they can be applied to automotive systems. Dynamic systems, time/frequency responses, and stability margins are presented in an easy to understand format. Utilizing Matlab and Simulink, students will learn how simple computer models are generated. Other fundamental techniques in control design such as PID and lead-lag compensators will be presented as well as the basics of embedded control systems.
Event
2015-03-23
Training / Education
2015-03-23
Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components. Specifically, the course will cover heat transfer design considerations related to the following: engine cooling and lubrication systems as well as bay-to-bay breathing; exhaust system and after-treatment components; tail pipe gas temperatures, as well as thermal interactions between the engine and its exhaust system with the components in the vehicle under-hood and under-body; turbochargers; passenger cabin HVAC system, including windshield de-icing; battery cooling; heat exchangers and challenges associated with predicting thermal mechanical fatigue life of components.
Training / Education
2015-03-12
Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present unique challenges. The goal of this two-day seminar is to introduce engineers and managers to the basic principles of cooling airflow systems for commercial and off-road vehicles. Participants will learn about vehicle/product constraints, integration issues, cooling airflow, system resistance, fans, shrouds, radiators, coolers, estimating heat rejection, thermal accumulation, air recirculation, system performance, and underhood airflow.
Event
2014-12-09
Event
2014-12-09
Event
2014-12-09
Recent legislation has been enacted requiring unprecedented reductions in greenhouse gas emissions, and thus improved fuel efficiency, from internal combustion engines. The aggressive rate of improvement in fuel consumption mandated by this legislation has resulted in the proposal of more exotic combustion strategies than have previously been considered for serial production. The new combustion strategies that are being considered for near term applications can result in substantially different operating environments and thus the required performance of the emission control system. To deliver the most efficient engine system for each application, the impact of the combustion strategy on emission control system requirements must be taken into account when selecting the combustion strategy for production to ensure the benefits of the combustion strategy are not offset by penalties associated with treating exhaust emissions. This discussion will present data on the impact of novel combustion strategies on the operating environment for the emissions control system.
Event
2014-12-09
Training / Education
2014-12-03
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%. This web seminar will explore turbocharging for gasoline and diesel (heavy and light duty) engines, including the fundamentals of turbocharging, design features, performance measures, and matching and selection criteria. It will discuss the interaction between turbocharging and engine systems and the impact on performance, fuel economy and emissions. Developments in turbocharging technology such as variable geometry mechanisms, two-stage and sequential (series & parallel) turbocharging, EGR including low pressure loop, high pressure loop and mixed mode systems and novel turbocharging systems will be described using figures and data.
Event
2014-11-25
Event
2014-11-25
Viewing 1 to 30 of 39058

Filter

  • Range:
    to:
  • Year: