Criteria

Text:
Display:

Results

Viewing 1 to 30 of 14406
2017-11-28
Event
2017-11-14 ...
  • November 14-16, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2017-11-01 ...
  • November 1-3, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Societal and regulatory demands to lower emissions and increase engine-operating efficiencies have forced engine designers to adopt new technologies and control strategies. This has resulted in dramatic evolutions of the technology of internal combustion engines and their support systems in recent years. These operational management strategies have evolved into more robust control systems and sensory packages, which in turn has driven the need for more accurate and specific information being communicated between the various systems found within a modern automobile.
2017-10-30 ...
  • October 30-31, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
In your profession, an educated understanding of internal combustion engines is required, not optional. This two-day technology survey seminar covers the most relevant topics - ranging from the chemistry of combustion to the kinematics of internal components of the modern internal combustion engine - for maximum comprehension. Attendees will gain a practical, hands-on approach to the basics of the most common designs of internal combustion engines, as they apply to the gaseous cycles, thermodynamics and heat transfer to the major components, and the design theories that embody these concepts.
2017-10-24
Event
2017-10-08
Technical Paper
2017-01-2223
Vikram Singh, Per Tunestal, Martin Tuner
In recent years, stricter regulations on emissions and higher demands for more fuel efficient vehicles have led to a greater focus on increasing the efficiency of the internal combustion engine. Nowadays, there is increasing interest in the recovery of waste heat from different engine sources such as the coolant and exhaust gases using, for example, a Rankine cycle. In diesel engines 15% to 30% of the energy from the fuel can be lost to the coolant and hence, does not contribute to producing work on the piston. This paper looks at reducing the heat losses to the coolant by increasing coolant temperatures within a single cylinder Scania D13 engine and studying the effects of this on the energy balance within the engine as well as the combustion characteristics. To do this, a GT Power model was first validated against experimental data from the engine.
2017-10-08
Technical Paper
2017-01-2422
Na Li, Fenlian Huang, Yuhua Bi, Yueqiang Xu, Lizhong Shen, Dewen Jia
The assembly of connecting rod bearing and crankpin is a key friction pair which offers an important guarantee for stable operation of diesel engine. Specific to the non-road 2-cylinder diesel engine developed independently and based on the theory of elasto-hydrodynamic lubrication as well as multi-body dynamics, this paper establishes a multi-body dynamics model for connecting rod bearing of the 2D25 horizontal diesel engine and makes a research on the influence of bearing width, bearing clearance, and oil inlet position and diameter upon lubrication of connecting rod bearing, taking into consideration that of the surface appearance of bearing bush and the elastic deformation of bearing bush and axle journal upon the same. Research results show that bearing width and bearing clearance are the major factors that influence lubrication characteristics of connecting rod bearing while oil inlet position and diameter only have a small influence on such characteristics.
2017-10-08
Technical Paper
2017-01-2384
Ijhar H. Rusli, Svetlana Aleksandrova, Humberto Medina, Stephen F. Benjamin
The effect of the residual swirl from the turbocharger turbine on the catalyst flow distribution has been investigated experimentally and numerically. A swirling flow rig with a moving-block swirl generator was used to generate swirling flow in a sudden expansion diffuser with a wash-coated diesel oxidation catalyst (DOC) downstream. Hot-wire anemometry (HWA) was used to measure the axial and tangential velocities of the swirling flow upstream of the diffuser expansion and the axial velocity downstream the monolith. Pressure along the diffuser wall was measured using Scanivalve pressure scanners. With no swirl, the results show that the flow is highly non-uniform in the catalyst monolith with maximum velocities near the diffuser axis. High non-uniformity is also exhibited at high swirl levels with highest velocities near the diffuser wall. An intermediate swirl level exists where the flow is uniform.
2017-10-08
Technical Paper
2017-01-2242
Boyuan Wang, Zhi Wang, Changpeng Liu, Fubai Li, Yingdi Wang, Yunliang Qi, Xin He, Jianxin Wang
A new ignition method is proposed called flame accelerated ignition, which is realized by a flame acceleration tunnel set between the spark plug and the main chamber with annular spoilers inside. The investigation of flame accelerated ignition was experimentally accomplished on both a rapid compression machine with optical accessibility and a single-cylinder heavy duty engine. In rapid compression machine study, synchronous pressure sensing and high-speed photography were used with spark ignition cases tested for comparison. The results show that the combustion process is significantly accelerated by flame acceleration ignition. The combustion duration is shortened by more than 30% under all loads compared with spark ignition. According to the optical results, the axial speed of flame outside the flame acceleration tunnel reaches at least 30 m/s and shows positive correlation with load, which is over 10 times than that of conventional flame propagation caused by spark ignition.
2017-10-08
Technical Paper
2017-01-2252
Weihua Sun, Wei Du, Xuefei Dai, Xiangdong Bai, Zhiping Wu
Getting real cylinder pressure is the basis of engine combustion analysis. Because of the advantages of good thermal performance, fast response, small size, high accuracy, large range and so on, piezoelectric quartz sensor is widely used in the measurement of the cylinder pressure. But this kind of sensor can only get the dynamic cylinder pressure which may not represent the real one. In this situation, the cylinder pressure needs to be corrected by some method. It also could cause great result divergences of the combustion analysis by using different cylinder pressure correction methods. This paper aims to acquire a proper cylinder pressure correction method by carrying out the theory analysis based on ideal gas equation and experiment research of cylinder pressure on a turbocharged eight-cylinder diesel engine.
2017-10-08
Technical Paper
2017-01-2226
Edward S. Richardson, Michael J. Gill, Mathew Middleton, Bruno S. Soriano
Cylinder deactivation enables improvements in fuel economy in spark-ignition engines by reducing pumping losses during part load operation. The efficiency benefits of a new intake valve system that enables cycle-by-cycle deactivation of different cylinders is investigated in this study. The system minimises the need for throttling by varying the fraction of strokes that are deactivated in order to vary engine output. The intake valve system involves two intake valves in series, with a fast solenoid-actuated valve upstream of a conventional cam-actuated intake valve. Compared to conventional cam-actuated valves, the new valve system has potential to achieve very rapid closing rates with a high degree of flexibility in respect of the timing of inlet valve closure. The fuel economy benefits provided by a number of valve control strategies are evaluated using a one-dimensional modelling approach, considering a vehicle following the New European Drive Cycle.
2017-10-08
Technical Paper
2017-01-2414
Dongsheng Zhang, Qilong Lu, Michael Kocsis, Ian Gilbert, Marc Megel, Xihao Liu, Jiaxin Gu, Qingyan Liu, Yanming He
The new BAIC engine, an evolution of the 2.3L 4-cylinder turbocharged PFL gasoline from Saab, was designed, built, and tested with close collaboration between BAIC Motor Powertrain Co., Ltd (BMPC) and Southwest Research Institute (SwRI). The upgraded engine was intended to achieve low fuel consumption and a good balance with high performance and compliance with Euro 6 emissions regulation. Low fuel consumption was achieved primarily through utilizing cooled low pressure loop exhaust gas recirculation (LP-EGR) and dual independent cam phasers, improving intake and exhaust design, optimizing combustion chamber design, and minimizing mechanical friction losses. Cooled LP-EGR helped suppress engine knock and consequently increase compression ratio and improve thermal efficiency of the new engine. Dual independent cam phasers reduced engine pumping losses and helped elevate low-speed torque.
2017-10-08
Technical Paper
2017-01-2182
Xikai Liu, Xingyu Liang, Yonge Wu, Yuesen Wang
According to the study of the soot emission in marine diesel, ,a new reduced mechanism for n-heptane was constructed to describe the combustion process in diesel engine by using sensitivity analysis.Furthermore,verifying the ignition delay time,the laminar flame speed,the flame propagation distance and species profiles in combustion process by using Chemkin Pro in different pressure(13.5atm and 42 atm),initial temperatures and equivalence ratio(0.5 and 1.0).Then,compare the simulated result with the experiment data and the simulated result by using LLNL(lawrence livermore national laboratory)detail mechanism and SKLE(state key laboratory of engine)mechanism.It is demonstrated that the reduced mechanism can not describe the ignition delay time in low temperature.And then,the reduced mechanism was adjusted and optimized to make it more close to the experiment data,and the reduced mechanism were able to predict ignition delay time,laminar flame speed,flame propagation distance and species profiles.The final reduced n-heptane mechanism are more compact compare with the current detailed mechanisms in literature.Thus,this reduced n-heptane mechanism can reduce the pressure of calculation and save the calculation time.
2017-10-08
Technical Paper
2017-01-2204
Hoon Lee, Kwangwoo Jeong, Sanghoon Yoo, Byungho Lee, Sejun Kim
Hyundai Motor Company recently developed a multi-way, electrical coolant valve for engine thermal management module. The main purposes of the system that replaces a mechanical thermostat are to boost fuel economy by accelerating warm-up and to enhance thermal efficiency by actively controlling engine operating temperature. The electrical valve controls the amount of coolant flow to components such as oil heat exchanger, heater core, and radiator, while providing separate cooling for engine block and head. The coolant flow is modulated by varying the valve angle actuated with an electric motor. The system operates under a thermal management strategy that consists of multiple phases including zero coolant flow mode, and for those phases that require coolant temperature control, a feedback algorithm is designed for the flow control.
2017-10-08
Technical Paper
2017-01-2244
Shui Yu, Xiao Yu, Zhenyi Yang, Meiping Wang, Xiaoye Han, Jimi Tjong, Ming Zheng
The fuel efficiency improvement of gasoline engines can be achieved through lean burn and/or exhaust gas recirculation (EGR). However, the ignition of a diluted cylinder charge tends to be more diverged, owing to the slower ignition and combustion processes. The operable range of diluted combustion in gasoline engines is often limited, e.g. with lambda below 2.0 or EGR rate lower than 30%, owing to the deterioration in mixture ignitability and severe cyclic variations. In addition, the adoption of intensified cylinder charge motion requires further optimizations of ignition system, including the igniter geometric configurations and the temporal modulations over ignition energy delivery and spark discharge pattern. In this work, a variety of spark ignition approaches are investigated to improve the ignition of diluted gasoline engine under homogeneous mixture mode. A spatially distributed spark arcing control is realized based on a three-pole igniter.
2017-10-08
Technical Paper
2017-01-2254
Sirui Huang, Changpu Zhao, Yayong Zhu
In order to improve the combustion and emissions for high-speed marine diesel engines, numerical investigations on effects of different combustion chamber structures combined with intake air humidification have to be conducted in this paper. The study uses AVL Fire code to establish three-dimensional combustion model and simulate the in-cylinder flow, air-fuel mixing and combustion process with the flow dynamics metrics such as swirl number and uniformity index, analyze the interactional effects of combustion chamber structures and intake air humidification against the experimental data for a part load operation at 1350 r/min, find the optimized way to improve engine performance as well as decrease the NOx and soot emissions. The novelty is that this study is to combine different air humidifying rates with different combustion chamber structures including the re-entrant chamber, the straight chamber and the open chamber.
2017-10-08
Technical Paper
2017-01-2280
Yuzuru Nada, So Morimoto, Yoshiyuki Kidoguchi, Ryu Kaya, Hideaki Nakano, Shinichi Kobayashi
In our previous studies, we have developed natural gas engines operating under lean conditions to improve thermal efficiency and emission characteristics. We applied a sub-chamber injection system to our engines, in which natural gas is directly injected into a combustion sub-chamber in order to completely separate stoichiometric mixture in the sub-chamber from ultra-lean mixture in the main chamber. The results obtained from engine tests demonstrated excellent performance of our engines in view point of efficiency and NOx emissions. However, we have poor knowledge of mixture distributions in the combustion chambers to understand the mechanism of the improvements. The aim of this paper is to clarify the mixture formation in combustion chambers by means of numerical simulations in the combustion chamber with and without the sub-chamber at a variety of operating conditions.
2017-10-08
Technical Paper
2017-01-2411
Henry Guo, Wenchuan Jia, DeDong Xie
A smart waste gate (WG) turbocharger controls boost by bypassing turbine flow through the WG port which allows optimizing both low and high speed engine performance. However, the WG port in the turbine housing involves much complex geometry which leads to potentially higher thermal stress and plastic strain if design is improper. This paper first presents the common thermal cracking problems at port zone and then shows finite element analysis (FEA) results for one design. The predicted location correlates well with the observed failure port location. A design study with key parameters for the port is conducted under same boundary conditions. Key parameters include height H, inner diameter D and inner diameter fillet r of the port. Totally 13 designs are analyzed under packaging and performance limitation. Accumulated plastic strain (APS) from FEA is used to evaluate different designs. Curves are plotted to show the relationship between APS and design parameters.
2017-10-08
Technical Paper
2017-01-2423
Xiaoming Ye, Yan Fu, Wei Li, Yuze Jiang, Shixin Zhu
As the key components of internal combustion engine(ICE), the crankshaft main bearings are used to support the crankshaft and connecting rod mechanism whose rotary motion realizes the energy conversion from heat energy to mechanical power in cylinder. The lubrication performances and wear life of crankshaft main bearings directly affect ICE working efficiency and reliability. Therefore, it is very important to study the lubrication performances of crankshaft main bearings. In this paper, a 16V marine diesel engine was studied. Based on the AVL-Designer software platform, a dynamic model of crankshaft and connecting rod mechanism and a hydrodynamic lubrication model of crankshaft main bearing were built. The numerical analyses were carried out on the lubrication performances of crankshaft main bearings under different speed conditions.
Viewing 1 to 30 of 14406

Filter

  • Range:
    to:
  • Year: