Criteria

Text:
Display:

Results

Viewing 1 to 30 of 14295
2017-11-28
Event
2017-10-30 ...
  • October 30-31, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
In your profession, an educated understanding of internal combustion engines is required, not optional. This two-day technology survey seminar covers the most relevant topics - ranging from the chemistry of combustion to the kinematics of internal components of the modern internal combustion engine - for maximum comprehension. Attendees will gain a practical, hands-on approach to the basics of the most common designs of internal combustion engines, as they apply to the gaseous cycles, thermodynamics and heat transfer to the major components, and the design theories that embody these concepts.
2017-10-24
Event
2017-10-03 ...
  • October 3-4, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
2017-09-27 ...
  • September 27-29, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The need to control emissions and maintain fuel economy is driving the use of advanced turbocharging technology in both diesel and gasoline engines. As the use of diesel engines in passenger car gasoline and diesel engines increases, a greater focus on advanced turbocharging technology is emerging in an effort to reap the benefits obtained from turbocharging and engine downsizing. This seminar covers the basic concepts of turbocharging of gasoline and diesel engines (light and heavy duty), including turbocharger matching and charge air and EGR cooling, as well as associated controls.
2017-09-26
Event
2017-09-14 ...
  • September 14-15, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The advent of digital computers and the availability of ever cheaper and faster micro processors have brought a tremendous amount of control system applications to the automotive industry in the last two decades. From engine and transmission systems, to virtually all chassis subsystems (brakes, suspensions, and steering), some level of computer control is present. Control systems theory is also being applied to comfort systems such as climate control and safety systems such as cruise control or collision mitigation systems.
2017-08-22
Event
2017-07-25
Event
2017-06-27
Event
2017-06-22 ...
  • June 22-23, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Engine valvetrain systems have become more capable and increasingly more compact in the quest to improve efficiency. The developments parallel the advancements in other key engine components such as fuel injection or spark systems, turbocharging, aftertreatment, base engine and controls. While the gasoline sector has seen a steady rise in the adoption of Variable Valve Actuation (VVA), Diesel systems have lagged behind and only a few systems have seen production. The level of VVA activity however in the Diesel sector is beginning to increase as tighter regulations of CO2 emissions approach.
2017-06-06 ...
  • June 6-8, 2017 (2 Sessions) - Live Online
  • November 14-16, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2017-06-05
Technical Paper
2017-01-1808
Francis Nardella
In a previous report, it was shown that power transmission through the camshaft reduced the first mode natural frequency of the powertrain and translated its convergence with dominant engine excitatory harmonics to a lower engine speed resulting in a marked reduction in torsional vibration for geared 6 cylinder compression ignition engines for aviation. This report describes a sweep though 2 and 4 stroke engines with differing numbers of cylinders configured as standard gear reduction (SGRE) and with power transmission through the camshaft (CDSE). Four and 6 cylinder engines were modeled as opposed boxer engines and 8, 10 and 12 cylinder engines were modeled as 180-degree V-engines. Mass-elastic models of the different engine power train configurations were modeled using the torsional vibration module in Shaft Designer obtained from SKF (Svenska Kullagerfabriken). Crankshaft, camshaft, gearing, pistons, piston pins and connecting rods with bolts were modeled in Solidworks.
2017-06-05
Technical Paper
2017-01-1826
Sagar Deshmukh, Sandip Hazra
Engine mounting system maintains the position of power train in the vehicle with respect to chassis and other accessories during inertia, torque reaction loads and roadway disturbances. The mounting system also plays a role in terms of isolation of the rest of the vehicle and its occupants from power train and helps in maintaining vehicle ride and handling condition. This paper investigates the performance comparison between a conventional mount, hydromount and switchable hydromount during idle condition and ride performance. The optimization scheme aims to improve the performance of the mounting system in order to achieve overall power train performance and NVH attribute balancing through semi active technology. Keywords: Engine Mount, NVH,Switchable Hydromount
2017-06-05
Technical Paper
2017-01-1787
Jan Biermann, Adrien Mann, Barbara Neuhierl, Min-Suk Kim
Over the past decades, noise sources such as wind noise or engine noise have been significantly reduced leveraging improvements of both the overall vehicle designs and of sound packages. Consequently, noise sources originating from HVAC systems (Heat Ventilation and Air Conditioning), fans or exhaust systems are now becoming Tier-1 problems affecting quality and passenger comfort. Furthermore, existing experimental techniques are not adapted to internal flows and fail at identifying the location of noise sources, as well as corresponding design changes to reduce noise. This study focuses on HVAC systems and discusses a Flow-Induced Noise Detection Contributions (FIND Contributions) numerical method enabling the identification of the flow-induced noise sources inside HVAC systems. Moreover, this method provides the contribution of each source at the passenger’s ear locations considering the propagation of the noise through the system.
2017-06-05
Technical Paper
2017-01-1778
Enrico Galvagno, Antonio Tota, Mauro Velardocchia, Alessandro Vigliani
This paper explores the potentiality of reducing noise and vibration of a vehicle transmission thanks to powertrain control integration with active braking system. The torsional backlashes between transmission rotating components (gears, synchronizers, splines, CV joints), in the presence of external disturbances, coming from the driver, e.g. during tip-in / tip-out maneuvers, or from the road, e.g. crossing a speed bump or driving on a rough road, may lead to NVH issues known as clonk. In this study, first of all the positive effect of a brake torque application at the driving wheels during such maneuvers on transmission NVH performance is shown. After that, a powertrain/brake integrated control strategy is proposed. The braking system is activated in advance with respect to the perturbation and it is deactivated immediately after to minimize the energy loss.
2017-06-05
Technical Paper
2017-01-1824
Reza Kashani, Karthik S. Jayakumar, Neville Bugli, Jeff Lapp
Passive, tuned acoustic absorbers, such as Helmholtz resonators (HR) or quarter-wave tubes, are commonly used solutions for abating the low-frequency tonal noise in air induction systems. Since absorption at multiple frequencies is required, multiple absorbers tuned to different frequencies are commonly used. Typically, the large size and multiple numbers of these devices under the hood is a packaging challenge. Also, the lack of acoustic damping narrows their effective bandwidth and creates undesirable side lobes. Active noise control could address all of the above-mentioned issues. Most active noise control systems use feed-forward adaptive algorithms as their controllers. These complex algorithms need fast, powerful digital signal processors to run. To ensure the convergence of the adaptation algorithm, the rate of adaptation should be made slow.
2017-06-05
Technical Paper
2017-01-1834
Dirk von Werne, Prasanna Chaduvula, Patrick Stahl, Michael Jordan, Jamison Huber, Korcan Kucukcoskun, Mircea Niculescu
Fan noise can form a significant part of the vehicle noise signature and needs hence to be optimized in view of exterior noise and operator exposure. Putting together unsteady CFD simulation with acoustic FEM modeling, tonal and broadband fan noise can be accurately predicted, accounting for the sound propagation through engine compartment and vehicle frame structure. This paper focuses on method development and validation in view of the practical vehicle design process. In a step by-step approach, the model has been validated against a dedicated test-set-up, so that good accuracy of operational fan noise prediction could be achieved. Main focus was on the acoustic transfer through the engine compartment. The equivalent acoustic transfer through radiators/heat exchangers is modeled based on separate detailed acoustic models. The updating process revealed the sensitivity of various components in the engine compartment.
2017-06-05
Technical Paper
2017-01-1829
Guillaume Loussert
The new fuel efficiency and emission standards have forced OEMs to put emphasis on different strategies such as engine downsizing, cylinder deactivation... Unfortunately these new technologies may lead to increased powertrain vibrations generated by the engine and transmitted to the chassis and the car cabin, such that their reduction or elimination has become a key topic for the automotive industry. The use of active engine mounts, acting directly on the fluid of an hydromount, or active vibration dampers, acting as an inertial mass-spring system, are very effective solutions, particularly when using electromagnetic based actuators. Nevertheless, all electromagnetic actuators technologies are not equals and the choice of such actuators must be considered carefully by taking into account the full performances and the overall cost of the solutions. This paper presents an electromagnetic actuator technology, that can be considered as the best tradeoff between performances and cost.
Viewing 1 to 30 of 14295

Filter

  • Range:
    to:
  • Year: