Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3996
2015-09-24 ...
  • September 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Rapid advances have been made in the range of available designs and operational parameters as well as in the fundamental understanding of compact heat exchangers (CHEs). Since the majority of modern heat exchangers used for heating and cooling systems for vehicular applications are CHEs, keeping up to date with these advances is essential. This seminar will help you understand and be able to apply comprehensive information about the intricacies of CHE design, performance, operating problems and state-of-the-art-technology for car and truck applications.
2015-03-12 ...
  • March 12-13, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Vehicle functional requirements, emission regulations, and thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Given the expected increase in emission-related heat rejection, suppliers and vehicle manufacturers must work together as partners in the design, selection, and packaging of cooling system components. An understanding and appreciation of airflow integration issues and vehicle-level trade-offs that effect system performance are important to the team effort. The severe duty cycles, minimal ram air, and sometimes unconventional package layouts present...
2014-11-11
Technical Paper
2014-32-0064
Koorosh Khanjani, Jiamei Deng, Andrzej Ordys
Abstract Increasing the efficiency and durability of internal combustion engines is one of the major concerns of engineers in the development of modern road vehicles. Emission legislations are becoming intensively strict each year, forcing manufacturers to deploy sophisticated engine control strategies. The engine coolant temperature is conventionally controlled with mechanical elements such as wax-thermostat and belt-driven mechanical water-pump, which result in engine temperature fluctuations and delayed response to variable inputs. Variable coolant temperature is beneficial; it can decrease the hydrodynamic frictional losses of lubricated engine parts in light duty conditions. Moreover it improves performance and protects engine parts from thermal stresses and sealing failure in heavy duty conditions. In this paper the feasibility of controlling coolant temperature is examined in different driver demand conditions using electric flow-control valve replacing conventional thermostat. Urban, extra urban and highway cycles are tested on Honda insight 2003 (without the electric motor) from Advisor software vehicle simulator.
2014-10-20 ...
  • October 20-31, 2014 (6 Sessions) - Live Online
  • April 27-May 8, 2015 (6 Sessions) - Live Online
  • October 5-16, 2015 (6 Sessions) - Live Online
Training / Education Online Web Seminars
Vehicle functional requirements, diesel emission regulations, and subsystem thermal limits all have a direct impact on the design of a powertrain cooling airflow system. Severe duty cycles, minimal ram air, fouling, and sometimes unconventional package layouts present unique challenges to the designer. This web seminar introduces many airflow integration issues and vehicle-level trade-offs that effect system performance and drive the design. The goal of this six-session course is to introduce engineers and managers to the basic principles of diesel cooling airflow systems for commercial and off-road...
2014-10-13
Technical Paper
2014-01-2586
Shui-chang Liu, Zheng-qi Gu, Li-fu Li, Yong Zhang, Wan-dong ZHAO
Abstract To shorten the development cycle and ensure the stability of the products, based on RNG k-e turbulence model and porous model, 3 dimension (3D) flow field Computational Fluid Dynamics (CFD) simulation is adopted to calculate the radiator group performance for a engineering vehicle being developed. Air-side flow field simulations of the radiator unit model are carried out firstly to obtain the radiators' air-side characteristics; then, the air flow and heat transfer in the whole air channel containing the radiator group are simulated simultaneously to get the inlet and outlet water temperatures of radiator group, at last, the real vehicle test is carried out to verify the simulation results. To be emphasized, in calculating the near-wall boundary layer of the radiators' unit model flow field, modified standard wall functions (MSWF) whose calculation grids is same to standard wall function (SWF) and computation accuracy of the near-wall first node velocity is higher than SWF is proposed; and compared to the test values, the radiators' inlet and outlet water temperatures obtained from the flow field simulation process using MSWF has relative error 6.4%, which can meet the accuracy requirement in engineering computation.
2014-10-13
Technical Paper
2014-01-2830
Amar Deep, Naveen Kumar, Ashish Karnwal, Dhruv Gupta, Vipul Vibhanshu, Abhishek Sharma, Jitesh Singh Patel
Abstract The interest of using alternative fuels in diesel engines has been accelerated exponentially due to a foreseen scarcity in world petroleum reserves, increase in the prices of the conventional fossil fuels and restrictions on exhaust emissions such as greenhouse gases from internal combustion (IC) engines initiated by environmental concerns. The constant trade-off between efficiency and emissions should be in proper balance with the conventional fuels in a fuel design process for future combustors. Unlike gasoline and diesel, alcohols act as oxygenated fuels. Adding alcohols to petroleum products allows the fuel to combust properly due to the presence of oxygen, which enhances premixed combustion phase, improves the diffusive combustion phase which increases the combustion efficiency and reduces air pollution. The higher activation energy of alcohols leads to better resistance to engine knocking that allows higher compression ratios and greater engine thermal efficiencies. The use of higher alcohols blended with diesel fuel may provide additional advantages compared to short-chain alcohols, i.e. longer molecular un-branched structure of alcohols that means higher calorific value and better cetane number.
2014-10-13
Technical Paper
2014-01-2883
Lukasz Grabowski, Zbigniew Czyz, Krzysztof Kruszczynski
Abstract This paper focuses on the issues concerning gyroplane powertrain cooling. The Rotax 912S engine was selected as a propulsion system following a detailed analysis. A one-dimensional model, simulated with the AVL Boost software, was applied to determine the heat balance of the engine and the heat flux penetrating through each of engine's surfaces. The geometrical quantities defined in the model were obtained by measuring a three-dimensional geometry provided by an authorized Rotax engine supplier company. Calculation results were then verified by comparing the obtained values with data available from the Rotax 912S engine and with the values of individual parameters given in the literature. The CFD simulation studies, performed with Ansys Fluent, enabled to determine the required airflow capable of absorbing up to 6 kW of heat, the properties for sufficient cooling of the cylinders in the gyroplane powertrain system and the manner of directing the air flow in order to achieve the smallest possible temperature gradient.
2014-10-13
Technical Paper
2014-01-2884
Konrad Pietrykowski, Tytus Tulwin
The article presents convective heat transfer phenomenon by analytically and empirically taken data and CFD based model analysis. 1000 hp ASz-62IR aircraft radial engine is the object of research. This engine is being continuously operated on M18 Dromader and AN-2 aircraft. To recount heat oriented phenomena a three-dimensional CFD model was developed that accounts circumfluent flow around cylinder and cylinder head engine surfaces. The geometry includes M18 Dromader frontal airframe elements to account their influence on cooling air flow. The simulation has been conducted as a steady-state flow. Geometry and setup specific swirls and backflows were observed that increase cylinder and cylinder head rear side heat transfer coefficients. Flow along cooling fins was analysed, connecting their heat transfer coefficient dependency. Results show that local air velocity has big influence on heat flux passed by fin walls. Additionally fin performance has been calculated in means of effectiveness and efficiency.
2014-10-13
Technical Paper
2014-01-2612
Yuhan Huang, Guang Hong, Ronghua Huang
Abstract The work reported in this paper contributes to understanding the effects of ethanol/gasoline ratio on mixture formation and cooling effect which are crucial in the development of EDI+GPI engine. The spray simulations were carried out using a commercial CFD code. The model was verified by comparing the numerical and experimental results of spray shapes in a constant volume chamber and cylinder pressure in an EDI+GPI research engine. The verified model was used to investigate the fuel vaporization and mixture formation of the EDI+GPI research engine. The effect of the ethanol/gasoline ratio on charge cooling has been studied. Compared with GPI only, EDI+GPI demonstrated stronger effect on charge cooling by decreased in-cylinder temperature. However, the cooling effect was limited by the low evaporation rate of the ethanol fuel due to its lower saturation vapour pressure than gasoline's in low temperature conditions. The cooling effect of EDI increased with the increase of ethanol/gasoline ratio until the ratio reached 58% (by volume).
2014-10-09
Event
Hybrid drive trains combine combustion engines and electric/hydraulic motors. Sophisticated energy management of both propulsion systems in the context of drive train and vehicle operation is required for maximum fuel efficiency and minimum CO2 emissions. This session discusses the latest developments in regard to energy management, optimization potential for combustion engine within electric/hydraulic drive trains and considers the impact on emissions, certification, and fuel consumption/CO2.
2014-10-07
Event
This session covers advanced technologies and analysis/design/testing techniques related to cooling system performance. It includes both system-level and component-level contents. Market conditions and government legislation are driving the demand for more power, better fuel economy and lower emissions. Simultaneously, the space available for arranging cooling systems is shrinking. These performance and emissions constraints emphasize the need for integrated engine/vehicle procedures or techniques for developing cooling systems and problem solving. This session is designed to examine the trends in cooling system design and implementation strategies to meet these new requirements.
2014-10-07
Event
This session covers advanced technologies and analysis/design/testing techniques related to cooling system performance. It includes both system-level and component-level contents. Market conditions and government legislation are driving the demand for more power, better fuel economy and lower emissions. Simultaneously, the space available for arranging cooling systems is shrinking. These performance and emissions constraints emphasize the need for integrated engine/vehicle procedures or techniques for developing cooling systems and problem solving. This session is designed to examine the trends in cooling system design and implementation strategies to meet these new requirements.
2014-09-30
Technical Paper
2014-01-2342
Lakshmaiah Brahmasani, Samson Solomon, Parvej Khan
Abstract In any engine cooling system, de-aeration capability of the system plays a very critical role to avoid over heating of an engine. In general, with recovery bottle engine cooling system there is one vent hose from radiator pressure cap to the recovery bottle and coolant in the bottle is exposed to atmospheric pressure. From this vent hose air bubbles will move to recovery bottle from the engine and radiator when pressure in the system exceeds pressure cap setting. With this arrangement, de-aeration from the engine will happen when thermostat opens only and till that time air bubbles will be in the engine only and in this time there will be chance of overheating at some critical conditions because of air pockets in to the engine water jacket and the entrained air in the cooling circuit. Also, secondly 100 % initial filling cannot be achieved. Thus there is a need for continuous de-aeration irrespective of the thermostat opening/closing position and also to reduce number of filling intervals.
2014-09-30
Technical Paper
2014-01-2341
Salvador Sermeno, Eric Bideaux, Tessa Morgan, Duc Nguyen
Abstract Vehicle thermal management covers the engineering field of solutions that maintain the complete vehicle in acceptable operating conditions regarding component and fluid temperatures in an engine. The maximum efficiency rating of a Diesel engine reaches up to 45%. In order to improve the fuel efficiency of the vehicle one can reduce the losses generated by the cooling system. Ideally, the full motive force of the engine should be used for propulsion and new and more efficient energy sources have to be explored to power the secondary systems (cooling, compressed air…). This paper introduces a dynamic programming algorithm which is used to determine the maximum gains during operation for a given architecture of the cooling system of a Heavy Duty Truck. The algorithm, based in Bellman principle, will determine the best control trajectory for the pump and the fan according to energetic and control goals (fuel economy, regulation of temperature…). For this purpose, a reduced model of the cooling system based on energy balance equations has been determined and validated through simulations.
2014-09-30
Technical Paper
2014-01-2344
Peter Gullberg, Antoine Tavernier
Abstract Computational Fluid Dynamics (CFD) is today an important tool in the design process of fuel and energy efficient vehicles. Under-hood management is one of the fields where CFD has proven itself to be useful for cost-efficient development of products. Multiple Reference Frame (MRF) method is the most common used tool in the industry for modeling rotating parts. In previous papers, the modeling strategy with MRF has been documented for open fans and showed high capability to predict fan performance. One of the open points of this proposed method has been its applicability to closed fans (ring fans), as industry experience and discussions has indicated previous conclusions of open fans and MRF modeling may not apply across ranges of fan designs. This paper investigates the MRF method for a closed fan with U-shroud and analyzes several aspect of the modeling strategy. The finding of this paper is that the MRF method predicts fan performance for closed fans with equal accuracy as it does for open fans.
2014-09-30
Technical Paper
2014-01-2338
Vishal Kale, Bharani Dharan Raju, Vikas Dhiman
Abstract This paper involves increase in engine power by increasing bore size and stroke length along with other required engine level design modifications. Main focus is on addressing the cooling related issues by optimizing the cooling jacket design and water pump flow parameters. Engine cooling requirements need to be upgraded to address increase in thermal loads because of reduction in cooling area between cylinder block and cylinder liner due to increase in bore size keeping engine block size fixed. Methodology used is cooling jacket optimization and water pump design modifications. In internal combustion engines, cooling system involves a complex geometry of water jackets. For such complex systems, CFD simulations can be executed in a short period of time and are relatively inexpensive. CFD provides the ability to theoretically simulate any physical condition. Effective utilization of STAR CCM+ V8.04 is done for water jacket design of a 3 cylinder water cooled inline diesel engine. k-ε turbulence model was used for the present study.
2014-09-30
Technical Paper
2014-01-2339
Jon Dickson, Matthew Ellis, Tony Rousseau, Jeff Smith
Abstract Fuel efficiency for tractor/trailer combinations continues to be a key area of focus for manufacturers and suppliers in the commercial vehicle industry. Improved fuel economy of vehicles in transit can be achieved through reductions in aerodynamic drag, tire rolling resistance, and driveline losses. Fuel economy can also be increased by improving the efficiency of the thermal to mechanical energy conversion of the engine. One specific approach to improving the thermal efficiency of the engine is to implement a waste heat recovery (WHR) system that captures engine exhaust heat and converts this heat into useful mechanical power through use of a power fluid turbine expander. Several heat exchangers are required for this Rankine-based WHR system to collect and reject the waste heat before and after the turbine expander. The WHR condenser, which is the heat rejection component of this system, can be an additional part of the front-end cooling module. Packaging this WHR condenser as part of the front-end cooling module can be an engineering challenge given the tight underhood environment where the current powertrain cooling components are already near system-capable thermal limits.
2014-09-30
Technical Paper
2014-01-2337
Lisa Henriksson, Erik Dahl, Peter Gullberg, Arnaud Contet, Thomas Skare, Lennart Lofdahl
Abstract This paper presents pressure drops and heat transfer rates for compact heat exchangers, where the heat exchangers are angled 90°, 60°, 30° and 10° relative to the incoming airflow. The investigation is based on three heat exchangers with thicknesses of 19mm and 52mm. Each heat exchanger was mounted in a duct, where it was tested for thermal and isothermal conditions. The inlet temperature of the coolant was defined to two temperatures; ambient temperature and 90°C. For the ambient cases the coolant had the same temperature as the surrounding air, these tests were performed for five airflow rates. When the coolant had a temperature of 90°C a combination of five coolant flow rates and five airflow rates were tested. The test set-up was defined as having a constant cross-section area for 90°, 60° and 30° angles, resulting in a larger core area and a lower airspeed through the core, for a more inclined heat exchanger. The investigation showed that a more inclined heat exchanger resulted in lower static pressure drop and at the same time achieved a higher heat transfer rate, for a specific mass airflow rate.
2014-09-30
Technical Paper
2014-01-2345
Lei Jin, Gangfeng Tan, Xuexun Guo, Rui Nie, Jing Cai, Xiaomeng Shen
Abstract In the Rankine cycle, the pressure differential generated by the phase change of the working fluid produces turbine output power, which enables the recovery of waste heat from the internal combustion engine. The heat transfer ability of the evaporator is the key factor that determines the quality of turbine's mechanical work. In this paper, the performance of the evaporator with two-phase zone and preheated zone is studied. After obtaining the thermal characteristics of diesel engine exhaust from the experimental data, the mathematical model of the evaporator is built according to the specific working conditions of ORC and geometrical parameters of the evaporator. Three typical engine operating conditions are used to estimate the heat transfer characteristics of the evaporator. The result shows that, in the evaporator, the heat transfer coefficient of the Rankine working fluid is much greater than the exhaust side of the engine. The heat transfer rate of preheated zone is larger than the two-phase zone, which is almost 67% of the overall heat transfer rate.
2014-09-28
Technical Paper
2014-01-2519
ByeongUk Jeong, Hoon Kim, Woochul Kim, Sang Do Kwak
Abstract Owing to the enhanced performance of engines these days, more heat should be dissipated in the braking system. Failure of doing this properly causes temperature rise in the brake disc which result in the brake fade, disc distortion, brake judder, etc. A cooling-air-duct was proposed as a solution to prevent these from happening. In this paper, we present our work based on experiments optimized parameters such as direction, location, shapes and the size of the duct for the cooling-air-duct installation in real cars. We installed the duct extended from a front bumper to a rear wheel guard. Experimental parameters were compared with theoretical analysis using the impinging jet analysis. The heat transfer coefficients were determined by using the finite elements method (FEM). We found that our experimental data is supportive of theoretical analysis. We believe that our results should serve an useful guideline for designing the cooling-air-duct for braking system.
2014-09-24
Event
Underhood thermal management and its impact on powertrain cooling is a key aspect of the vehicle development process. Controlling the underhood thermal environment has a significant impact on powertrain cooling. This session is devoted to thermal aspects the underhood environment and its impact on powertrain cooling.
Viewing 1 to 30 of 3996

Filter

  • Range:
    to:
  • Year: