Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4045
2015-10-06
Event
Hybrid drive trains combine combustion engines and electric/hydraulic motors. Sophisticated energy management of both propulsion systems in the context of drive train and vehicle operation is required for maximum fuel efficiency and minimum CO2 emissions. This session discusses the latest developments in regard to energy management, optimization potential for combustion engine within electric/hydraulic drive trains and considers the impact on emissions, certification, and fuel consumption/CO2.
2015-10-06
Event
This session covers advanced technologies and analysis/design/testing techniques related to cooling system performance. It includes both system-level and component-level contents. Market conditions and government legislation are driving the demand for more power, better fuel economy and lower emissions. Simultaneously, the space available for arranging cooling systems is shrinking. These performance and emissions constraints emphasize the need for integrated engine/vehicle procedures or techniques for developing cooling systems and problem solving. This session is designed to examine the trends in cooling system design and implementation strategies to meet these new requirements.
2015-10-01
Event
Underhood thermal management and its impact on powertrain cooling is a key aspect of the vehicle development process. Controlling the underhood thermal environment has a significant impact on powertrain cooling. This session is devoted to thermal aspects the underhood environment and its impact on powertrain cooling.
2015-09-29
Event
Thermal Management represents one of the key aspects of the vehicle development. It ensures that the temperatures in the underhood and underbody areas are in desired ranges, that thermal systems operate as designed, and that no component operation is at risk due to excessive temperatures. This session covers the design of thermal components and systems and their vehicle integration.
2015-09-29
Event
Legislation, Service Cost, Thermal Performance, Safe Vehicle Operation and Vehicle Fuel Economy are but several of the areas where the mobile air conditioning refrigerant selection impacts the customer experience. Topics of interest in this session include design guidance, valves to control flow, and refrigerant blends.
2015-09-24 ...
  • September 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Rapid advances have been made in the range of available designs and operational parameters as well as in the fundamental understanding of compact heat exchangers (CHEs). Since the majority of modern heat exchangers used for heating and cooling systems for vehicular applications are CHEs, keeping up to date with these advances is essential. This seminar will help you understand and be able to apply comprehensive information about the intricacies of CHE design, performance, operating problems and state-of-the-art-technology for car and truck applications.
2015-07-01
Standard
J1726_201507
This SAE Recommended Practice provides test methods and criteria for evaluating the internal cleanliness and air leakage for engine charge air coolers. This SAE Recommended Practice also provides nomenclature and terminology in common use for engine charge air coolers, related charge air cooling system components, and charge air cooling system operational performance parameters.
2015-06-30
Standard
J3062_201506
The Scope of SAE J3062 covers hose intended for containing and circulating lubricant, liquid and gaseous R134a and/or R-1234yf refrigerant in automotive air-conditioning systems. The hose shall be designed to minimize permeation of the refrigerant, contamination of the system, and to be functional over a temperature range of -30 to 125 °C. Specific construction details are to be agreed upon between the user and supplier. Requirements for the hose used in coupled automotive refrigerant air-conditioning assemblies had been included in SAE J2064. SAE J3062 separates requirements for the hose used in these assemblies into its own standard. SAE J2064 also provides the necessary values used in SAE J2727 Mobile Air-Conditioning System Refrigerant Emission charts for R-134a and R-1234yf. Mobile air-conditioning system refrigerant emissions rates are established in SAE J2727 Emission charts and are important.
2015-06-18
WIP Standard
AS1975G
This SAE Aerospace Standard (AS) defines the requirements for a polytetrafluoroethylene (PTFE) lined, para-aramid fiber reinforced, hose assembly suitable for use up to 4000 psi, and up to 275 °F, aircraft and missile hydraulic and pneumatic systems.
2015-06-18
Standard
AS6886
Counterfeiting of refrigerants has seen a dramatic rise over the past two decades. This rise can be partially attributed to global restrictions placed on production and use of refrigerants by the 1987 Montreal and the 1997 Kyoto Protocols (1, 2). These Protocols regulate the gradual phase-out and strict regulations on the use of refrigerants with high Ozone Depletion Potential (ODP) and high Global Warming Potential (GWP). These protocols require that older refrigerants shall be replaced with newer, more expensive, and environmentally friendly chemicals (3, 4) and necessitates redesigned or replaced equipment to operate efficiently with these new refrigerants.
2015-06-16
Standard
AS1946E
This SAE Aerospace Standard (AS) defines the requirements for polytetrafluoroethylene (PTFE) lined, metallic reinforced, hose assemblies suitable for use in aerospace hydraulic, fuel and lubricating oil systems at temperatures between -67 °F and 450 °F for Class I assemblies, -67 °F and 275 °F for Class II assemblies, and at nominal pressures up to 1500 psi. The hose assemblies are also suitable for use within the same temperature and pressure limitations in aerospace pneumatic systems where some gaseous diffusion through the wall of the PTFE liner can be tolerated. The use of these hose assemblies in pneumatic storage systems is not recommended. In addition, installations in which the limits specified herein are exceeded, or in which the application is not covered specifically by this standard, for example oxygen, shall be subject to the approval of the procuring activity.
2015-06-15
Technical Paper
2015-01-2091
Ryosuke Hayashi, Makoto Yamamoto
Abstract In a jet engine, ice accreted on a fan rotor can be shed from the blade surface due to centrifugal force, and the shed ice can damage compressor components. This phenomenon, which is referred to as ice shedding, threatens safe flight. However, there have been few studies on ice shedding because ice has numerous unknown physical parameters. Although existing icing models can simulate ice growth, these models do not have the capability to reproduce ice shedding. As such, in a previous study, we developed an icing model that takes into account both ice growth and ice shedding. In the present study, we apply the proposed icing model to a jet engine fan in order to investigate the effect of ice growth and shedding on the flow field. The computational targets of the present study are the engine fan and the fan exit guide vane (FEGV); thus, we simultaneously deal with the rotor-stator interaction problem.
2015-06-10
WIP Standard
J2914
This document provides an overview on how and why EGR coolers are utilized, defines commonly used nomenclature, discusses design issues and trade-offs, and identifies common failure modes. The reintroduction of exhaust gas into the combustion chamber is just one component of the emission control strategy for internal combustion (IC) engines, both diesel and gasoline, and is useful in reducing exhaust port emission of Nitrogen Oxides (NOx). Other means of reducing NOx exhaust port emissions are briefly mentioned, but beyond the scope of this document.
2015-05-07
Standard
J2842_201505
The intent of this standard is to establish a framework to assure that all evaporators for R-744, R-1234yf, and R-445A mobile air conditioning (MAC) systems meet appropriate testing and labeling requirements. SAE J639 requires vehicle manufacturers to perform assessments to minimize reasonable risks in production MAC systems. The evaporator (as designed and manufactured) shall be part of that risk assessment and it is the responsibility of the vehicle manufacturer to assure all relevant aspects of the evaporator are included. It is the responsibility of all vehicle or evaporator manufacturers to comply with the standards of this document at a minimum. (Substitution of specific test procedures by vehicle manufactures that correlate well to field return data is acceptable.) As appropriate, this standard can be used as a guide to support risk assessments.
2015-04-29
WIP Standard
J1754/3
This SAE Standard covers ordering information for J517 100R Series hose materials for hydraulic hose assemblies using connectors specified in SAE Standard J516 or all parts of ISO 12151 for use in hydraulic systems using petroleum based hydraulic fluids.
2015-04-21
Standard
J1037_201504
This SAE Standard covers nonreinforced, extruded, flexible tubing intended primarily for use as fluid lines for automotive windshield washer systems which conform to the requirements of SAE J942.
2015-04-21
Standard
J2605_201504
The Hose Measurement Task Force conducted a round-robin study to determine the measuring capability of automotive suppliers and users to simultaneously measure the Inside Diameter (ID), Outside Diameter (OD), Wall Thickness (Wall), and Wall thickness Variation (WV) of hose using a laser-based, non-contact LOTIS QC-20 gauging device. Three (3) companies (all end users) participated in this testing with one of the three companies performing the GR&R calculations presented herein. Based upon the round-robin study this report will detail procedures, test measuring devices, results, and conclusions.
2015-04-21
Standard
J1759_201504
The Measurement of Coolant Hose task group conducted a round-robin study to determine the measuring capability of automotive suppliers and users to measure Inside Diameter (ID), Outside Diameter (OD), Wall Thickness (Wall) and wall thickness variation of hose using traditional measuring devices and techniques. Seven companies (five suppliers and two end users) participated in this testing. Based upon the round-robin study this information report will detail procedures, test measuring devices, results and recommendations.
2015-04-21
Standard
J1638_201504
This SAE Recommended Practice is used for establishing the compression set that could be expected to occur with engine coolant hoses under securing clamps. It seeks to reproduce the type of indentation caused by the clamps in the wall of the hose. An excessive compression set measured by this method would indicate a hose that could eventually alloy leakage of coolant past the clamps in service. This method has been found to give repeatable results in the range of 25% to 50% initial compression.
2015-04-21
Standard
J51_201504
This SAE Standard covers reinforced hose, or hose assemblies, intended for conducting liquid and gaseous dichlorodifluoromethane (refrigerant 12) in automotive air-conditioning systems. The hose shall be designed to minimize permeation of refrigerant 12 and contamination of the system and to be serviceable over a temperature range of -30 to 120 °C (-22 to 248 °F). Specific construction details are to be agreed upon between user and supplier. NOTE— SAE J2064 is the Standard for refrigerant 134a hose. For refrigerant 134a use, refer to SAE J2064
Viewing 1 to 30 of 4045

Filter

  • Range:
    to:
  • Year: