Criteria

Text:
Display:

Results

Viewing 1 to 30 of 6791
2017-11-14 ...
  • November 14-16, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2017-10-08
Technical Paper
2017-01-2429
Felix Leach, Martin Davy, Adam Weall, Brian Cooper
Diesel engine designers often use swirl flaps to increase air motion in cylinder at low engine speeds, where lower piston velocities reduce natural in-cylinder swirl. Such in-cylinder motion reduces smoke and CO emissions by improved fuel-air mixing. However, swirl flaps, acting like a throttle on a gasoline engine, create an additional pressure drop in the inlet manifold and thereby increase pumping work and fuel consumption. In addition, by increasing the fuel-air mixing in cylinder the combustion duration is shortened and the combustion temperature is increased; this has the effect of increasing NOx emissions. Typically, EGR rates are correspondingly increased to mitigate this effect. Late inlet valve closure, which reduces an engine’s effective compression ratio, has been shown to provide an alternative method of reducing NOx emissions.
2017-10-03 ...
  • October 3-4, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
2017-09-27 ...
  • September 27-29, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The need to control emissions and maintain fuel economy is driving the use of advanced turbocharging technology in both diesel and gasoline engines. As the use of diesel engines in passenger car gasoline and diesel engines increases, a greater focus on advanced turbocharging technology is emerging in an effort to reap the benefits obtained from turbocharging and engine downsizing. This seminar covers the basic concepts of turbocharging of gasoline and diesel engines (light and heavy duty), including turbocharger matching and charge air and EGR cooling, as well as associated controls.
2017-09-04
Technical Paper
2017-24-0090
Robert E. Morgan, Morgan Heikal, Emily Pike-Wilson
Abstract Traffic related NOx and particle emission remain a significant concern particularly in the urban environment. Electrification offers a medium to long term solution, but there remains a need to significantly reduce internal combustion engine emissions in the short and medium term, and potentially in the long term for long range inter city transportation. Late injection low temperature combustion (LTC) has the potential to achieve ultra-low emissions levels in a compression ignition engine by increasing the lean pre-mixed burn fraction. However, significant quantities of diluent are normally required to achieve the required delay in ignition and pre-mixing to achieve LTC. This results in high boost requirements, increased pumping work and the complexity of the air handling system and potentially adversely impacting fuel economy.
2017-09-04
Technical Paper
2017-24-0044
Jeremy Rochussen, Jeff Son, Jeff Yeo, Mahdiar Khosravi, Patrick Kirchen, Gordon McTaggart-Cowan
Alternative fuel injection systems and advanced in-cylinder diagnostics are two important tools for engine development; however, the rapid and simultaneous achievement of these goals is often limited by the space available in the cylinder head. Here, a research-oriented cylinder head is developed for use on a single cylinder 2-litre engine, and permits three simultaneous in-cylinder combustion diagnostic tools (cylinder pressure measurement, infrared (IR) absorption, and multi-color pyrometry). In addition, a modular injector mounting system enables the use of a variety of direct fuel injectors for both gaseous and liquid fuels. The design of the all-new cylinder head was derived from a production cylinder head, which was sectioned and laser scanned to create a parametric model.
2017-09-04
Journal Article
2017-24-0045
Blane Scott, Christopher Willman, Ben Williams, Paul Ewart, Richard Stone, David Richardson
In-cylinder temperature measurements are vital for the validation of gasoline engine modelling and useful in their own right for explaining differences in engine performance. The underlying chemical reactions in combustion are highly sensitive to temperature and affect emissions of both NOx and particulate matter. The two techniques described here are complementary, and can be used for insights into the quality of mixture preparation and comparing the in-cylinder temperatures of port fuel injection (PFI) compared with gasoline direct injection (GDI), so as to explain the differences in volumetric efficiency. The influence of fuel composition on in-cylinder mixture temperatures can also be resolved. Laser Induced Grating Spectroscopy (LIGS) provides point temperature measurements with a pressure dependent precision in the range 0.1 to 1.0%; as the pressure increases the precision improves. This allows resolution of temperature differences between PFI and GDI mixture preparation.
2017-09-04
Technical Paper
2017-24-0049
Matteo De Cesare, Federico Covassin, Enrico Brugnoni, Luigi Paiano
The new driving cycles require a greater focus on wider engine operative area and especially in transient conditions where a proper air path control is a challenging task for emission and drivability. In order to achieve this goal, turbocharger speed measurement can give several benefits in boost pressure transient and over-speed prevention, letting the adoption of a smaller turbocharger, that can reduce further the turbo-lag enabling engine downspeeding. Until now, the use of a turbocharger speed sensor was considered expensive and rarely available for passenger cars, while it is used on high performance engines with the aim of maximizing the engine power and torque, mainly in steady state, eroding the safe-margin for turbocharger over-speed. Thanks to the availability of a new cost effective turbocharger speed technology, based on acoustic sensing, the turbocharger speed can be used also for passenger car applications.
2017-09-04
Technical Paper
2017-24-0060
Nicolo Cavina, Nahuel Rojo, Lorella Ceschini, Eleonora Balducci, Luca Poggio, Lucio Calogero, Ruggero Cevolani
The recent search for extremely efficient spark-ignition engines has implied a great increase of in-cylinder pressure and temperature levels, and knocking combustion mode has become one of the most relevant limiting factors. This paper reports the main results of a specific project carried out as part of a wider research activity, aimed at modelling and real-time controlling knock-induced damage on aluminium forged pistons. The paper shows how the main damage mechanisms (erosion, plastic deformation, surface roughness, hardness reduction) have been identified and isolated, and how the corresponding symptoms may be measured and quantified. The second part of the work then concentrates on understanding how knocking combustion characteristics affect the level of damage done, and which parameters are mainly responsible for piston failure.
2017-09-04
Technical Paper
2017-24-0076
Mark A. Hoffman, Ryan O'Donnell, Zoran Filipi
The proven impact of combustion chamber deposits on advanced compression ignition combustion strategies has steered recent works toward the development of thermal barrier coatings, which can mimic their benefits on combustion efficiency and operational range expansion. However, recent work based on statistical thermodynamics has indicated that inter-molecular radiation during the combustion event may subject the combustion chamber walls to non-negligible radiation heat transfer, regardless of the relatively low soot formation within the well-mixed and lean charge. In the present paper, the impact of radiation heat transfer on combustion chamber deposits and thermal barrier coatings is studied. The morphological construction of the combustion chamber deposit layer is shown to be partially transparent to radiation heat transfer, drawing corollaries with ceramic based thermal barrier coatings.
2017-09-04
Technical Paper
2017-24-0129
Vladimir Merzlikin, Svetlana Parshina, Victoria Garnova, Andrey Bystrov, Alexander Makarov, Sergey Khudyakov
The core of this paper is reduction of exhaust emission and increase of diesel efficiency due to application of microstructure ceramic semitransparent heat-insulating coatings (SHIC). The authors conducted experimental study of thermal state of internal-combustion engine piston head with a heat-insulating layer formed by plasma coating method. The paper presents physical and mathematical simulation of improved optical (transmittance, reflectance, absorption, scattering) and thermo radiative (emittance) characteristics determining optimal temperature profiles inside SHIC. The paper considers the effect of subsurface volumetric heating up and analyzes temperature maximum position inside subsurface of this coating. Decrease of SHIC surface temperature of the coated piston in comparison with temperature of traditional opaque heat-insulating coatings causes NOx emission reduction.
2017-09-04
Journal Article
2017-24-0157
Wolfgang Gross, Ahmad Rabanizada, Konstantin Markstädter, Harald Stoffels, Michael Bargende, Adrian Rienäcker
High combustion pressure in combination with high pressure gradient, as they e.g. can be evoked by high efficient combustion systems and e.g. by alternative fuels, acts as broadband excitation force which stimulates natural vibrations of piston, conrod and crankshaft during engine operation. Starting from the combustion chamber the assembly of piston, conrod and crankshaft and the main bearings represent the system of internal vibration transfer. To generate exact input and validation values for simulation models of structural dynamic and elastohydrodynamic coupled multi-body systems, experimental investigations are done. These are carried out on a 1.5-l inline four cylinder Euro 6 Diesel engine. The modal behavior of the system was examined in detail in simulation and test as a basis for the investigations. In an anechoic test bench combustion pressure, airborne and structure-borne noises are measured to identify the engine´s vibrational behaviour.
2017-09-04
Technical Paper
2017-24-0167
Enrico Mattarelli, Carlo Rinaldini, Tommaso Savioli, Giuseppe Cantore, Alok Warey, Michael Potter, Venkatesh Gopalakrishnan, Sandro Balestrino
A CFD study on a 2-stroke (2-S) opposed piston high speed direct injection (HSDI) Diesel engine is reported in this work. The engine main features (bore, stroke, port timings, et cetera) were defined in a previous stage of the project, with the support of CFD-1D engine simulations and empirical hypotheses. The current analysis is focused on the assembly made up of scavenge ports, manifold and cylinder. The first step of the study consisted in the construction of a parametric mesh on a simplified geometry. Two geometric parameters and 3 different operating conditions were considered. A CFD-3D simulation by using a customized version of the KIVA-4 code was performed on a set of 243 different cases, sweeping all the most interesting combinations of geometric parameters and operating conditions. The post-processing of this huge amount of data allowed us to define the most effective geometric configuration, named baseline.
2017-09-04
Journal Article
2017-24-0164
Erik Svensson, Lianhao Yin, Per Tunestal, Marcus Thern, Martin Tuner
The engine concept Partially Premixed Combustion (PPC) has proved higher efficiency compared to conventional diesel combustion (CDC) and spark ignition gasoline engines (SI). The relatively simple implementation of the concept is an advantage, however, high pumping losses has made its use challenging in multi-cylinder heavy duty (HD) engines. With high rates of exhaust gas recirculation (EGR) to dilute the charge and hence limit the combustion rate, the resulting exhaust temperatures are low. The selected boost system must therefore be efficient which could lead to large, complex and costly solutions. In the presented work experiments and modeling were combined to evaluate different turbocharger configurations for the PPC concept. Experiments were performed on a multi-cylinder Scania D13 engine. The engine was modified to incorporate long route EGR and a single stage turbocharger, however, with externally compressed air being optionally supplied to the compressor.
2017-09-04
Technical Paper
2017-24-0163
Apostolos Pesiridis, Angelo Saccomanno, Raffaele Tuccillo, Alfredo Capobianco
The automotive industry is under increasing pressure to reduce emissions in order to comply with regulations emanating from the Kyoto Protocol, a universally acknowledged treaty aiming at reducing exhaust gas emissions. In order to achieve the required future emission reduction targets, further developments on gasoline engines are required. One of the principal technologies being implemented to achieve this goal is engine downsizing. Engine downsizing by definition requires some form of boosting and turbocharging is widely adopted as it is a cost effective method to achieve the downsizing an engine whilst reducing exhaust gas emissions, reducing fuel consumption and practically maintaining prior performance targets. For these reasons, turbocharging is becoming an increasingly popular technology with automotive engine manufacturers. Despite the wide spread of this technology, there are still drawbacks present in current turbocharging systems.
2017-09-04
Technical Paper
2017-24-0162
Harald Stoffels, Jens Dunstheimer, Christian Hofmann
The application of a turbocharger, having an electric motor/generator on the rotor was studied focusing on the electric energy recuperation on a downsized gasoline internal combustion engine, using 1D-calculation approaches. Using state-of-the art optimization techniques, the settings of the valve timing was optimized to cater for a targeted pre-turbine pressure and certain level of residual gases in the combustion chamber to avoid abnormal combustion events. Subsequently, a steady-state map of the potential of electric energy recuperation was performed while considering in parallel different efficiency maps of the potential generator and a certain wastegate actuation strategy. Moreover, the results were taken as input to a WLTP cycle simulation in order to identify any synergies with regard to fuel economy.
2017-09-04
Technical Paper
2017-24-0170
Michael R. Buchman, Amos Winter
This paper evaluates the lag time in a turbo charged single cylinder engine. The goal of this research is to increase the power output, reduce the fuel economy, and improve emissions through turbocharging. Due to the timing mismatch between the exhaust stroke, when the turbocharger is powered, and the intake stroke, when the engine intakes air, turbocharging is not used in commercial single cylinder engines. Previous work has shown that it is possible to turbocharge a four stroke, single cylinder, internal combustion engine using an air capacitor. An air capacitor is a large volume intake manifold, in between the turbocharger compressor and the engine intake to smooth out the flow. This work builds on previous theoretical and experimental work that shows that a turbocharger could be fitted to a single cylinder engine using an air capacitor to increase intake air density by forty three percent and peak power output by twenty nine percent.
2017-09-04
Technical Paper
2017-24-0005
Guillaume Goumy, Pascal Chesse, Nicolas Perrot, Rémi Dubouil
Abstract Downsizing has nowadays become the more widespread solution to achieve the quest for reaching the fuel consumption incentive. This size reduction goes with turbocharging in order to keep the engine power constant. To reduce the development costs and to meet the ever tightening regulations, car manufacturers rely more and more on computer simulations. Thus developing accurate and predictable turbocharger models functioning on a wide range of engine life cases became a major requirement in industrial projects. In the current models, compressors and turbines are represented by look-up tables, experimentally measured on a turbocharger test bench, at steady point and high inlet turbine temperature. This method results in limited maps : on the one hand the compressor surge line and on the other hand the flow resistance curve behind the compressor. Mounted on an engine, the turbocharger encounters a wider scale of functioning points.
2017-09-04
Technical Paper
2017-24-0003
Andreas Sidorow, Vincent Berger, Ghita Elouazzani
Abstract Gasoline engines have typically a waste gate actuator to control the boost pressure. The electrification of the vehicle and combustion engine components leads to new challenges of application of electric actuators in engine components, like turbochargers, which are faced with relatively high ambient temperatures. Another challenge is a simulation and prediction of the mechanical load on the actuator and kinematic components at different application scenarios, which can help to find the optimal solution which fulfills the durability, controllability, etc. targets. This paper deals with a physical dynamic model of an electric waste-gate actuator and kinematic components. The modeling includes a thermal, electrical and mechanical parts of the turbocharger control system and is validated on test-bench and engine measurements including pulsation effects.
2017-09-04
Technical Paper
2017-24-0013
Nicolas Perrot, Pascal Chesse, Rémi Dubouil, Guillaume Goumy
Abstract Today turbochargers are used by car manufacturers on Diesel engines and on an increasing number of gasoline engines, especially in the scope of downsizing. This component has to be well understood and modeled as simulation is widely used at every step of the development. Indeed development cost and time have to be reduced to fulfill both customers’ wishes and more stringent emissions standards. Current turbocharger simulation codes are mostly based on look-up tables (air mass flow and efficiency) given by manufacturers. This raises two points. Firstly, the characteristics are known only in the same conditions as manufacturers’ tests. Secondly, the turbine efficiency given by turbochargers manufacturers is the product of the isentropic efficiency and the turbocharger mechanical efficiency. This global efficiency is suitable for the calculation of the power transferred to the compressor.
2017-09-04
Technical Paper
2017-24-0019
Alexander Mason, Aaron W. Costall, John R. McDonald
Abstract Mandated pollutant emission levels are shifting light-duty vehicles towards hybrid and electric powertrains. Heavy-duty applications, on the other hand, will continue to rely on internal combustion engines for the foreseeable future. Hence there remain clear environmental and economic reasons to further decrease IC engine emissions. Turbocharged diesels are the mainstay prime mover for heavy-duty vehicles and industrial machines, and transient performance is integral to maximizing productivity, while minimizing work cycle fuel consumption and CO2 emissions. 1D engine simulation tools are commonplace for “virtual” performance development, saving time and cost, and enabling product and emissions legislation cycles to be met. A known limitation however, is the predictive capability of the turbocharger turbine sub-model in these tools.
2017-09-04
Technical Paper
2017-24-0017
Emanuele Servetto, Andrea Bianco, Gennaro Caputo, Giuseppe Lo Iacono
Abstract Large pressure pulsations and a non-uniform distribution of charge air temperature along the intake manifold were detected on a large-bore marine Dual-Fuel engine. These two phenomena were found to impact negatively on the knock resistance of individual cylinders, when the engine is operated in gas-mode. As it happens with marine gas engines, the cylinder most prone to knocking drives the engine tuning for all the others, thus reducing the overall fuel conversion efficiency. In order to effectively tackle this issue, a comprehensive study was carried out, which included both experimental testing and fluid-dynamics simulation. A detailed GT-POWER 1D engine model was built, representing the laboratory 8L (i.e. inline eight-cylinder) engine configuration. The model was extensively correlated against measurements at different speeds and loads and it proved capable of closely reproducing both the pressure fluctuations and the temperature gradient along the intake manifold.
2017-09-04
Technical Paper
2017-24-0023
Karim Gharaibeh, Aaron W. Costall
Abstract Internal combustion engines are routinely developed using 1D engine simulation tools. A well-known limitation is the accuracy of the turbocharger compressor and turbine sub-models, which rely on hot gas bench-measured maps to characterize performance. Such discrete map data is inherently too sparse to be used directly in simulation, and so a preprocessing algorithm interpolates and extrapolates the data to generate a wider, more densely populated map. Methods used for compressor map interpolation vary. They may be mathematical or physical in nature, but there is no unified approach, except that they typically operate on input map data in SAE format. For decades it has been common practice for turbocharger suppliers to share performance data with engine OEMs in this form. This paper describes a compressor map interpolation technique based on the nondimensional compressor flow and loading coefficients, instead of SAE-format data.
2017-09-04
Journal Article
2017-24-0021
Sabino Caputo, Federico Millo, Giancarlo Cifali, Francesco Concetto Pesce
Abstract One of the key technologies for the improvement of the diesel engine thermal efficiency is the reduction of the engine heat transfer through the thermal insulation of the combustion chamber. This paper presents a numerical investigation on the effects of the combustion chamber insulation on the heat transfer, thermal efficiency and exhaust temperatures of a 1.6 l passenger car, turbo-charged diesel engine. First, the complete insulation of the engine components, like pistons, liner, firedeck and valves, has been simulated. This analysis has showed that the piston is the component with the greatest potential for the in-cylinder heat transfer reduction and for Brake Specific Fuel Consumption (BSFC) reduction, followed by firedeck, liner and valves. Afterwards, the study has been focused on the impact of different piston Thermal Barrier Coatings (TBCs) on heat transfer, performance and wall temperatures.
2017-09-04
Technical Paper
2017-24-0020
Michele Becciani, Alessandro Bianchini, Matteo Checcucci, Lorenzo Ferrari, Michele De Luca, Luca Marmorini, Andrea Arnone, Giovanni Ferrara
Abstract The onset of aerodynamic instabilities in proximity of the left margin of the operating curve represents one of the main limitations for centrifugal compressors in turbocharging applications. An anticipated stall/surge onset is indeed particularly detrimental at those high boost pressures that are typical of engine downsizing applications using a turbocharger. Several stabilization techniques have been investigated so far to increase the rangeability of the compressor without excessively reducing the efficiency. One of the most exploited solutions is represented by the use of upstream axial variable inlet guide vanes (VIGV) to impart a pre-whirl angle to the inlet flow. In the pre-design phase of a new stage or when selecting, for example, an existing unit from an industrial catalogue, it is however not easy to get a prompt estimation of the attended modifications induced by the VIGV on the performance map of the compressor.
2017-07-10
Technical Paper
2017-28-1954
Premkumarr Santhanamm, K. Sreejith, Avinash Anandan
A local and global environmental concern regarding automotive emissions has led to optimize the design and development of Power train systems for IC engines. Blow-by and Engine oil consumption is an important source of hydrocarbon and particulate emissions in modern IC engines. Great efforts have been made by automotive manufacturers to minimize the impact of oil consumption and blow-by on in-cylinder engine emissions. This paper describes a case study of how simulation played a supportive role in improving piston ringpak assembly. The engine taken up for study is a six cylinder, turbocharged, water cooled diesel engine with a peak firing pressure of 140 bar and developing a power output of 227 KW at 1500 rpm. This paper reveals the influence of stepped land, top groove angle, ring face profile, twist features with regard to tweaking of Blow-by & LOC. Relevant design inputs of engine parameters were provided by the customer to firm up the boundary conditions.
2017-07-10
Technical Paper
2017-28-1978
Stanley M Jerome, Senthilkumar Sundararaj
Abstract The process of building the engine and its subsequent systems involves usage of metals & its compounds. The current technique is in which the fuel is burned in a combustion chamber wherein the actual combustion progression and its subsequent gases are surrounded by metallic compounds. The part of the heat energy generated in the system is forced to be removed by means of cooling to protect the structural integrity of the engine; nearly 30% of the energy is lost due to cooling. However limitation in structural behavior of metallic materials and limited resource for the production of metals and alloys with superior high temperature structural causes the search for new alternate materials like ceramics, organic synthetic plastic, etc. Thermal Barrier Coating is an attractive and promising method in providing thermal insulation for the engine components due to its good thermo-mechanical properties.
2017-07-10
Technical Paper
2017-28-1977
M Malathi, J Herbert Mabel, R. Rajendran, N Gowrishankar
Abstract Piston rings are used to seal the cavity formed between the piston and the cylinder in order to allow the engine to operate efficiently. The piston rings wear out due to constant rubbing action with cylinder wall and also have to withstand high temperature. This has lead to the development of new piston ring coatings with good wear properties under increasingly challenging running conditions. To improve the wear resistance of the piston rings several coating techniques are employed. One such technique is Ni-P composite coating which is widely used in the automotive industry. Reinforcement of ceramic particles enhances the tribological and mechanical properties of the coating. The base material of the piston ring used in this study is hardened carbon steel. The main objective is to develop an optimum Ni-P composite coating on piston ring to improve wear and friction resistance.
2017-07-10
Technical Paper
2017-28-1981
Sakthinathan Ganapathy, Anand Kumar Appancheal, Raja Velusamy
Abstract Heat energy produced in the combustion chamber of an IC engine cannot be completely converted into useful work due to heat transfer losses. This leads to a fall in the performance of the engine. To overcome this, pistons have been coated with different materials like molybdenum disulphide, chromium nitrides and other materials. These thermal barrier coatings have improved the performance of the engine by preventing heat loss. In this experiment, the performance and emission characteristics of a tungsten carbide coated piston was investigated. WC was coated on the piston surface by EB-PVD Process. The WC coated piston was tested in an MK20 engine using an eddy current dynamometer. The performance of uncoated and WC coated pistons were compared and analyzed. An increase in combustion chamber temperature was obtained while using WC coated piston, which was observed by increased exhaust gas temperature.
Viewing 1 to 30 of 6791

Filter

  • Range:
    to:
  • Year: