Criteria

Text:
Display:

Results

Viewing 1 to 30 of 6495
2016-06-27 ...
  • June 27-28, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The purpose of this course is to provide an overview of the factors in the cylinder kit assembly of natural gas, gasoline, and diesel engines that affect oil consumption, ring and cylinder bore wear, and blow-by. This course includes background and the evolution of designs and materials currently employed in modern engines as well as providing an overview of computer models, designs, and material systems that can be utilized to optimize the performance of new engines. An overview of the trends in materials and designs employed in U.S., European and Japanese engines will be presented.
2015-12-09 ...
  • December 9-11, 2015 (2 Sessions) - Live Online
  • June 1-3, 2016 (2 Sessions) - Live Online
  • November 30-December 2, 2016 (2 Sessions) - Live Online
Training / Education Online Web Seminars
Turbocharging is already a key part of heavy duty diesel engine technology. However, the need to meet emissions regulations is rapidly driving the use of turbo diesel and turbo gasoline engines for passenger vehicles. Turbocharged diesel engines improve the fuel economy of baseline gasoline engine powered passenger vehicles by 30-50%. Turbocharging is critical for diesel engine performance and for emissions control through a well designed exhaust gas recirculation (EGR) system. In gasoline engines, turbocharging enables downsizing which improves fuel economy by 5-20%.
2015-11-09 ...
  • November 9-11, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 11-13, 2016 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 3-5, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The need to control emissions and maintain fuel economy is driving the use of advanced turbocharging technology in both diesel and gasoline engines. As the use of diesel engines in passenger car gasoline and diesel engines increases, a greater focus on advanced turbocharging technology is emerging in an effort to reap the benefits obtained from turbocharging and engine downsizing. This seminar covers the basic concepts of turbocharging of gasoline and diesel engines (light and heavy duty), including turbocharger matching and charge air and EGR cooling, as well as associated controls.
2015-10-06
Event
This session focuses on the mechanical and mechatronic design of the powertrain and drive train, which includes but is not limited to engines, transmissions, driveshafts, differentials, dropboxes, axles, torque vectoring systems, transmission turning systems, and associated components. Relevant topics include but are not limited to: design/analysis/test methods, novel designs, energy efficiency, materials, coatings and processes, and noise/vibrations of components and sub-systems.
2015-09-29
Technical Paper
2015-01-2816
Andrei Radulescu, Leighton Roberts, Eric Yankovic
Cylinder deactivation (CDA) is an effective method to adjust the engine displacement, for maximum output and improving fuel economy, by adjusting the numbers of active cylinders in the combustion engines. Switching Roller Finger Followers (SRFF) are an economic solution for CDA that minimize changes and preserve the overall width, height or length of Dual Overhead Cam (DOHC) engines. The CDA SRFF provides the flexibility of transferring or suppressing the camshaft movement to the valves influencing the engine performance and fuel economy by reducing the pumping losses. This paper addresses the performance and durability of the CDA SRFF system in meeting the reliability for modern automobile engines. Extensive tests were conducted to demonstrate the dynamic stability at high engine speeds, and the system capacity of switching between high and low engine displacement within one camshaft revolution.
2015-09-29
Technical Paper
2015-01-2809
Sajit Pillai, Julian LoRusso, Matthew Van Benschoten
Cylinder deactivation was evaluated both analytically and experimentally on a diesel engine. This paper evaluates cylinder deactivation for potential benefits in fuel consumption and exhaust thermal management for improved after treatment system performance. An analytical study was conducted using GT-Power to evaluate potential benefits of deactivation. The model was validated at low-load, steady-state points by optimizing Exhaust Gas Recirculation (EGR) and Variable Geometry Turbocharger (VGT) to maintain similar or acceptable emission levels between base and deactivated modes of operation. The results demonstrated significant improvements in Brake Specific Fuel Consumption (BSFC) for low and part load operating points along with higher exhaust gas temperatures. The analytical results offered enough potential benefit to warrant an experimental investigation. To validate the analytical results, an experimental evaluation was performed.
2015-09-29
Technical Paper
2015-01-2790
Kangcheng Wu, Gangfeng Tan, Shubo Fei, Fengming Li, Wei Mao, Yeying Li, Fei Wang, Xintong Wu, Shiqi Gong
Turbocharger technology can improve the vehicle dynamic performance and fuel economy effectively and is applied widely nowadays. But because of the pervasive existent of turbocharger delay effect, acceleration delay and insufficient combustion are its disadvantages. By collecting high pressure air which generates due to the inertia of the turbine in the intake passage when the vehicle slows down, air is supplied for the shortage in the intake passage while the vehicle is accelerating ,which can reduce turbocharger delay effect effectively. However, turbocharger delay effect changes a little at high speed and low speed which is subjected to the air inflation and short air-release time.
2015-09-22
Event
Established in 1984, this award promotes engineering developments and the presentation of SAE papers on turbomachinery and/or developments that enable or advance the use of turbomachinery. The award honors Cliff Garrett and the inspiration he provided to engineers by his example, support, encouragement, and many contributions as an aerospace pioneer. To perpetuate recognition of Mr. Garrett's achievements and dedication as an aerospace pioneer, SAE administers an annual lecture by a distinguished authority in the engineering of turbomachinery and/or engineering related to creating, enabling, or advancing applications of turbomachinery in power systems, on-highway, off-highway, aircraft, and/or spacecraft uses.
2015-09-06
Technical Paper
2015-24-2430
Andrej Poredos, Peter Tibaut, Cristiano Pecollo, Dario Infanti, Giuseppe Falleti, Francesco Pascuzzi
Significant effort is being spent to improve the power performance and fuel economy of spark ignited engines. As the loading capability of IC engines increases, the thermal and mechanical load increase rapidly. Another aspect is that the amount of CO2 emissions per energy unit is relatively high from fossil fuels. Obviously, this is not desirable from the global climate perspective and has to be reduced. One efficient way of reducing these emissions would be to replace fossil fuels with other fuels, such as biofuels. Another way is to find ways to increase the efficiency of the current IC engines, leading to less CO2 emission for each unit volume of fuel. One of the most important fields related to this objective is heat transfer analysis. From the heat transfer perspective it is of interest to reduce the heat losses in the engine in an attempt to achieve higher mechanical work output.
2015-09-06
Technical Paper
2015-24-2524
José Lujan, José V. Pastor, Héctor Climent, Manuel Rivas
On actual gasoline turbocharged engines it is common to use a compressor by-pass valve in order to solve the compressor surge problem when the throttle pedal position is released and closes rapidly. The paper deals with a methodology based on experiments to measure the discharge coefficient of an integrated compressor by-pass valve, to understand the possible difference between the steady flow test bench and turbocharger test bench discharge coefficient measurements. To determine if there is some compressor outlet flow field influence due to compressor blades rotation that could modify the discharge coefficient measurement, compared to the steady flow test bench measurements, a fully instrumented turbocharger was used to measure the difference between steady flow test bench and turbocharger test bench discharge coefficients results. Effects of different boundary conditions on turbocharger test bench tests and how they affect the discharge coefficient measurement are also presented.
2015-09-06
Technical Paper
2015-24-2523
Calogero Avola, Colin Copeland, Tomasz Duda, Richard Burke, Sam Akehurst, Chris Brace
The adoption of two stage serial turbochargers in combination with internal combustion engines can improve the overall efficiency of powertrain systems. In conjunction with the increase of engine volumetric efficiency, two stage boosting technologies are capable of increasing torque and pedal response of small displacement engines. In two stage serial turbocharges, a high pressure (HP) and a low pressure (LP) turbocharger are connected by a series of ducts. The former can increase charge pressure for low air mass flow typical of low engine speed. The latter has a bigger size and can cooperate with higher mass flows. In serial configuration, turbochargers are packaged in a way that the exhaust gases access the LP turbine after exiting the HP turbine. On the induction side, fresh air is compressed sequentially by LP and HP compressors. By-pass valves and waste-gated turbines are often included in two stage boosting systems in order to regulate turbochargers operations.
2015-09-06
Technical Paper
2015-24-2531
Marco Leonetti, Michael Bargende, Martin Kreschel, Christoph Meier, Horst Schulze
Due to the demands for today’s passenger cars regarding fuel consumption and emissions, exhaust turbo charging has become a fundamental step in achieving these goals. Especially in upper and middle class vehicles it is also necessary to consider the noise comfort. Today, floating bushings are mainly used as radial bearings in turbochargers. In the conventional operating range of the turbocharger dynamic instability occurs in the lubrication films of the bearings. This instability is transferred by structure-borne noise into audible airborne sound and known as constant tone phenomenon. This phenomenon is not the major contributor of the engine noise but its tonal character is very unpleasant. In order to gain a more detailed understanding about the origin of this phenomenon, displacement sensors have been applied to the compressor- and the turbine-side of the rotor, to be able to determine the displacement path.
2015-09-06
Technical Paper
2015-24-2419
Riccardo Amirante, Caterina Casavola, Elia Distaso, Paolo Tamburrano
A simple, cheap and effective way of measuring the pressure inside the cylinders of internal combustion engines is proposed in this paper. It is well known that the in-cylinder pressure is one of the most significant variables describing the combustion status in internal combustion engines; therefore, if the measured value of the actual pressure in the combustion chamber is used as a feedback variable for closed loop monitoring and control techniques, it will be possible both to improve engine performances and to reduce fuel consumptions and emissions. However, to date such a pressure-based control strategy has been limited by costs, reliability and lifetime of commercially available cylinder pressure sensors. To overcome these limitations, the present paper proposes a very simple and low cost experimental device for measuring the pressure inside the combustion chamber, developed for engine control and monitoring applications.
2015-09-06
Technical Paper
2015-24-2449
Mark Aaron Hoffman, Zoran Filipi
The limited operational range of low temperature combustion engines is influenced by near-wall conditions. A major factor is the accumulation and burn-off of combustion chamber deposits. Previous studies have begun to characterize in-situ combustion chamber deposit thermal properties with the end goal of understanding, and subsequently replicating the beneficial effects of CCD on HCCI combustion. Combustion chamber deposit thermal diffusivity was found to differ depending on location within the chamber, with significant initial spatial variations, but a certain level of convergence as equilibrium CCD thickness is reached. A previous study speculatively attributed these spatially dependent CCD diffusivity differences to either local differences in morphology, or interactions with the fuel-air charge in the DI engine. In this work, the influence of directly injected gasoline on CCD thermal diffusivity is measured using the in-situ technique based on fast thermocouple signals.
2015-09-06
Technical Paper
2015-24-2455
Slavey Tanov, Zhenkan Wang, Hua Wang, Mattias Richter, Bengt Johansson
Abstract Partially premixed combustion (PPC) is used to meet the increasing demands of emission legislation and to improve fuel efficiency. With gasoline fuels, PPC has the advantage of a longer premixed duration of the fuel/air mixture, which prevents soot formation. In addition, the overall combustion stability can be increased with a longer ignition delay, providing proper fuel injection strategies. In this work, the effects of multiple injections on the generation of in-cylinder turbulence at a single swirl ratio are investigated. High-speed particle image velocimetry (PIV) is conducted in an optical direct-injection (DI) engine to obtain the turbulence structure during fired conditions. Primary reference fuel (PRF) 70 (30% n-heptane and 70% iso-octane) is used as the PPC fuel. In order to maintain the in-cylinder flow as similarly as possible to the flow that would exist in a production engine, the quartz piston retains a realistic bowl geometry.
2015-09-06
Journal Article
2015-24-2427
Nicolo Cavina, Andrea Borelli, Lucio Calogero, Ruggero Cevolani, Luca Poggio
Abstract The paper presents possible solutions for developing fast and reliable turbocharger models, to be used mainly for control applications. This issue is of particular interest today for SI engines since, due to the search for consistent CO2 reduction, extreme downsizing concepts require highly boosted air charge solutions to compensate for power and torque de-rating. For engines presenting at least four in-line cylinders, twin-entry turbines offer the ability of maximizing the overall energy conversion efficiency, and therefore such solutions are actually widely adopted. This work presents a critical review of the most promising (and recent) modeling approaches for automotive turbochargers, highlighting the main open issues especially in the field of turbine models, and proposing possible improvements.
2015-09-06
Technical Paper
2015-24-2448
Mengqin Shen, Vilhelm Malmborg, Yann Gallo, Bjorn B. O. Waldheim, Patrik Nilsson, Axel Eriksson, Joakim Pagels, Oivind Andersson, Bengt Johansson
Abstract When applying high amount of EGR (exhaust gas recirculation) in Partially Premixed Combustion (PPC) using diesel fuel, an increase in soot emission is observed as a penalty. To better understand how EGR affects soot particles in the cylinder, a fast gas sampling technique was used to draw gas samples directly out of the combustion chamber in a Scania D13 heavy duty diesel engine. The samples were characterized on-line using a scanning mobility particle sizer for soot size distributions and an aethalometer for black carbon (soot) mass concentrations. Three EGR rates, 0%, 56% and 64% were applied in the study. It was found that EGR reduces both the soot formation rate and the soot oxidation rate, due to lower flame temperature and a lower availability of oxidizing agents. With higher EGR rates, the peak soot mass concentration decreased. However, the oxidation rate was reduced even more.
2015-08-24 ...
  • August 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 8-9, 2015 (8:30 a.m. - 4:30 p.m.) - Norwalk, California
  • April 12-13, 2016 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 5-6, 2016 (8:30 a.m. - 4:30 p.m.) - Norwalk, California
Training / Education Classroom Seminars
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
2015-06-15
Technical Paper
2015-01-2243
Yang Liu, Pingjian Ming, Wenping Zhang, Xinyu Zhang
Abstract Turbocharger is an important part of the turbocharged diesel engine. Due to the increase of mass flow rate and pressure ratio, aerodynamic noise of turbocharger has become more apparent. And turbocharger noise becomes one of the major noise sources of the main engine system of the ship. In the paper, the aerodynamic noise is predicted by using Computational fluid mechanics (CFD) and indirect boundary element method (IBEM) based on Lighthill acoustic analogy theory. Unsteady viscous flow in the centrifugal Compressor is simulated with finite volume method using the single stator and rotor blade passages and the characteristic of compressor is agreed well with the experimental value. The flow field characteristics and frequency spectrum of the fluctuating pressure are analyzed which agree well with the theoretical value. Dipole is the main noise source in compressor and the datum of pressure fluctuation at rotor blade are extracted.
2015-06-15
Technical Paper
2015-01-2254
Wen-Bin Shangguan, Xiao Feng
Abstract The driving pulley is often used as a Torsional Vibration Damper (TVD) for the crankshaft in the front end accessory drive (FEAD) system. Although the crankshaft torsional vibrations are dampened, they are transmitted to the belt transmission and therefore to the driven accessories. The isolation pulley is a new device to reduce the belt tension fluctuation by isolating the belt transmission from the crankshaft torsional vibrations. A five-pulley system with isolation pulley is presented and a non-linear model is established to predict the dynamic response of the pulleys, tensioner motion, tension fluctuation and slippage. The model works in the time domain with Runge-Kutta time-stepping algorithm. The numerical simulation results of harmonic excitations show that the amplitudes of the belt tension fluctuation and the vibrations of each component are reduced significantly. Moreover, the effect of isolation pulley parameters on the system natural frequencies is demonstrated.
2015-06-15
Journal Article
2015-01-2307
Neil Figurella, Rick Dehner, Ahmet Selamet, Keith Miazgowicz, Ahsanul Karim, Ray Host
Abstract The effect of aerodynamically induced pre-swirl on the acoustic and performance characteristics of an automotive centrifugal compressor is studied experimentally on a steady-flow turbocharger facility. Accompanying flow separation, broadband noise is generated as the flow rate of the compressor is reduced and the incidence angle of the flow relative to the leading edge of the inducer blades increases. By incorporating an air jet upstream of the inducer, a tangential (swirl) component of velocity is added to the incoming flow, which improves the incidence angle particularly at low to mid-flow rates. Experimental data for a configuration with a swirl jet is then compared to a baseline with no swirl. The induced jet is shown to improve the surge line over the baseline configuration at all rotational speeds examined, while restricting the maximum flow rate. At high flow rates, the swirl jet increases the compressor inlet noise levels over a wide frequency range.
2015-05-15
Book
This is the electronic format of the Journal.
2015-05-01
Journal Article
2015-01-9081
Sakthinathan Ganapathy Pandian, Srivathsan Puzhuthivakkam Rengarajan, Terrin P Babu, Vignesh Natarajan, Harikrishnan Kanagasabesan
Abstract Functionally Graded Thermal Barrier Coatings (FG-TBC) increases the performance of high temperature components in gasoline engines by decreasing the thermal conductivity and increasing the unburned charge oxidation in the flame quenching area with the increase in temperature near the entrance of the crevice volume between the piston and the liner during the compression and the early part of the expansion strokes. In this study, a 3-D finite element steady state thermal and structural analysis are carried out on both uncoated and functionally graded NiCrAlY/YSZ/Al2O3 coated gasoline engine piston using a commercial code, namely ANSYS. The effects of coating on the thermo mechanical behaviours of the piston are investigated. It has been shown that the maximum surface temperature of the ceramic coated piston is improved approximately by 7% for the Al-Si alloy.
2015-04-23
Event
This session covers the Power Cylinder: piston, piston rings, piston pins, and connecting rods. The papers include information on reducing friction and increasing fuel economy, improving durability by understanding wear, and decreasing oil consumption and blow-by.
2015-04-23
Event
In this session, research and development of small engine technology, including two-stroke cycle, will be covered. Topics include combustion, scavenging, emissions, fuel systems, control, and NVH.
2015-04-22
Event
This session will cover conceptual, modeling and experimental studies relating to advanced turbochargers/superchargers and advanced boosting systems to achieve increased power density, better fuel economy, and reduced emissions.
2015-04-22
Event
This session will cover conceptual, modeling and experimental studies relating to advanced turbochargers/superchargers and advanced boosting systems to achieve increased power density, better fuel economy, and reduced emissions.
2015-04-21
Event
This sub-session covers zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines as a plant in engine controls
2015-04-17
Video
Inside the turbocharger of your family car is a special material that was also used in the skin of NASA's X-15 rocket plane. In this episode of SAE Eye on Engineering, Senior Editor Lindsay Brooke looks at Inconel, a material commonly used in turbocharger rotors.
Viewing 1 to 30 of 6495

Filter

  • Range:
    to:
  • Year: