Criteria

Text:
Display:

Results

Viewing 1 to 30 of 12068
2016-06-13 ...
  • June 13-17, 2016 (8:00 a.m. - 8:00 p.m.) - Troy, Michigan
Training / Education Classroom Engineering Academies
This Academy covers the diesel engine engineering principles and practices necessary to effectively understand a modern diesel engine. Types of engines addressed include naturally aspirated, turbocharged, pre-chamber, open chamber, light duty, and heavy duty. It is an intensive learning experience comprised of lecture and structured practical sessions, including a team-solved case study problem. Evening sessions are included. Attendees will receive a copy of the textbook, Diesel Emissions and Their Control, by lead instructor Magdi K. Khair and W. Addy Majewski.
2016-04-26 ...
  • April 26-27, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 12-13, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Meeting the requirements of heavy-duty engine emissions regulations is a challenge for all engine manufacturers. Since the introduction of Exhaust Gas Recirculation (EGR) in medium and heavy-duty diesel engines, these systems have become more sophisticated and tightly integrated with emission control systems. This 2-day seminar will explore the advantages and disadvantages of EGR and the most effective implementation of various EGR systems. This seminar will begin by defining EGR and why it is used in diesel engines, along with an explanation of the mechanisms by which EGR is able to reduce NOx.
2016-04-12
Event
Mixed modes with both flame propagation and slow auto ignition. Distinct from SI knock: autoignition is desired and will not ruin the engine. Papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, and SACI mode change are invited and will be placed in appropriate sub-sessions. Papers with an emphasis on the modeling aspects of combustion are encouraged to be submitted into PFL 110 or PFL120 modeling sessions.
2016-04-12
Event
Classical diesel engine combustion with relatively short ignition delay, including papers dealing with low CR and high EGR calibrations. Papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, combustion control, and mode change are invited and will be placed in appropriate sub-sessions. Papers with an emphasis on the modeling aspects of combustion are encouraged to be submitted into PFL110 or PFL120 modeling sessions.
2016-04-12
Event
Mixed mode with auto ignition but inhomogeneous charge. Injection-controlled but with EOI before SOC. Papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, combustion control, and PPC injection strategies are invited and will be placed in appropriate sub-sessions. Papers with an emphasis on the modeling aspects of combustion are encouraged to be submitted into PFL110 or PFL120 modeling sessions.
2016-04-12
Event
This session covers topics regarding new CI and SI engines and components. This includes analytical, experimental, and computational studies covering hardware development as well as design and analysis techniques.
2016-02-02 ...
  • February 2-4, 2016 (2 Sessions) - Live Online
  • August 2-4, 2016 (2 Sessions) - Live Online
Training / Education Online Web Seminars
This web seminar provides an in-depth overview of diesel engine noise including combustion and mechanical noise sources. In addition, the instructor will discuss a system approach to automotive integration including combining sub-systems and components to achieve overall vehicle noise and vibration goals.
2015-12-08 ...
  • December 8-9, 2015 (8:30 a.m. - 4:30 p.m.) - Norwalk, California
  • April 12-13, 2016 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 5-6, 2016 (8:30 a.m. - 4:30 p.m.) - Norwalk, California
Training / Education Classroom Seminars
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
2015-10-22 ...
  • October 22-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • March 16-17, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 29-30, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Engines can and do experience failures in the field in a variety of equipment, vehicles, and applications. On occasion, a single vehicle type or equipment family will even experience multiple engine failures leading to the inevitable need to determine what the most likely cause of one or all of those failures was. This comprehensive seminar introduces participants to the methods and techniques used to determine the most likely cause of an individual engine or group of engine failures in the field.
2015-10-19 ...
  • October 19-20, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • March 14-15, 2016 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • August 15-16, 2016 (8:30 a.m. - 4:30 p.m.) - Rosemont, Illinois
Training / Education Classroom Seminars
Stringent requirements of reduced NOx emission limits in the US have presented engineers and technical staff with numerous challenges. Several in-cylinder technical solutions have been developed for diesel engines to meet 2010 emission standards. These technologies have been optimized and have yielded impressive engine-out results in their ability to reduce emissions to extremely low levels. However, current and state-of-the-art in-cylinder solutions have fallen short of achieving the limits imposed on diesel emissions for 2010.
2015-10-08
Event
This session covers advanced technologies and analysis/design/testing techniques related to powertrain performance, emissions, and electronic controls. Topics include system-level and component-level integration and optimization, emissions, fuel economy, combustion, air charging, EGR systems, fuel systems, valvetrains, engine brakes, waste heat recovery, calibration, steady-state and transient performance, engine/powertrain/drivetrain controls, model-based controls, sensors, OBD, and HIL.
2015-10-08
Event
This session covers advanced technologies and analysis/design/testing techniques related to powertrain performance, emissions, and electronic controls. Topics include system-level and component-level integration and optimization, emissions, fuel economy, combustion, air charging, EGR systems, fuel systems, valvetrains, engine brakes, waste heat recovery, calibration, steady-state and transient performance, engine/powertrain/drivetrain controls, model-based controls, sensors, OBD, and HIL.
2015-10-07
Event
This session covers advanced technologies and analysis/design/testing techniques related to powertrain performance, emissions, and electronic controls. Topics include system-level and component-level integration and optimization, emissions, fuel economy, combustion, air charging, EGR systems, fuel systems, valvetrains, engine brakes, waste heat recovery, calibration, steady-state and transient performance, engine/powertrain/drivetrain controls, model-based controls, sensors, OBD, and HIL.
2015-10-07
Event
This session covers advanced technologies and analysis/design/testing techniques related to powertrain performance, emissions, and electronic controls. Topics include system-level and component-level integration and optimization, emissions, fuel economy, combustion, air charging, EGR systems, fuel systems, valvetrains, engine brakes, waste heat recovery, calibration, steady-state and transient performance, engine/powertrain/drivetrain controls, model-based controls, sensors, OBD, and HIL.
2015-10-06
Event
This session covers advanced technologies and analysis/design/testing techniques related to powertrain performance, emissions, and electronic controls. Topics include system-level and component-level integration and optimization, emissions, fuel economy, combustion, air charging, EGR systems, fuel systems, valvetrains, engine brakes, waste heat recovery, calibration, steady-state and transient performance, engine/powertrain/drivetrain controls, model-based controls, sensors, OBD, and HIL.
2015-10-06
Event
This session covers advanced technologies and analysis/design/testing techniques related to powertrain performance, emissions, and electronic controls. Topics include system-level and component-level integration and optimization, emissions, fuel economy, combustion, air charging, EGR systems, fuel systems, valvetrains, engine brakes, waste heat recovery, calibration, steady-state and transient performance, engine/powertrain/drivetrain controls, model-based controls, sensors, OBD, and HIL.
2015-09-29
Technical Paper
2015-01-2880
Fabio Luz Almeida, Philip Zoldak, Marcos de Mattos Pimenta, Pedro Teixeira Lacava
The use of numerical simulations in the development processes of engineering products has been more frequent, since it enables us to predict premature failures and to study new promising and valuable concepts. In industry, numerical simulation usually has the function of reducing the necessary number of validation tests before spending huge amount of resources on alternatives with less chance to succeed. In the context of an economically committed country, the matter of cargo transportation is of great importance, since it affects the trading of consumer goods between cities, states and their flow towards exportation. Thus, the internal combustion (ICE) Diesel cycle engines play an important role in Brazil, since they are extensively used in automotive applications and commercial cargo transportation, mainly due to their relevant advantage in fuel consumption and reliability.
2015-09-29
Technical Paper
2015-01-2889
R. Saravana Venkatesh, Sunil Pandey, Sathyanandan Mahadevan
In heavy duty diesel engines, Exhaust Gas Recirculation (EGR) is often preferred choice to contain NOx emissions. Critical to such EGR fitted engines is the design of air intake pipe and intake manifold combination in view of proper EGR gas mixing with intake air. The variation in EGR mass fraction at each intake ports should be as minimal as possible and this variation must be contained within +/- 10% band to have a minimal cylinder to cylinder variation of pollutants. EGR homogeneity for various intake configurations were studied using 3D CFD for a 4 cylinder 3.8 L diesel fuel, common rail system, turbocharged and intercooled heavy duty engine. Flow field was studied in the computational domain from the point before EGR mixing till all the four intake ports. EGR mass fraction variation at each intake port was calculated from this analysis after carrying out an experimental validation of the CFD model.
2015-09-29
Technical Paper
2015-01-2791
Srinivas Anantharaman, Manoj Baskaran
Nozzles tip Temperature (NTT) of an injector is a critical parameter for an engine as far as reliability of engine is concerned. It is required to ensure that the injectors operate under its operational limit because higher operating temperatures would result in enlargement of the nozzle spray tip, resulting in higher through flow, producing more undesirable power. This could result in failure of other components in the engine. In this paper we identify the various parameters that are critical for NTT and thereby predict the NTT by having the known input parameters. Response surface methodology and artificial neural network are used to identify the parameters, estimate the significance of each parameter and predict the NTT. Based on this analysis, even without the use of an instrumented injector NTT can be predicted at various working conditions of the vehicle on different terrains.
2015-09-29
Journal Article
2015-01-2807
Katharina Eichler, Yousef Jeihouni, Carl Ritterskamp
Abstract In the near future engine emitted carbon dioxides (CO2) are going to be limited for all vehicle categories with respect to the Green House Gases (GHG) norms. To tackle this challenge, new concepts need to be developed. For this reason waste heat recovery (WHR) is a promising research field. For commercial vehicles the first phase of CO2 emission legislation will be introduced in the USA in 2014 and will be further tightened towards 2030. Besides the US, CO2 emission legislation for commercial engines will also be introduced in Europe in the near future. The demanded CO2 reduction calls for a better fuel economy which is also of interest for the end user, specifically for the owners of heavy duty diesel vehicles with high mileages. To meet these future legislation objectives, a waste heat recovery system is a beneficial solution of recovering wasted energies from different heat sources in the engine.
2015-09-29
Technical Paper
2015-01-2805
Valerii Naumov, Yuri Pogulyaev, Rustam Baytimerov, Dmitry Chizhov
A new fuel supply system (FSS) for a diesel engine is suggested that allows controlling the pressure of the pre- and post-main injections, and changing the pressure curve of the main injection. The system comprises a pump-injector unit with an independent pressure control and a needle. The driving cam of the pump-injector unit is designed so that the downward plunger speed is constant. Due to this fact, the pressure in the high-pressure chamber of the pump-injector unit may also be constant and adjustable by means of a piezoelectric pressure-regulating valve (PRV). The PRV connects the high-pressure chamber of the pump-injector unit with the FSS. The passage area of the PRV depends on the voltage fed to the piezoelectric drive. Thus, by varying the voltage, we can change the pressure in the high-pressure chamber. The needle of the pump-injector unit is controlled hydraulically by a two-position valve. The valve drive can be of solenoid, piezoelectric or mechanical type.
2015-09-29
Technical Paper
2015-01-2809
Sajit Pillai, Julian LoRusso, Matthew Van Benschoten
Abstract Cylinder deactivation was evaluated both analytically and experimentally on a six cylinder diesel engine to understand potential fuel economy and emission improvements. The benefits of cylinder deactivation in Spark Ignited (SI) engines are well documented, however there is little information on the application of the technology for diesel engines. The analytical model was evaluated at low load, steady state conditions. The modified baseline model that includes cylinder deactivation maintains comparable emission levels through the optimization of Exhaust Gas Recirculation (EGR) and Variable Geometry Turbocharger (VGT). The results demonstrated reductions in Brake Specific Fuel Consumption (BSFC) and higher exhaust gas temperatures for low and part load operating points. An experimental test validated the analytical results. Disabling fuel injectors and the valve train on half of the engine's cylinders allowed for the implementation of cylinder deactivation.
2015-09-29
Technical Paper
2015-01-2806
Sam Barros, William Atkinson, Naag Piduru
Introducing water in a diesel engine has been known to decrease peak combustion temperatures and decrease NOx emissions. This however has been limited to stationary and marine applications due to the requirement of a separate water tank and thereby a two-tank system. Combustion of hydrocarbon fuels produce between 1.35 and 2.55 times their mass in water. Techniques for extracting this water from the exhaust flow of an engine have been pursued by the United States department of defense (DOD) for quite some time, as they can potentially reduce the burden of having to supply front line troops with drinking water. Such a technology could also be of value to engine manufacturers as it could enable water injection for performance, efficiency and emissions benefits without the drawbacks of a two-tank system.
2015-09-28 ...
  • September 28, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • April 15, 2016 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
Training / Education Classroom Seminars
The improved efficiencies of the modern diesel engine have led to its increased use within the mobility industry. The vast majority of these diesel engines employ a high-pressure common rail fuel injection system to increase the engine's fuel-saving potential, emissions reduction, and overall performance. This one-day seminar will begin with a review of the basic principles of diesel engines and fuel injection systems. Diesel and alternative fuels will be discussed, followed by current and emerging diesel engine applications.
2015-09-06
Technical Paper
2015-24-2418
Zheming Li, Xin Yu, Guillaume Lequien, Ted Lind, Marcis Jansons, Oivind Andersson, Mattias Richter
Abstract The presence of OH radicals as a marker of the high temperature reaction region usually has been used to determine the lift-off length (LOL) in diesel engines. Both OH Laser Induced Fluorescence (LIF) and OH* chemiluminescence diagnostics have been widely used in optical engines for measuring the LOL. OH* chemiluminescence is radiation from OH being formed in the exited states (OH*). As a consequence OH* chemiluminescence imaging provides line-of-sight information across the imaged volume. In contrast, OH-LIF provides information on the distribution of radicals present in the energy ground state. The OH-LIF images only show OH distribution in the thin cross-section illuminated by the laser. When both these techniques have been applied in earlier work, it has often been reported that the chemiluminescence measurements result in shorter lift-off lengths than the LIF approach.
2015-09-06
Technical Paper
2015-24-2425
Mario Milanese, Ilario Gerlero, Carlo Novara, Giuseppe Conte, Maurizio Cisternino, Carmen Pedicini, Vincenzo Alfieri l, Stefano Mosca
Emission requirements for diesel engines are becoming increasingly strict, leading to the increase of engine architecture complexity. This evolution requires a more systematic approach in the development of control systems than presently adopted, in order to achieve improved performances and reduction of times and costs in design, implementation and calibration. To this end, large efforts have been devoted in recent years to the application of advanced Model-Based MIMO control systems. In the present paper a new MIMO nonlinear feedback control is proposed, based on an innovative data-driven method, which allows to design the control directly from the experimental data acquired on the plant to be controlled. Thus, the proposed control design does not need the intermediate step of a reliable plant model identification, as required by Model-Based methods.
2015-09-06
Technical Paper
2015-24-2438
Maria Founti, Yannis Hardalupas, Christopher Hong, Christos Keramiotis, Kumara Gurubaran Ramaswamy, Nikolaos Soulopoulos, Alexander Taylor, Dimitrios P. Touloupis, George Vourliotakis
The present work investigates the effect of low levels CO2 addition on the combustion characteristics inside a single cylinder optical engine operated under low load conditions. The effects of dilution levels (up to 7.5% mass flow rate CO2 addition), the number of pilot injections (single or double pilot injections) and injection pressure (25 or 40 MPa), are evaluated towards the direction of achieving a partially premixed combustion (PPC) operation mode. The findings are discussed based on optical measurements and via pressure trace and apparent rate of heat release analyses in a Ricardo Hydra optical light duty diesel engine. The engine was operated under low IMEP levels of the order of 1.6 bar at 1200 rpm and with a CO2 diluent-enhanced atmosphere resembling an environment of simulated low exhaust gas recirculation (EGR) rates. Flame propagation is captured by means of high speed imaging and OH, CH and C2 line-of-sight chemiluminescence respectively.
2015-09-06
Technical Paper
2015-24-2470
Daniel Pearce, Yannis Hardalupas, A.M.K.P Taylor
The measurement of the rate of fuel injection using a constant volume, fluid filled chamber and measuring the pressure change as a function of time due to the injected fluid (the so called “Zeuch” method) is an industry standard due to its simple theoretical underpinnings. Such a measurement device is useful to determine key timing and quantity parameters for injection system improvements to meet the evolving requirements of emissions, power and economy. This study aims to further the understanding of the nature of cavitation which could occur in the near nozzle region under these specific conditions of liquid into liquid injection using high pressure diesel injectors for heavy duty engines. The motivation for this work is to better understand the temporal signature of the pressure signals that arise in a typical injection cycle.
2015-09-06
Technical Paper
2015-24-2477
Ezio Mancaruso, Renato Marialto, Luigi Sequino, Bianca Maria Vaglieco, Massimo Cardone
Abstract Blends of propane-diesel fuel can be used in direct injection diesel engines to improve the air-fuel mixing and the premixed combustion phase, and to reduce pollutant emissions. The potential benefits of usinf propane in diesel engines are both environmental and economic; furthermore, its use does not require changes to the compression ratio of conventional diesel engines. The present paper describes an experimental investigation of the injection process for different liquid preformed blends of propane-diesel fuel in an optically accessible Common Rail diesel engine. Slight modifications of the injection system were required in order to operate with a blend of propane-diesel fuel. Pure diesel fuel and two propane-diesel mixtures at different mass ratios were tested (20% and 40% in mass of propane named P20 and P40). First, injection in air at ambient temperature and atmospheric pressure were performed to verify the functionality of the modified Common Rail injection system.
2015-09-06
Technical Paper
2015-24-2483
Thangaraja Jeyaseelan, Pramod S Mehta
The replacement of fossil diesel with neat biodiesel in a compression ignition engine has advantage in lowering unburned hydrocarbon, carbon monoxide and smoke emissions. However, the injection advance experienced with biodiesel fuel with respect to diesel injection setting increases oxides of nitrogen emission. In this study, the biodiesel-NO control is attempted using charge and fuel modification strategies with retarded injection timing. The experiments are performed at maximum torque speed and higher loads viz. from 60% up to full load conditions maintaining same power between diesel and biodiesel while retarding the timing of injection by 3 deg. crank angle. The charge and fuel modifications are done by recycling 5% by volume of exhaust gas to the fresh charge and 10% by volume of methanol to Karanja biodiesel.
Viewing 1 to 30 of 12068

Filter

  • Range:
    to:
  • Year: