Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 3460
2016-05-17
WIP Standard
JA6268
This Aerospace Recommended Practice (ARP) was created to help industry deal with existing barriers to the successful implementation of Integrated Vehicle Health Management (IVHM) technology in the aerospace and automotive sectors. That is,given the common barriers that exist, this ARP can be applied not only to aerospace but also to the automotive, commercial and military vehicle sectors. Original Equipment Manufacturers (OEMs) in all of these sectors are heavily dependant upon a large number of component suppliers in order to design and build their products. The advent of IVHM technology has accentuated the need for improved coordination and communication between the OEM and its suppliers –to ensure that suppliers design health ready capabilities into their particular components.
2016-05-10
Standard
ARP1961A
This SAE Aerospace Recommended Practice (ARP) addresses the characteristics required for the definition, development, and acquisition of a satisfactory airframe mounted accessory gearbox (AMAG).
2016-05-04
WIP Standard
AIR1873A
This document has been declared "CANCELLED" by the E32 committee as of April 2016 and has been superseded by ARP5120. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by ARP5120. Cancelled specifications are available from SAE.
2016-05-04
WIP Standard
AIR4061C
This document has been declared "CANCELLED" by the E32 committee as of April 2016 and has been superseded by ARP5120. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by ARP5120. Cancelled specifications are available from SAE.
2016-05-04
WIP Standard
AIR4175B
This document has been declared "CANCELLED" by the E32 committee as of April 2016 and has been superseded by ARP5120. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by ARP5120. Cancelled specifications are available from SAE.
2016-05-04
WIP Standard
AIR5120A
This document has been declared "CANCELLED" by the E32 committee as of April 2016 and has been superseded by ARP5120. By this action, this document will remain listed in the Numerical Section of the Aerospace Standards Index noting that it is superseded by ARP5120. Cancelled specifications are available from SAE.
2016-05-02
Standard
AIR6007
The purpose of this document is to provide guidance on in-flight thrust determination of engines that are impacted by intentional or unintentional thrust vectoring. However, as indicated in the Foreword, the field of aircraft thrust vectoring is varied and complex. For simplicity and coherence of purpose, this document will be limited in scope to multi-axis thrust vectoring nozzles or vanes attached to the rear of the engine or airfame; single-axis thrust vectoring and unintentional thrust vectoring (fixed shelf or deck configuration) are special cases of this discussion. Specifically excluded from this scope are thrust vectoring created primarily by airframe components such as wing flaps, etc.; lift engines, propulsive fans and thrust augmenting ejectors; and powerplants that rotate or otherwise move with respect to the airframe.
2016-04-22
WIP Standard
ARP6904
In order to realize the benefits of Integrated Vehicle Health Management (IVHM) within the aerospace and defense industry there is a need to address five critical elements of data interoperability within and across the aircraft maintenance ecosystem, namely • Approach • Trust • Context • Value • Security In Integrated Vehicle Health Management (IVHM) data interoperability is the ability of different authorized components, systems, IT, software, applications and organizations to securely communicate, exchange data, interpret data, use the information and derive consistent insight from the data that has been exchanged to derive value.
2016-04-21
WIP Standard
ARP1210E
This SAE Aerospace Recommended Practice (ARP) describes a class of digital computer programs for use by organizations other than the engine supplier for reduction of engine test data relating to the interface of the engine in the airframe or test facility. This ARP also is intended as a guide for the preparation of such computer programs.
2016-04-18
WIP Standard
AS13001A
The standard applies to aero engine suppliers operating a self-release process as a delegated activity from the delegating organization. While primarily developed around the aero engine supply chain requirements, this standard can also be used in other industry sectors where a self-release process may be of benefit.
2016-04-14
WIP Standard
AIR5925B
The report shows how the methodology of measurement uncertainty can usefully be applied to test programs in order to optimize resources and save money. In doing so, it stresses the importance of integrating the generation of the Defined Measurement Process into more conventional project management techniques to create a Test Plan that allows accurate estimation of resources and trouble-free execution of the actual test. Finally, the report describes the need for post-test review and the importance of recycling lessons learned for the next project.
2016-04-05
Technical Paper
2016-01-1033
Silvia Marelli, Giulio Marmorato, Massimo Capobianco, Jean-Maxime Boulanger
Abstract Turbocharging is playing today a fundamental role not only to improve automotive engine performance, but also to reduce fuel consumption and exhaust emissions for both Spark Ignition and diesel engines. Dedicated experimental investigations on turbochargers are therefore necessary in order to get a better understanding of its performance. The availability of experimental information on realistic turbine steady flow performance is an essential requirement to optimize engine-turbocharger matching calculations developed in simulation models. This aspect is more noticeable as regards turbine efficiency, since its swallowing capacity can be accurately evaluated through the measurement of mass flow rate, inlet temperature and pressure ratio across the machine. Actually, in the case of a turbocharger turbine, isentropic efficiency directly evaluated starting from measurement of thermodynamic parameters at the inlet and outlet sections can give significant errors.
Viewing 1 to 30 of 3460

Filter

  • Range:
    to:
  • Year: