Viewing 1 to 30 of 3469
Technical Paper
Anupam Kumari, Tushar Choudhary, Y Sanjay, Pilaka Murty, Mithilesh Sahu
Abstract In comparison to other thermal power cycles, gas turbine based energy conversion cycles exhibit superior thermodynamic performance as well as reduced emission. Gas turbine manufacturers and research & development (R&D) organizations are working on modification in basic gas turbine (BGT) cycle, which are intended to improve the basic gas turbine cycle thermodynamic performance and reduce emissions. The present work reports a comparison of thermodynamic performance, NOx and CO emission for basic and intercooled gas turbine (IcGT) cycles. Various cycle operating parameters such as compressor-pressure-ratio (rp,c), combustor-primary-zone-temperature, equivalence-ratio, and residence time of gas turbine based cycles has been examined. IcGT cycle exhibits higher gas turbine specific work and gas turbine efficiency in comparison to BGT cycle for the same rp,c and turbine rotor inlet temperature.
Technical Paper
Greg Kilchenstein, F. Matthew Juarez
Abstract The USAF T56 engine Program Office has adopted a unique maintenance approach which utilizes the concept of complete system reliability in order to optimize their cost of workscoping aircraft gas turbine engines. While classical Reliability Centered Maintenance (RCM) focuses on the actual reliability and failure modes representative of a particular system, its benefits are limited since it only describes individual system components9. The workscope cost optimization program provides the user with recommended optimal repair workscopes based on the underlying reliability and cost of repair options. This maintenance concept is based upon the methodology documented in SAE Aerospace Recommended Practice (ARP) JA6097, which is a “Best Practices Guide” established to provide direction in objectively determining which other maintenance to perform on a system when that system requires corrective action, with the goal of improving overall system reliability at the lowest possible cost.
WIP Standard
This document reviews the state of the art for data scaling issues associated with air induction system development for turbine-engine-powered aircraft. In particular, the document addresses issues with obtaining high quality aerodynamic data when testing inlets. These data are used in performance and inlet-engine compatibility analyses. Examples of such data are: inlet recovery, inlet turbulence, and steady-state and dynamic total-pressure inlet distortion indices. Achieving full-scale inlet/engine compatibility requires a deep understanding of three areas: 1) geometric scaling fidelity (referred to here as just “scaling”), 2) impact of Reynolds number, and 3) ground and flight-test techniques (including relevant environment simulation, data acquisition, and data reduction practices).
Viewing 1 to 30 of 3469


  • Range:
  • Year: