Criteria

Text:
Display:

Results

Viewing 1 to 30 of 9615
2017-12-18 ...
  • December 18-20, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
2017-10-08
Technical Paper
2017-01-2190
Alessandro D'Adamo, Marco Del Pecchia, Sebastiano Breda, Fabio Berni, Stefano Fontanesi, Jens Prager
CFD simulations of reacting flows are fundamental investigation tools used to predict combustion behaviour and pollutants formation in modern spark-ignition internal combustion engines. Most of the flamelet-based combustion models adopted in current simulations use the fuel/air/residual laminar flame speed as a background to predict the turbulent flame speed. This in turn is a fundamental requirement to model the effective burn rate. The consolidated approach in engine combustion simulations relies on the adoption of empirical correlations for laminar flame speed, which are derived from fitting activity of combustion experiments. However, these last are conducted at largely different pressure and temperature ranges from those encountered in engines: for this reason, correlation extrapolation at engine conditions is inevitably accepted and relevant differences between proposed correlations emerge even for the same fuel and conditions.
2017-10-08
Technical Paper
2017-01-2236
Mateos Kassa, Carrie Hall, Fabien Vidal-Naquet, Thomas Leroy
In this study, the impact of the intake valve timing on knock propensity is investigated on a dual-fuel SI engine leveraging a low octane fuel and a high octane fuel to adjust the fuel mixture’s octane rating (RON) based on operating point. Variations in the intake valve timing have a direct impact on residual gases concentration due to valve overlap and changes in the compression pressure and temperature due to variations of the effective compression ratio. In this study, it is shown that the fuel RON requirement for a non-knocking condition at a fixed operating point can vary significantly solely due to variations of the intake valve timing. The fuel RON requirement at 2000 rpm and 6 bar BMEP ranges between 80 to 90 as a function of VVT, and between 98 to 104 at 2000 rpm and 14 bar BMEP.
2017-10-08
Technical Paper
2017-01-2226
Edward S. Richardson, Michael J. Gill, Mathew Middleton, Bruno S. Soriano
Cylinder deactivation enables improvements in fuel economy in spark-ignition engines by reducing pumping losses during part load operation. The efficiency benefits of a new intake valve system that enables cycle-by-cycle deactivation of different cylinders is investigated in this study. The system minimises the need for throttling by varying the fraction of strokes that are deactivated in order to vary engine output. The intake valve system involves two intake valves in series, with a fast solenoid-actuated valve upstream of a conventional cam-actuated intake valve. Compared to conventional cam-actuated valves, the new valve system has potential to achieve very rapid closing rates with a high degree of flexibility in respect of the timing of inlet valve closure. The fuel economy benefits provided by a number of valve control strategies are evaluated using a one-dimensional modelling approach, considering a vehicle following the New European Drive Cycle.
2017-10-08
Technical Paper
2017-01-2239
Andreas F. G. Glawar, Fabian Volkmer, Pauline R. Ziman, Adrian P. Groves, Roger F. Cracknell
Port fuel injected (PFI) technology remains the most common fuel delivery type present in the marketplace for gasoline spark ignition engines. Although increasingly stringent tailpipe CO2 targets in some markets are driving the industry towards more efficient direct injection (DI) technology, in the light of ever increasing vehicle lifetimes, a legacy vehicle fleet featuring PFI technology will remain in the marketplace for decades to come. This is especially the case in some Asian markets where PFI technology is still prominent, although DI technology adoption is starting to catch up. PFI engines can, in the presence of lower quality fuels and lubricants, build up harmful deposits on a range of critical engine parts including in the fuel injectors, combustion chamber and on inlet valves. Inlet valve deposits (IVDs) in more severe cases have been associated with drivability issues such as engine stumble and engine hesitation on sudden acceleration.
2017-10-08
Technical Paper
2017-01-2199
Maria Cristina Cameretti, Vincenzo De Bellis, Luca Romagnuolo, Agostino Iorio, Luigi Maresca
Engine manufacturers are continually committed to find proper technical solutions to meet the more and more stringent CO2 emission targets fixed worldwide. Many strategies have been already developed, or are currently under study, to attain the above objectives. A tendency is however emerging towards more innovative combustion concepts, able to efficiently burn lean or highly diluted mixtures. To this aim, the enhancement of turbulence intensity inside the combustion chamber has a great importance, contributing to improve the burning rate, increase the thermal efficiency, and also reduce the cyclic variability. It is well-known that turbulence production inside the combustion chamber is mainly achieved during the intake stroke. Moreover, it is strongly affected by the intake duct geometry and orientation with respect to a plane perpendicular to the cylinder axis.
2017-10-08
Technical Paper
2017-01-2202
Shiyou Yang
This work presents an application of two sub-models relative to chemical-kinetics-based turbulent pre-mixed combustion modeling approach on the simulation of burn rate and emissions of spark ignition engines. In present paper, the justification of turbulent pre-mixed combustion modeling directly based on chemical kinetics plus a turbulence model is given briefly. Two sub-models relative to this kind of pre-mixed combustion modeling approach are described generally, including a practical PRF (primary reference fuel) chemical kinetics mechanism which can correctly capture the laminar flame speed under a wide range of Ford SI (spark ignition) engines/operating conditions, and an advanced spark plug ignition model which has been developed by Ford recently.
2017-10-08
Technical Paper
2017-01-2256
Muhammad Umer Waqas, Kai Morganti, Jean-Baptiste Masurier, Bengt Johansson
Future internal combustion engines demand higher efficiency, progression towards is limited by antiknock quality of present fuels and energy economics in octane enhancement. A possible solution is Octane-on-Demand, that uses a combination of high and low octane fuels in separated tanks to generate fuels of the required octane rating according to demand. Methanol, a RON 109 fuel was selected as the high octane fuel and five low octane fuels were used as base fuel. These were FACE (Fuels for Advanced Combustion Engines) gasolines, more specifically FACE I, J and A and their primary reference fuels (iso-octane/n-heptane). Experiments were conducted with a modified Cooperative Fuel Research (CFR) engine. For SI combustion mode the CFR operated at RON and MON conditions. The engine i.e. also operated in HCCI mode to get the auto ignition properties at lean conditions (λ=3).
2017-10-08
Technical Paper
2017-01-2325
Midhat Talibi, Paul Hellier, Nicos Ladommatos
The conversion of lignocellulosic biomass to liquid fuels presents an alternative to the current production of renewable fuels for IC engines from food crops. However, realising the potential for reductions in net CO2 emissions through the utilisation of, for example, waste biomass for sustainable fuel production requires that energy and resource inputs into such processes be minimised. This work therefore investigates the combustion and emission characteristics of five intermediate platform molecules potentially derived from lignocellulosic biomass: gamma-valerolactone (GVL), methyl valerate, furfuryl alcohol, furfural and 2-methyltetrahydrofuran (MTHF). The study was conducted on a naturally aspirated, water cooled, single cylinder spark-ignition engine. Each of the platform molecules were blended with reference fossil gasoline at 20 % wt/wt.
2017-10-08
Technical Paper
2017-01-2192
Shenghui Zhong, Zhijun Peng, Yu Li, Hailin Li, Fan Zhang
A 3D DNS (Three-dimensional direct numerical simulation) study with detailed chemical kinetic mechanism of methane has been performed to investigate the characteristic of turbulent premixed oxy-fuel combustion relevant to traditional spark ignition (SI) engine conditions. H2O and CO2 are adopted as the dilution agents in oxy-fuel combustion. In order to keep a consistent temperature profile compared with those of air-fired cases, 73% and 66% of H2O and CO2 in oxidizer by volume ratio are used. At first, laminar premixed flames are conducted to study the effect of the dilution molar fraction on the process of flame propagation. It is found that decreasing the dilution molar fraction will increase the flame propagation speed in both H2O and CO2 dilution cases, and there exists a temperature limitation because of chemical equilibrium.
2017-10-08
Technical Paper
2017-01-2233
Gautam Kalghatgi, Kai Morganti, Ibrahim Algunaibet
Knock in spark ignition engines is stochastic in nature. It is caused by autoignition in hot spots in the unburned end-gas ahead of the expanding flame front. Knock onset in an engine cycle can be predicted using the Livengood-Wu integral if the variation of ignition delay with pressure and temperature as well as the pressure and temperature variation with crank angle are known. However knock intensity (KI) is determined by the evolution of the pressure wave following knock onset. In an earlier paper (SAE 2017-01-0689) we showed that KI can be approximated by KI = Z(Pko)(∂T/∂x)-2 where Z is a function of Pko, the pressure, and (∂T/∂x) is the temperature gradient in the hot spot at knock onset. Then, from experimental measurements of KI and Pko, using five different fuels, with the engine operating at boosted conditions, a probability density function for (∂T/∂x) was established.
2017-10-08
Technical Paper
2017-01-2391
Daisy Thomas, Hu Li, Xin Wang, Bin Song, Yunshan Ge, Wenlin Yu, Karl Ropkins
Real world driving emissions have become an ever increasing problem in urban areas, particularly in some mega cities. In this paper, eight in-use spark ignition gasoline-fueled and hybrid passenger cars were tested for real driving emissions (RDE). The vehicles tested include both European and Japanese makes, spanning from EURO 5 to EURO 6 emission compliance. During the RDE testing, the vehicles’ emissions were logged alongside their driving and operational parameters, such as exhaust flow rate and temperature, using the vehicles’ OBD systems. The RDE cycles are comprised of 33% urban, 33% rural and 34% motorway driving, of total duration approximately 1.5 hours. The RDE testing was performed in Beijing, China, using the Horiba OBS-ONE Gas and Horiba OBS-ONE PN equipment for six of the RDE tests, and the AVL M.O.V.E equipment for two of the RDE tests.
2017-10-08
Technical Paper
2017-01-2294
Julien Gueit, Jerome Obiols
Abstract In order to be ever more fuel efficient the use of Direct Injection (DI) is becoming standard in spark ignition engines. When associated with efficient turbochargers it has generated a significant increase in the overall performance of these engines. These hardware developments lead to increased stresses placed upon the fuel and the fuel injection system: for example injection pressures increased up to 400 bar, increased fuel and nozzle temperatures and contact with the flame in the combustion chamber. DISI injectors are thus subjected to undesirable deposit formation which can have detrimental consequences on engine operation such as reduced power, EOBD (Engine On Board Diagnostics) issues, impaired driveability and increased particulate emissions. In order to evaluate the sensitivity of DI spark ignition engines to fuel-related injector deposit formation, a new engine test procedure has been developed.
2017-10-08
Technical Paper
2017-01-2286
A S Ramadhas, Punit Kumar Singh, Reji Mathai, Ajay Kumar Sehgal
Ambient temperature conditions, engine design, fuel, lubricant and fuel injection strategies influence the cold start performance of gasoline engines. Despite the cold start period is only a very small portion in the legislative emission driving cycle, but it accounts for a major portion of the overall driving cycle emissions. The start ability tests were carried out in the weather controlled transient dynamometer - engine test cell at different ambient conditions for investigating the cold start behavior of a modern generation multi-point fuel injection system spark ignition engine. The combustion data were analyzed for the first 200 cycles and the engine performance and emissions were analyzed for 300 s from key-on. It is observed that cumulative fuel consumption of the engine during the first 60 s of cold starting at 10 °C was 60% higher than at 25 °C and resulted in 8% increase in the value of peak speed of the engine.
2017-10-08
Technical Paper
2017-01-2289
Chunze Cen, Han Wu, Chia-Fon Lee, Shuxin Hao, Fushui Liu, Yikai Li
Droplets impacting onto the heated surface is a typical phenomenon either in CI engines or in GDI SI engines, which is regarded significant for their air-fuel mixing. Meanwhile, alcohols including ethanol and butanol, has been widely studied as internal combustion engine alternative fuels due to their excellent properties. In this paper, under different component ratio conditions, the ethanol-butanol droplet impacting onto the heated aluminum surface has been studied experimentally. The falling height of the droplets were set at 5cm. A high-speed camera, set at 512×512pixels, 5000 fps and 20 μs of exposure time,was used to visualize the droplet behavior impinging onto the hot aluminum surface. The impact regimes of the binary droplet were identified. The result showed that the Leidenfrost temperature of droplets was affected by the ratio of ethanol to butanol. The higher the content of butanol in the droplet, the higher the Leidenfrost temperature.
2017-09-25 ...
  • September 25-29, 2017 (8:30 a.m. - 4:30 p.m.) - Pontiac, Michigan
  • October 16-20, 2017 (8:30 a.m. - 4:30 p.m.) - Pontiac, Michigan
Training / Education Classroom Engineering Academies
Tuning the many electronic variables to ensure that a vehicle's engine performs according to its mission profile ultimately relies upon a competent calibrator. Because proper calibration is a critical aspect of customer satisfaction and emissions certification, skilled calibrators are in high demand in the auto industry. This Academy is designed to provide a foundation for those interested in entering the field of calibration engineering through hands-on exercises and detailed instruction on the base principles of calibration.
2017-09-21 ...
  • September 21-22, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Engine failures can occur in a variety of equipment, vehicles, and applications. On occasion, a single vehicle type or equipment family will even experience multiple engine failures leading to the inevitable need to determine what the most likely cause of one or all of those failures was. This comprehensive seminar introduces participants to the methods and techniques used to understand the types of variables and inputs that can affect engine reliability and then determine the most likely cause of an individual engine or group of engine failures in the field.
2017-09-04
Technical Paper
2017-24-0092
Francesco Catapano, Silvana Di Iorio, Paolo Sementa, Bianca Maria Vaglieco
Abstract Fuel depletion as well as the growing concerns on environmental issues prompt to the use of more eco-friendly fuels. The compressed natural gas (CNG) is considered one of the most promising alternative fuel for engine applications because of the lower emissions. Nevertheless, recent studies highlighted the presence of ultrafine particle emissions at the exhaust of CNG engines. The present study aims to investigate the effect of CNG on particle formation and emissions when it was direct injected and when it was dual fueled with gasoline. In this latter case, the CNG was direct injected and the gasoline port fuel injected. The study was carried out on a transparent single cylinder SI engine in order to investigate the in-cylinder process by real time non-intrusive diagnostics. In-cylinder 2D chemiluminescence measurements from UV to visible were carried out.
2017-09-04
Technical Paper
2017-24-0117
Fabio Scala, Enzo Galloni, Gustavo Fontana
Abstract In this paper, the behavior of a downsized spark-ignition engine firing with alcohol/gasoline blends has been analyzed. In particular, different butanol-gasoline and ethanol-gasoline blends have been examined. All the alcohol fuels here considered are derived from biomasses. In the paper, a numerical approach has been followed. A one dimensional model has been tuned in order to simulate the engine operation when it is fueled by alcohol/gasoline mixtures. Numerous operating points, characterized by two different engine speeds and several low-medium load values, have been analyzed. The objective of the numerical analysis is determining the optimum spark advance for different alcohol percentages in the mixtures at the different engine operating points. Once the best spark timing has been selected, the differences, in terms of both indicated torque and efficiency, arising in the different kinds of fueling have been evaluated.
2017-09-04
Technical Paper
2017-24-0002
Adrian Irimescu, Silvana Di Iorio, Simona Merola, Paolo Sementa, Bianca Maria Vaglieco
Abstract Quasi-dimensional modeling is used on a wide scale in engine development, given its potential for saving time and resources compared to experimental investigations. Often it is preferred to more complex CFD codes that are much more computationally intensive. Accuracy is one major issue of quasi-dimensional simulations and for this reason sub-models are continuously developed for improving predictive capabilities. This study considers the use of equivalent fluid velocity and characteristic length scales for simulating the processes of fresh charge entrainment and oxidation behind the flame front. Rather than dividing combustion into three different phases (i.e. laminar kernel, turbulent flame propagation and oxidation near the walls), the concept of turbulent heat and mass transfer is imposed throughout the entire process.
2017-09-04
Technical Paper
2017-24-0010
Federico Millo, Luciano Rolando, Alessandro Zanelli, Francesco Pulvirenti, Matteo Cucchi, Vincenzo Rossi
Abstract This paper presents the modeling of the transient phase of catalyst heating on a high-performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options. The entire transient phase, starting from the engine cranking until the catalyst warm-up is completed, was taken into account in the simulation, and the model was validated using a wide data-set of experimental tests. The first step of the modeling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, considering both cycle-to-cycle and cylinder-to-cylinder variations.
2017-09-04
Technical Paper
2017-24-0015
Luigi Teodosio, Vincenzo De Bellis, Fabio Bozza, Daniela Tufano
Abstract Nowadays different technical solutions have been proposed to improve the performance of internal combustion engines, especially in terms of Brake Specific Fuel Consumption (BSFC). Its reduction of course contributes to comply with the CO2 emissions legislation for vehicle homologation. Concerning the spark ignition engines, the downsizing coupled to turbocharging demonstrated a proper effectiveness to improve the BSFC at part load. On the other hand, at high load, the above solution highly penalizes the fuel consumption mainly because of knock onset, that obliges to degrade the combustion phasing and/or enrich the air/fuel mixture. A promising technique to cope with the above drawbacks consists in the Variable Compression Ratio (VCR) concept. An optimal Compression Ratio (CR) selection, in fact, allows for further improvements of the thermodynamic efficiency at part load, while at high load, it permits to mitigate knock propensity, resulting in more optimized combustions.
2017-09-04
Technical Paper
2017-24-0016
Morris Langwiesner, Christian Krueger, Sebastian Donath, Michael Bargende
Abstract The real cycle simulation is an important tool to predict the engine efficiency. To evaluate Extended Expansion SI-engines with a multi-link cranktrain, the challenge is to consider all concept specific effects as best as possible by using appropriate submodels. Due to the multi-link cranktrain, the choice of a suitable heat transfer model is of great importance since the cranktrain kinematics is changed. Therefore, the usage of the mean piston speed to calculate a heat-transfer-related velocity for heat transfer equations is not sufficient. The heat transfer equation according to Bargende combines for its calculation the actual piston speed with a simplified k-ε model. In this paper it is assessed, whether the Bargende model is valid for Extended Expansion engines. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
2017-09-04
Technical Paper
2017-24-0035
Giulio Cazzoli, Claudio Forte, Gian Marco Bianchi, Stefania Falfari, Sergio Negro
Abstract The laminar burning speed is an important intrinsic property of an air-fuel mixture determining key combustion characteristics such as turbulent flame propagation. It is a function of the mixture composition (mixture fraction and residual gas mass fraction) and of the thermodynamic conditions. Experimental measurements of Laminar Flame Speeds (LFS) are common in literature, but initial pressure and temperature are limited to low values due to the test conditions: typical pressure values for LFS detection are lower than 25 bar, and temperature rarely exceeds 550 K. Actual trends in spark ignition engines are to increase specific power output by downsizing and supercharging, thus the flame front involves even more higher pressure and temperature since the beginning of combustion.
2017-09-04
Technical Paper
2017-24-0039
Daniele Piazzullo, Michela Costa, Youngchul Ra, Vittorio ROCCO, Ankith Ullal
Abstract Bio-derived fuels are drawing more and more attention in the internal combustion engine (ICE) research field in recent years. Those interests in use of renewable biofuels in ICE applications derive from energy security issues and, more importantly, from environment pollutant emissions concerns. High fidelity numerical study of engine combustion requires advanced computational fluid dynamics (CFD) to be coupled with detailed chemical kinetic models. This task becomes extremely challenging if real fuels are taken into account, as they include a mixture of hundreds of different hydrocarbons, which prohibitively increases computational cost. Therefore, along with employing surrogate fuel models, reduction of detailed kinetic models for multidimensional engine applications is preferred. In the present work, a reduced mechanism was developed for primary reference fuel (PRF) using the directed relation graph (DRG) approach.
2017-09-04
Technical Paper
2017-24-0042
Ali Jannoun, Xavier Tauzia, Pascal Chesse, Alain Maiboom
Abstract Residual gas plays a crucial role in the combustion process of SI engines. It acts as a diluent and has a huge impact on pollutant emissions (NOx and CO emissions), engine efficiency and tendency to knock. Therefore, characterizing the residual gas fraction is an essential task for engine modelling and calibration purposes. Thus, an in-cylinder sampling technique has been developed on a spark ignition VVT engine to measure residual gas fraction. Two gas sampling valves were flush mounted to the combustion chamber walls; they are located between the 2 intake valves and between intake and exhaust valves respectively. In-cylinder gas was sampled during the compression stroke and stored in a sampling bag using a vacuum pump. The process was repeated during a large number of engine cycles in order to get a sufficient volume of gas which was then characterized with a standard gas analyzer.
2017-09-04
Technical Paper
2017-24-0060
Nicolo Cavina, Nahuel Rojo, Lorella Ceschini, Eleonora Balducci, Luca Poggio, Lucio Calogero, Ruggero Cevolani
Abstract The recent search for extremely efficient spark-ignition engines has implied a great increase of in-cylinder pressure and temperature levels, and knocking combustion mode has become one of the most relevant limiting factors. This paper reports the main results of a specific project carried out as part of a wider research activity, aimed at modelling and real-time controlling knock-induced damage on aluminum forged pistons. The paper shows how the main damage mechanisms (erosion, plastic deformation, surface roughness, hardness reduction) have been identified and isolated, and how the corresponding symptoms may be measured and quantified. The second part of the work then concentrates on understanding how knocking combustion characteristics affect the level of induced damage, and which parameters are mainly responsible for piston failure.
Viewing 1 to 30 of 9615

Filter

  • Range:
    to:
  • Year: