Criteria

Text:
Display:

Results

Viewing 1 to 30 of 9071
2015-09-21 ...
  • September 21-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
2015-04-23
Event
This session focuses on the impact of conventional and alternative fuels as well as fuel additives on the operation, performance and emissions of SI engines. Papers focus on the impact of bio-derived fuels (ethanol, butanol and others) on engine design and performance as well as gasoline properties and additives, and their impact.
2015-04-23
Event
This session focuses on the dilute SI combustion processes including lean, stratified, and EGR operation. Papers cover both 4-stroke and 2-stroke engines characterized by 1) ignition by an external energy source that serves to control combustion phasing, and 2) a combustion rate that is limited by flame propagation.
2015-04-23
Event
This session focuses on the SI combustion ignition process and advanced ignition systems. Papers cover both 4-stroke and 2-stroke engines characterized by 1) ignition by an external energy source that serves to control combustion phasing, and 2) a combustion rate that is limited by flame propagation.
2015-04-23 ...
  • April 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 22-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. Engines can and do experience failures in the field in a variety of equipment, vehicles, and applications.
2015-04-22
Event
This session focuses on abnormal SI combustion processes including spark knock and preignition. Papers cover both 4-stroke and 2-stroke engines characterized by 1) ignition by an external energy source that serves to control combustion phasing, and 2) a combustion rate that is limited by flame propagation. Part 1 of 2: Knock
2015-04-22
Event
This session focuses on abnormal SI combustion processes including spark knock and preignition. Papers cover both 4-stroke and 2-stroke engines characterized by 1) ignition by an external energy source that serves to control combustion phasing, and 2) a combustion rate that is limited by flame propagation. Part 2 of 2: Low-Speed Preignition
2015-04-21
Event
This sub-session covers zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine SI combustion, knock and emissions.
2015-04-21
Event
This sub-session covers zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines as a plant in engine controls
2015-04-21
Event
Focuses on SI combustion technologies that employ direct, in-cylinder fuel injection. Topics of particular interest include in-cylinder fuel injection and spray studies, flow/spray interaction and in-cylinder mixture formation studies, and combustion chamber shape optimization. Focus includes "stratified" operation or other modes enabled by DI hardware, DI-specific emissions issues such as particulates and smoke, and technologies enabled by DISI (such as downsizing).
2015-04-21
Event
This session focuses on basic SI combustion processes including studies of mixture formation, engine efficiency, flame propagation, and emissions formation. Papers cover both 4-stroke and 2-stroke engines characterized by 1) ignition by an external energy source that serves to control combustion phasing, and 2) a combustion rate that is limited by flame propagation.
2015-04-14
Technical Paper
2015-01-1684
KV Shivaprasad, PR Chitragar, GN Kumar
Fast depletion of fossil fuels and their detrimental effect to the environment is demanding an urgent need of alternative fuels for meeting sustainable energy demand with minimum environmental impact. A lot of research is being carried throughout the world to evaluate the performance, exhaust emission and combustion characteristics of the existing engines using several alternative fuels. Expert studies indicate hydrogen is one of the most promising energy carriers for the future due to its superior combustion qualities and availability. This article experimentally characterizing the combustion and emission parameters of a single cylinder high speed SI engine operating with different concentrations of hydrogen with gasoline fuel. For this purpose, the conventional carbureted high speed SI engine was modified into an electronically controllable engine, wherein ECU was used to control the injection timings and durations of gasoline.
2015-04-14
Technical Paper
2015-01-0766
Anshuman Goswami, Sagar Vashist, Ashish Nayyar
This work study reviews the work of various literatures on ‘influence of compression ratio(CR) on the performance of spark ignition engine using different types of fuel blends’ namely E0(gasoline), E25(75% gasoline, 25% ethanol), E10, E20, E22, E50, E75, E100 for different CR. The main parameters considered for comparison were brake specific fuel consumption (BSFC), CR, brake torque (BT),air-fuel ratio(AFR), engine torque and exhaust emissions. The experimental results of various literatures are also included for comparison. The need of advanced engine development techniques and modifications are also studied and emphasis is laid on use of variable compression ratio (VCR) engine (spark ignition). The benefits of using VCR in the coming future are discussed briefly mentioning the challenges faced as well.
2015-04-14
Technical Paper
2015-01-0909
Karthik Nithyanandan, Jiaxiang Zhang, Li Yuqiang, Han Wu, Chia-Fon Lee
Abstract Alcohols, especially n-butanol, have received a lot of attention as potential fuels and have shown to be a possible alternative to pure gasoline. The main issue preventing butanol's use in modern engines is its relatively high cost of production. ABE, the intermediate product in the ABE fermentation process for producing bio-butanol, is being studied as an alternative fuel because it not only preserves the advantages of oxygenated fuels, but also lowers the cost of fuel recovery for individual component during fermentation. With the development of advanced ABE fermentation technology, the volumetric percentage of acetone, butanol and ethanol in the bio-solvents can be precisely controlled. In this respect, it is desirable to estimate the performance of different ABE blends to determine the best blend and optimize the production process accordingly.
2015-04-14
Technical Paper
2015-01-0742
Apostolos Karvountzis-Kontakiotis, Leonidas Ntziachristos, Zissis Samaras, Athanasios Dimaratos, Mark Peckham
Abstract Cyclic combustion variability (CCV) is an undesirable characteristic of spark ignition (SI) engines, and originates from variations in gas motion and turbulence, as well as from differences in mixture composition and homogeneity in each cycle. In this work, the cycle to cycle variability on combustion and emissions is experimentally investigated on a high-speed, port fuel injected, spark ignition engine. Fast response analyzers were placed at the exhaust manifold, directly downstream of the exhaust valve of one cylinder, for the determination of the cycle-resolved carbon monoxide (CO) and nitric oxide (NO) emissions. A piezoelectric transducer, integrated in the spark-plug, was also used for cylinder pressure measurement. The impact of engine operating parameters, namely engine speed, load, equivalence ratio and ignition timing on combustion and emissions variability, was evaluated.
2015-04-14
Technical Paper
2015-01-0972
Alexander Pawlowski, Derek Splitter
Abstract It is well known that spark ignited engine performance and efficiency is closely coupled to fuel octane number. The present work combines historical and recent trends in spark ignition engines to build a database of engine design, performance, and fuel octane requirements over the past 80 years. The database consists of engine compression ratio, required fuel octane number, peak mean effective pressure, specific output, and combined unadjusted fuel economy for passenger vehicles and light trucks. Recent trends in engine performance, efficiency, and fuel octane number requirement were used to develop correlations of fuel octane number utilization, performance, specific output. The results show that historically, engine compression ratio and specific output have been strongly coupled to fuel octane number.
2015-04-14
Technical Paper
2015-01-0780
Noriaki Nishio, Takanobu Aochi, Nozomi Yokoo, Koichi Nakata, Yuya Abe, Ken Hanashi
Abstract In a high gas velocity condition in cylinder, the ground electrode orientation of the spark plug causes the ignitability to fluctuate due to the change in gas flow around the spark gap. As one method to solve this issue we have focused on controlling the gas flow by plate like airfoils or turbine blades. We have developed gas flow control technology for the spark plug to achieve high ignitability under the worst case condition of ground electrode orientation. The adoption of current ground electrode welding technology has allowed us to locate a flow guide plate on the plug housing.
2015-04-14
Technical Paper
2015-01-0778
Zainal Abidin, Christopher Chadwell
Abstract The presented work describes how spark calorimeter testing was used for parametric study and secondary circuit model calibration. Tests were conducted at different pressures, sparkplug gaps and supplied primary energies. The conversion efficiency increases and the spark duration decreases when the gas pressure or the sparkplug gap size is increased. Both gas pressure and sparkplug gas size increase the positive column voltage which represents part of the electrical energy delivered to the gas. The opposite direction occurs when the supplied primary energy is increased. The testing results were then used to calibrate the secondary circuit model which consisted of the sparkplug, the sparkplug gap and the secondary wiring. A step-by-step method was used to calibrate the three constants of the model to match the calculated delivered energy with test data during arc / glow phase.
2015-04-14
Technical Paper
2015-01-0772
Ashish J. Chaudhari, Vinayak Kulkarni, Niranjan Sahoo
Abstract In this study, the effect of using higher research octane rating fuel Liquefied Petroleum Gas (LPG) in respect of gasoline in the spark ignition engine on the performance and exhaust emission was experimentally studied. For this purpose, the tilting block technique of varying the compression ratio from 8 to 10 of the engine has been implemented and attention has been paid towards the variation of performance and combustion parameters with LPG fuel. Most undesirable emissions are exhausted by the spark ignition (SI) engines in which the primary pollutants from the engine (such as NOx) which when mixed in the atmosphere react with ozone and create the secondary pollutant that are more harmful to human health. Looking at this fact, while optimizing the compression ratio, the emission reduction technique like intake charge dilution with exhaust gas from the engine has been studied.
2015-04-14
Technical Paper
2015-01-0770
Mehrdad Afshari, Jafar Hashemi Daryan, Seyed Ali Jazayeri, Reza Ebrahimi, Farshad Salimi Naneh Karan
Abstract Currently, the interest in using alternative clean types of fuels has been extensively increased all over the world because of the global approach in reducing engine emissions and creating new sources of fuel for internal combustion engines. The hydrogen-methane blend is one of the alternative fuels which includes the benefits of both of the fuels compared to the traditional petrol/gasoline fuel. This paper addresses a two-zone quasi-dimensional model to investigate the performance of an SI engine which uses a mixture of methane and hydrogen. In this model, gases inside the cylinder are divided into two regions: burned and the unburned. The chemical reactions are supposed to be in equilibrium in each zone, but the extended Zedlovich mechanism is utilized to determine the amount of the NOx available in the exhaust gas. Also, CO concentration is determined by two steps kinematic reactions.
2015-04-14
Technical Paper
2015-01-0768
Louis Sileghem, Andrew Ickes, Thomas Wallner, Sebastian Verhelst
Abstract Stricter CO2 and emissions regulations are pushing spark ignition engines more and more towards downsizing, enabled through direct injection and turbocharging. The advantages which come with direct injection, such as increased charge density and an elevated knock resistance, are even more pronounced when using low carbon number alcohols instead of gasoline. This is mainly due to the higher heat of vaporization and the lower air-to-fuel ratio of light alcohols such as methanol, ethanol and butanol. These alcohols are also attractive alternatives to gasoline because they can be produced from renewable resources. Because they are liquid, they can be easily stored in a vehicle. In this respect, the performance and engine-out emissions (NOx, CO, HC and PM) of methanol, ethanol and butanol were examined on a 4 cylinder 2.4 DI production engine and are compared with those on neat gasoline.
2015-04-14
Technical Paper
2015-01-0373
Tobias Falkenstein, Mathis Bode, Seongwon Kang, Heinz Pitsch, Toshiyuki Arima, Hiroyoshi Taniguchi
Abstract Although spark-ignited engines have a considerable development history, the relevant flow physics and geometry design implications are still not fully understood. One reason is the lack of experimental and numerical methods with sufficiently high resolution or capabilities of capturing stochastic phenomena which could be used as part of the development cycle. More recently, Large-Eddy simulation (LES) has been identified as a promising technique to establish a better understanding of in-cylinder flow variations. However, simulations of engine configurations are challenging due to resolution as well as modeling requirements and computational cost for these unsteady multi-physics problems. LES on full engine geometries can even be prohibitively expensive. For this reason, the size of the computational LES domain is here reduced to the region of physical interest and boundary conditions are obtained from a RANS simulation of the whole experimental flow domain.
2015-04-14
Technical Paper
2015-01-0751
Liwei Han, Tao Zhu, Haibo Qiao, Desheng Zhang, Dingyuan Fu, Jing Zhang
Abstract This paper presents the results of study low-speed Pre-ignition (LSPI) on highly supercharged spark ignition engines. It was investigated on both a gasoline direct injection (GDI) engine with turbo and a port fuel injection (PFI) engine with turbo to find the individual characteristics of LSPI. In terms of the PFI engine, influence of different parameters control strategy such as air-fuel ratio and injection timing on pre-ignition was investigated. In terms of the GDI engine, influence of different control strategies such as injection quantity, first and second injection timing, the second injection ratio, coolant temperature, exhaust valve closing (EVC) and intake manifold temperature (MAT) were investigated. In addition, CFD analysis was extensively used to understand test results including wall film, air-fuel ratio distribution and temperature distribution at top dead centre (TDC).
2015-04-14
Technical Paper
2015-01-1064
Ahmad Khalfan, Hu Li, Gordon Andrews
Abstract The tailpipe exhaust emissions were measured under real world urban driving conditions by using a EURO4 emissions compliant SI car equipped with an on-board heated FTIR for speciated gaseous emission measurements, a differential GPS for travel profiles, thermocouples for temperatures, and a MAX fuel meter for transient fuel consumption. Emissions species were measured at 0.5 Hz. The tests were designed to enable cold start to occur into congested traffic, typical of the situation of people living alongside congested roads into a large city. The cold start was monitored through temperature measurements of the TWC front and rear face temperatures and lubricating oil temperatures. The emissions are presented to the end of the cold start, defined when the downstream TWC face temperature is hotter than the front face which occurred at ∼350-400oC. Journeys at various times of the day were conducted to investigate traffic flow impacts on the cold start.
2015-04-14
Technical Paper
2015-01-0162
Kunihiko Suzuki, Guang Yu, Satoru Watanabe
Abstract The purpose of this study is to develop control-oriented modeling methodology and apply to an actual control design in turbocharged spark ignition engines. A grey-box modeling approach was adapted to accelerate the system calibration time, while providing accurate system dynamics. An engine simulator based on first principles models was utilized to investigate the statistical model derivation process. A recursive least squares method with forgetting factor was employed to estimate model parameters related to turbocharger and vehicle/drivetrain behaviors, which seemed to be major factors causing delay of turbocharger system. The concept was demonstrated through its application to the actual control design, and the reliability of the proposed method was theoretically investigated. According to the model evaluation results, approximated behavior models are in good agreement with time series data yielded by the engine simulator under various transient operations.
2015-04-14
Technical Paper
2015-01-0750
Shinrak Park, Tetsuji Furukawa
Abstract Downsizing or higher compression ratio of SI engines is an appropriate way to achieve considerable improvements of part load fuel efficiency. As the compression ratio directly impacts the engine cycle thermal efficiency, it is important to increase the compression ratio in order to reduce the specific fuel consumption. However, when operating a highly boosted / downsized SI engine at full load, the actual combustion process deviates strongly from the ideal Otto cycle due to the increased effective loads requiring ignition timing delay to suppress abnormal combustion phenomena such as engine knocking. This means that for an optimal design of an SI engine between balances must be found between part load and full load operation. If the knocking characteristic can be accurately predicted beforehand when designing the combustion chamber, a reduction of design time and /or an increase in development efficiency would be possible.
2015-04-14
Technical Paper
2015-01-0754
Simona Silvia Merola, Adrian Irimescu, Luca Marchitto, Cinzia Tornatore, Gerardo Valentino
Abstract Crank angle resolved imaging in the UV-visible spectral range was used to investigate flame front characteristics during normal combustion, surface ignition and light knock conditions. ‘Line of sight’ measurements provided information on local wrinkling: the evaluation was based on a statistical approach, with multiple frames taken at the same crank angle during consecutive cycles. This allowed the results during normal combustion to be representative for the specific operational conditions and to a good degree independent from the effects of cyclic variation. Abnormal combustion on the other hand, was investigated on a cycle-to-cycle basis, given the stochastic nature of such phenomena. The experimental trials were performed at fixed engine speed on an optically accessible direct injection spark ignition (DISI) engine equipped with the cylinder head of a four cylinder 16-valves commercial power unit.
Viewing 1 to 30 of 9071

Filter

  • Range:
    to:
  • Year: