Criteria

Text:
Display:

Results

Viewing 1 to 30 of 9593
2017-12-18 ...
  • December 18-20, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and analogies.
2017-09-25 ...
  • September 25-29, 2017 (8:30 a.m. - 4:30 p.m.) - Pontiac, Michigan
  • October 16-20, 2017 (8:30 a.m. - 4:30 p.m.) - Pontiac, Michigan
Training / Education Classroom Engineering Academies
Tuning the many electronic variables to ensure that a vehicle's engine performs according to its mission profile ultimately relies upon a competent calibrator. Because proper calibration is a critical aspect of customer satisfaction and emissions certification, skilled calibrators are in high demand in the auto industry. This Academy is designed to provide a foundation for those interested in entering the field of calibration engineering through hands-on exercises and detailed instruction on the base principles of calibration.
2017-09-21 ...
  • September 21-22, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Engine failures can occur in a variety of equipment, vehicles, and applications. On occasion, a single vehicle type or equipment family will even experience multiple engine failures leading to the inevitable need to determine what the most likely cause of one or all of those failures was. This comprehensive seminar introduces participants to the methods and techniques used to understand the types of variables and inputs that can affect engine reliability and then determine the most likely cause of an individual engine or group of engine failures in the field.
2017-09-04
Technical Paper
2017-24-0060
Nicolo Cavina, Nahuel Rojo, Lorella Ceschini, Eleonora Balducci, Luca Poggio, Lucio Calogero, Ruggero Cevolani
The recent search for extremely efficient spark-ignition engines has implied a great increase of in-cylinder pressure and temperature levels, and knocking combustion mode has become one of the most relevant limiting factors. This paper reports the main results of a specific project carried out as part of a wider research activity, aimed at modelling and real-time controlling knock-induced damage on aluminium forged pistons. The paper shows how the main damage mechanisms (erosion, plastic deformation, surface roughness, hardness reduction) have been identified and isolated, and how the corresponding symptoms may be measured and quantified. The second part of the work then concentrates on understanding how knocking combustion characteristics affect the level of damage done, and which parameters are mainly responsible for piston failure.
2017-09-04
Technical Paper
2017-24-0039
Daniele Piazzullo, Michela Costa, Youngchul Ra, Vittorio ROCCO, Ankith Ullal
Bio-derived fuels are drawing more and more attention in the internal combustion engine (ICE) research field in recent years. Those interests in use of renewable biofuels in ICE applications derive from energy security issues and, more importantly, from environment pollutant emissions concerns. High fidelity numerical study of engine combustion requires advanced computational fluid dynamics (CFD) to be coupled with detailed chemical kinetic models. This task becomes extremely challenging if real fuels are taken into account, as they include a mixture of hundreds of different hydrocarbons, which prohibitively increases computational cost. Therefore, along with employing surrogate fuel models, reduction of detailed kinetic models for multidimensional engine applications is preferred. In the present work, a reduced mechanism was developed for primary reference fuel (PRF) using the directed relation graph (DRG) approach. The mechanism was generated from an existing detailed mechanism.
2017-09-04
Technical Paper
2017-24-0042
Ali Jannoun, Xavier Tauzia, Pascal Chesse, Alain Maiboom
Residual gas plays a crucial role in the combustion process of spark ignited engines. It acts as a diluent and has a huge impact on pollutant emissions (NOx and CO emissions), engine efficiency and tendency to knock. Therefore, characterizing the residual gas fraction is an essential task for engine modelling and calibration purposes. Thus, an in-cylinder sampling technique was developed on a spark ignited VVT engine to measure residual gas fraction during the compression phase. Two gas sampling valves were flush mounted to the combustion chamber walls; they are located between the intake valves and between intake and exhaust valves respectively. Sampled gas was stocked in a sampling bag using a vacuum pump and measured with a standard gas analyzer. This paper describes in details the sampling technique and proposes a methodology allowing the evaluation of the residual gas fraction. For this purpose, five kinds of tests were undertaken.
2017-09-04
Technical Paper
2017-24-0052
Nicolo Cavina, Nahuel Rojo, Andrea Businaro, Alessandro Brusa, Enrico Corti, Matteo De Cesare
The paper presents simulation and experimental results of the effects of intake water injection on the main combustion parameters of a turbo-charged, direct injection spark ignition engine. Water injection is more and more considered as a viable technology to further increase specific output power of modern spark ignition engines, enabling extreme downsizing concepts and the associated efficiency increase benefits. The paper initially presents the main results of a one-dimensional simulation analysis carried out to highlight the key parameters (injection position and phasing, water-to-fuel ratio, water temperature and pressure) and their effects on combustion (in-cylinder and exhaust temperature reduction, knock tendency suppression, …).
2017-09-04
Technical Paper
2017-24-0055
Enrico Corti, Claudio Forte, Gian Marco Bianchi, Lorenzo Zoffoli
The performance optimization of modern Spark Ignition engines is limited by knock occurrence: heavily downsized engines often are forced to work in the Knock-Limited Spark Advance (KLSA) range. Knock control systems monitor the combustion process, allowing to achieve a proper compromise between performance and reliability. Combustion monitoring is usually carried out by means of accelerometers or ion sensing systems, but recently the use of cylinder pressure sensors is also becoming established, especially for motorsport applications. The cylinder pressure signal is often available in a calibration environment, where SA feedback control is used to avoid damages to the engine during automatic calibration.
2017-09-04
Technical Paper
2017-24-0035
Giulio Cazzoli, Claudio Forte, Gian Marco Bianchi, Stefania Falfari, Sergio Negro
The laminar burning speed is an important intrinsic property of a air-fuel mixture determining key combustion characteristics such as ignition delay and flame propagation, turbulent flame propagation and knock tendency. The laminar burning speed is a function of the fuel, equivalent ratio and mass fraction of the residual gases in the fresh mixture (EGR). It also depend on the unburned mixture temperature and pressure. Due to experimental limitations the laminar flame speeds over the full range of pressures and temperatures of an internal combustion engine, temperature can be as high as 1000 K and the pressure up to 35 bar with different value of EGR, are not available. The most widespread models used to extrapolate the experimental data to the engine conditions are derived from the model of Metghalchi and Keck. This family of models usually fail to correctly predict value really outside of the experimental space.
2017-09-04
Technical Paper
2017-24-0010
Federico Millo, Luciano Rolando, Alessandro Zanelli, Francesco Pulvirenti, Matteo Cucchi, Vincenzo Rossi
This paper presents the modelling of the transient phase of catalyst heating on a high performance turbocharged spark ignition engine with the aim to accurately predict the exhaust thermal energy available at the catalyst inlet and to provide a “virtual test rig” to assess different design and calibration options. The entire transient phase starting from the engine cranking until the catalyst warm-up is completed was taken into account in the simulation and the model was validated by means of a wide data-set of experimental tests. The first step of the modelling activity was the combustion analysis during the transient phase: the burn rate was evaluated on the basis of experimental in-cylinder pressure data, taking into account both cycle-to-cycle and cylinder-to-cylinder variations.
2017-09-04
Technical Paper
2017-24-0016
Morris Langwiesner, Christian Krueger, Sebastian Donath, Michael Bargende
Aiming on the evaluation of SI-engines with extended expansion cycle realized over the crank drive, engine process simulation is an important tool to predict the engine efficiency. One challenge is to consider concept specific effects as best as possible by using appropriate submodels. Particularly the choice of a suitable heat transfer model is crucial due to the significant change in cranktrain kinematics. The usage of the mean piston speed to calculate a heat-transfer-relevant velocity is not sufficient. The heat transfer model according to Bargende combines for its calculation the current piston speed with a simplified k-ε-model. In this paper the eligibility of this model for engines with extended expansion is assessed. Therefore a single-cylinder engine is equipped with fast-response surface-thermocouples in the cylinder head. The surface heat flux is calculated by solving the unsteady heat conduction equation.
2017-09-04
Technical Paper
2017-24-0014
Fabio Bozza, Vincenzo De Bellis, Pietro Giannattasio, Luigi Teodosio, Luca Marchitto
The technique of liquid Water Injection (WI) at the intake port of downsized boosted SI engines is a promising solution to improve the knock resistance at high loads. In this work, an existing 1D engine model has been extended to improve its ability to simulate the effects of the water injection on the flame propagation speed and knocking onset. The new features of the 1D model include an empirical correlation for the prediction of the water evaporation rate, and a newly developed correlation for the laminar flame speed of a toluene reference fuel, which explicitly considers the presence of water vapor in the surrogate fuel/air mixture. The latter correlation is combined with a fractal model for the estimation of the turbulent combustion rate. In addition, a more detailed kinetic mechanism is introduced in a previously developed knock sub-model for a more accurate prediction of the auto-ignition characteristics of fuel/air mixtures containing water.
2017-09-04
Technical Paper
2017-24-0015
Luigi Teodosio, Vincenzo De Bellis, Fabio Bozza, Daniela Tufano
Nowadays different technical solutions have been proposed to improve the performance of internal combustion engines, especially in terms of Brake Specific Fuel Consumption (BSFC). As known, the latter has to be reduced to comply with the CO2 emissions legislation for vehicle homologation. Concerning the Spark Ignition engines, the downsizing coupled to turbocharging demonstrated a proper effectiveness to improve the fuel economy at part load. On the other hand, at high load, the above solution highly penalizes the fuel consumption mainly because of knock onset, that obliges to degrade the combustion phasing and/or enrich the air/fuel mixture. A promising technique to cope with the above drawbacks consists in the Variable Compression Ratio (VCR) concept. An optimal CR selection, in fact, allows for further improvements of the thermodynamic efficiency at part load, while at high loads, it permits to mitigate knock propensity, resulting in an enhanced fuel economy.
2017-09-04
Technical Paper
2017-24-0002
Adrian Irimescu, Silvana Di Iorio, Simona Merola, Paolo Sementa, Bianca Maria Vaglieco
Quasi-dimensional modeling is used on a wide scale in engine development, given its potential for saving time and resources compared to experimental investigations. Often it is preferred to more complex CFD codes that are much more computationally intensive. Accuracy is one major issue of quasi-dimensional simulations and for this reason sub-models are continuously developed in order to improve predictive capabilities. This study looks into the use of equivalent fluid velocity and characteristic length scales for simulating the processes of fresh charge entrainment and oxidation behind the flame front. Rather than dividing combustion into three different phases (i.e. laminar kernel, turbulent flame propagation and oxidation near the walls), the concept of turbulent heat and mass transfer is imposed throughout the entire process.
2017-09-04
Technical Paper
2017-24-0151
Matteo De Cesare, Nicolo Cavina, Luigi Paiano
New gasoline engine design is highly influenced by CO2 and emission limits defined by legislations, the demand for real-conditions fuel economy, higher torque, higher specific power and lower costs. Downsizing concepts, including turbocharging in combination with direct injection, have contributed significantly to the recent improvement of gasoline engines. However, other technologies are under evaluation to allow further steps of enhancement for the even more challenging requirements. The main issues of gasoline engines in terms of efficiency and performance are knocking, part-load losses, and thermal stress at high power conditions. This work presents a comparison at concept level between the main technologies that are currently being developed, considering not only the technical benefits, but also their cost-effectiveness.
2017-09-04
Technical Paper
2017-24-0141
Riccardo Amirante, Elia Distaso, Silvana Di Iorio, Davide Pettinicchio, Paolo Sementa, Paolo Tamburrano, Bianca Maria Vaglieco
It is common knowledge that of all the regulated automotive emissions, particulate emissions are most difficult to quantify as they comprise a complex mixture of particles of varying size and composition, each of which may be influenced by many external factors including engine technology, fuel composition, air-to-fuel ratio, lubricant oil, after-treatment and the act of measurement itself. The aim of the present work is to provide further guidance into better understanding the production mechanisms of such emissions in spark-ignition engines fueled with compressed natural gas. In particular, extensive experimental investigations were designed with the aim to isolate the contribution of the fuel from that of lubricant oil to particle emissions.
2017-09-04
Technical Paper
2017-24-0127
Lauretta Rubino, Dominic Thier, Torsten Schumann, Stefan Guettler, Gerald Russ
With the increasing number of engines utilizing direct fuel injection and the upcoming more stringent emission legislation, regulating not only particulate mass (PM) but particulate number (PN), emissions of Direct Injection Spark Ignition Engines (DISI) are becoming of increasing concern. Gasoline Particle Filters (GPF) represent a novel potential measure to reduce particle number emissions from DISI engines and are particularly effective in view of the tight particle number limits requirements at cold start and over RDE. Even if some learning from the development and application of particulate filters to diesel engines can be transferred to gasoline engines, the particulate consistence, the mass to number ratio and the temperature as well as the gas composition of gasoline engines are significant different to diesel engines. Therefore, there is the need to study the application of particulate filters to gasoline engines carefully.
2017-09-04
Technical Paper
2017-24-0115
Martin Pechout, Jan Czerwinski, Martin Güdel, Michal Vojtisek-Lom
In this study, the combustion of butanol, neat and mixed with gasoline, was investigated on a 0.6 liter two-cylinder spark ignition engine with fully adjustable fuel injection and spark timing, coupled with an eddy current dynamometer. Two isomers of butanol, n-butanol and iso-butanol, were examined. Butanol can be produced from non-food renewable resources and is one of the fuels exploited in the search of energy security and independence and of replacement of fossil fuels. Compared to the traditionally used ethanol, butanol does not exhibit hygroscopic behaviour, is chemically less aggressive and has higher energy density. On other hand, different laminar burning velocity and higher boiling temperature of butanol, compared to gasoline, requires some countermeasures to keep the engine operation reliable and efficient.
2017-09-04
Technical Paper
2017-24-0117
Fabio Scala, Enzo Galloni, Gustavo Fontana
In this paper, the behavior of a downsized spark-ignition engine firing with alcohol/gasoline blends has been analyzed. In particular, different butanol-gasoline and ethanol-gasoline blends have been examined. All the alcohol fuels here considered are derived from biomasses. In the paper, a numerical approach has been followed. A one dimensional model has been tuned in order to simulate the engine operation when it is fueled by alcohol/gasoline mixtures. Numerous operating points, characterized by two different engine speeds and several low-medium load values, have been analyzed. The objective of the numerical analysis is determining the optimum spark advance for different alcohol percentages in the mixtures at the different engine operating points. Once the best spark timing has been selected, the differences, in terms of both indicated torque and efficiency, arising in the different kinds of fueling have been evaluated.
2017-09-04
Technical Paper
2017-24-0092
Francesco Catapano, Silvana Di Iorio, Paolo Sementa, Bianca Maria Vaglieco
Fuel depletion as well as the growing concerns on environmental issues prompt to the use of more environmental friendly fuels. The natural gas (CNG) is considered one of the most promising alternative fuel for engine applications because of the lower emissions. Nevertheless, recent studies highlighted the presence of ultrafine particle emissions at the exhaust of CNG engines. The present study aims to investigate the effect of CNG on particle formation and emissions when it was direct injected and when it was dual fueled with gasoline. The study was carried out on a transparent small displacement single cylinder SI engine. The engine was fueled with CNG and gasoline, both simultaneously and not. In particular, CNG and gasoline were direct injected in the combustion chamber. For dual fuel configuration, instead, the CNG was direct injected and the gasoline port fuel injected. In-cylinder 2D images of flame evolution were detected. The flame front propagation was calculated.
2017-09-04
Technical Paper
2017-24-0099
Francesco Catapano, Paolo Sementa, Bianca Maria Vaglieco
Gasoline direct injection (GDI) allows knock tendency reduction in spark-ignition engines mainly due to the cooling effect of the in-cylinder fuel evaporation. However, the charge formation and thus the injection timing and strategies deeply affect the flame propagation and consequently the knock occurrence probability and intensity. Present work investigates the tendency to knock of a GDI engine at 1500 rpm full load under different injection strategies, single and double injections, obtained delivering the same amount of gasoline in two equal parts, the first during intake, the second during compression stroke. In these conditions, conventional and non-conventional measurements are performed on a 4-stroke, 4-cylinder, turbocharged GDI engine endowed of optical accesses to the combustion chamber.
CURRENT
2017-06-16
Standard
CPYM2_17MX800V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2017-06-16
Standard
CPYM2_17MX825V
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
CURRENT
2017-06-16
Standard
CPYM1_17MX825V
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2017-06-16
Standard
CPYM1_17MX800V
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
2017-06-05
Journal Article
2017-01-1796
Rick D. Dehner, Ahmet Selamet, Michael Steiger, Keith Miazgowicz, Ahsanul Karim
Abstract Ported shroud compressor covers recirculate low momentum air near the inducer blade tips, and the use of these devices has traditionally been confined to extending the low-flow operating region at elevated rotational speeds for compressors on compression-ignition (CI) engines. Implementation of ported shrouds on compressors for spark-ignition (SI) engines has been generally avoided due to operation at pressure ratios below the region where ported shrouds improve low-flow range, the slight efficiency penalty, and the perception of increased noise. The present study provides an experimental investigation of performance and acoustics for a SI engine turbocharger compressor both with a ported shroud and without (baseline). The objective of implementing the ported shroud was to reduce mid-flow range broadband whoosh noise of the baseline compressor over 4-12 kHz.
CURRENT
2017-05-25
Standard
CPGM1_18LGXREGA
This product includes information on the manufacturer, engine, application, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds.
CURRENT
2017-05-25
Standard
CPGM2_18LGXREGA
This product includes information on the manufacturer, engine, applications, testing location, certified maximum horsepower, certified maximum torque along with the certified curves of horsepower and torque over a wide range of engine RPM speeds. In addition, this product contains complete engine information such as displacement, cylinder configuration, valve train, combustion cycle, pressure charging, charge air cooling, bore, stroke, cylinder numbering convention, firing order, compression ratio, fuel system, fuel system pressure, ignition system, knock control, intake manifold, exhaust manifold, cooling system, coolant liquid, thermostat, cooling fan, lubricating oil, fuel, fuel shut off speed, etc. Also included are all measured test parameters outlined in J2723.
Viewing 1 to 30 of 9593

Filter

  • Range:
    to:
  • Year: