Criteria

Text:
Display:

Results

Viewing 1 to 30 of 8965
2015-03-02 ...
  • March 2-4, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 21-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Public awareness regarding pollutants and their adverse health effects has created an urgent need for engineers to better understand the combustion process as well as the pollutants formed as by-products of that process. To effectively contribute to emission control strategies and design and develop emission control systems and components, a good understanding of the physical and mathematical principles of the combustion process is necessary. This seminar will bring issues related to combustion and emissions "down to earth," relying less on mathematical terms and more on physical explanations and...
2015-01-01
Technical Paper
2014-01-9053
Tobias Breuninger, Jürgen Schmidt, Helmut Tschoeke, Martin Hese, Andreas Kufferath, Frank Altenschmidt
The spray-guided combustion process offers a high potential for fuel savings in gasoline engines in the part load range. In this connection, the injector and spark plug are arranged in close proximity to one another, as a result of which mixture formation is primarily shaped by the dynamics of the fuel spray. The mixture formation time is very short, so that at the time of ignition the velocity of flow is high and the fuel is still largely present in liquid form. The quality of mixture formation thus constitutes a key aspect of reliable ignition. In this article, the spray characteristics of an outward-opening piezo injector are examined using optical testing methods under pressure chamber conditions and the results obtained are correlated with ignition behaviour in-engine. The global spray formation is examined using high-speed visualisation methods, particularly with regard to cyclical fluctuations. In order to characterise the recirculation zone of the hollow cone spray that is relevant to the ignition behaviour, laser-optical measuring methods were used.
2014-11-11
Technical Paper
2014-32-0093
Francesco Catapano, Silvana Di Iorio, Paolo Sementa, Bianca Maria Vaglieco, Marcello Fiaccavento, Francesco Giari, Antonio Marchetti
Abstract This paper investigates abnormal combustion during the cranking phase of spark-ignition small engines, specifically the occurrence of backfire at the release of the starter motor during kickback. The research focusses on the influence of fuel composition, mainly in terms of ethanol percentage, on backfire occurrence. Interest in this abnormal combustion is growing due to the increased use of fuels with different chemical-physical properties with respect to gasoline. Moreover, this issue will become even more topical due to the implementation of simple control and fuel supply systems on low cost-engines, which are widely used in developing countries. Experimentation was carried out in an optically accessible engine derived from a 4-stroke spark ignition engine for two-wheel vehicles. The test bench was instrumented and adapted in order to simulate the engine conditions that lead to anomalous ignition in the intake duct (backfire) during the reverse rotation of the engine (kickback).
2014-11-11
Technical Paper
2014-32-0102
Patrick Pertl, Philipp Zojer, Michael Lang, Oliver Schoegl, Alexander Trattner, Stephan Schmidt, Roland Kirchberger, Nagesh Mavinahally, Vinayaka Mavinahalli
Abstract The automotive industry has made great efforts in reducing fuel consumption. The efficiency of modern spark ignition (SI) engines has been increased by improving the combustion process and reducing engine losses such as friction, gas exchange and wall heat losses. Nevertheless, further efficiency improvement is indispensable for the reduction of CO2 emissions and the smart usage of available energy. In the previous years the Atkinson Cycle, realized over the crank train and/or valve train, is attracting considerable interest of several OEMs due to the high theoretical efficiency potential. In this publication a crank train-based Atkinson cycle engine is investigated. The researched engine, a 4-stroke 2 cylinder V-engine, basically consists of a special crank train linkage system and a novel Mono-Shaft valve train concept. The idea of a Mono-Shaft valve train mechanism is to realize the valve actuation without the need for separate cam shafts and gears, but via a cam disk rotating with crankshaft speed, thus enabling the integration of the cam disk in the crankshaft.
2014-11-11
Technical Paper
2014-32-0034
Saager Paliwal, Alex S. Bare, Katherine J. Lawrence, Marc Anderson, Glenn Bower
Abstract This study looks at the application of a titanium dioxide (TiO2) catalytic nanoparticle suspension to the surface of the combustion chamber as a coating, as well as the addition of hydrogen gas to a four-stroke spark-ignited carbureted engine as a possible technique for lowering engine-out emissions. The experiments were conducted on two identical Generac gasoline powered generators using two, four and six halogen work lamps to load the engine. One generator was used as a control and the second had key components of the combustion chamber coated with the catalytic suspension. In addition to the coating, both engines were fed a hydrogen and oxygen gas mixture and tested at low, medium and high loads. Using an unmodified engine as a control set, the following three conditions were tested and compared: addition of hydrogen only, addition of coating only, and addition of hydrogen to the coated engine. Operating the engines on standard gasoline in a laboratory, emission gases were transferred via a heated line to be analyzed by an FTIR.
2014-11-11
Technical Paper
2014-32-0041
Luigi Allocca, Alessandro Montanaro, Rita Di Gioia, Giovanni Bonandrini
Abstract In the next future, improvements of direct injection systems for spark-ignited engines are necessary for the potential reductions in fuel consumptions and exhaust emissions. The admission and spread of the fuel in the combustion chamber is strictly related to the injector design and performances, such as to the fuel and environmental pressure and temperature conditions. In this paper the spray characterization of a GDI injector under normal and flash-boiling injection conditions has been investigated. The paper is mainly focused both on the capability of the injection apparatus/temperatures controller system to realize flash-boiling conditions, and the diagnostic setup to catch the peculiarities of the spray behavior. The work aims reporting the spray characterization under normal and flash-boiling conditions. Flash-boiling is a phenomenon that occurs in certain engine conditions when the in-cylinder pressure is lower than the saturation pressure of the fuel, and leads to internal boiling and vapor bubbles creation near the nozzle exit.
2014-11-11
Technical Paper
2014-32-0013
Stefano Frigo, Gianluca Pasini, Silvia Marelli, Giovanni Lutzemberger, Massimo Capobianco, Paolo Bolognesi, Roberto Gentili, Massimo Ceraolo
Abstract To downsize a spark ignited (SI) internal combustion engine (ICE), keeping suitable power levels, the application of turbocharging is mandatory. The possibility to couple an electric drive to the turbocharger (electric turbo compound, ETC) can be considered, as demonstrated by a number of studies and the current application in the F1 Championship, since it allows to extend the boost region to the lowest ICE rotational speeds and to reduce the turbo lag. As well, some recovery of the exhaust gas residual energy to produce electrical energy is possible. The present paper shows the first numerical results of a research program under way in collaboration between the Universities of Pisa and Genoa. The study is focused on the evaluation of the benefits resulting from the application of ETC to a twin-cylinder small SI engine (900 cm3). Starting from the experimental steady flow performance of turbine and compressor, the complete model of a turbocharged engine has been created using the one-dimension code AVL BOOST.
2014-11-11
Technical Paper
2014-32-0114
Enrico Mattarelli, Carlo Alberto Rinaldini, Giuseppe Cantore, Enrico Agostinelli
Abstract The paper compares two different design concepts for a range extender engine rated at 30 kW at 4500 rpm. The first project is a conventional 4-Stroke SI engine, 2-cylinder, 2-valve, equipped with port fuel injection. The second is a new type of 2-Stroke loop scavenged SI engine, featuring a direct gasoline injection and a patented rotary valve for enhancing the induction and scavenging processes. Both power units have been virtually designed with the help of CFD simulation. Moreover, for the 2-Stroke engine, a prototype has been also built and tested at the dynamometer bench, allowing the authors to make a reliable theoretical comparison with the well assessed 4-Stroke unit. Even if the optimized design of each one of the two engines is similar to that of existing prototypes, the paper is not intended to be a benchmarking, but a general study, aimed to define the fundamental project guidelines and compare different solutions under the same conditions, including the unavoidable arbitrary hypotheses.
2014-11-11
Technical Paper
2014-32-0092
Tomomi Miyasaka, Kenta Miura, Norikuni Hayakawa, Takashi Ishino, Akira Iijima, Hideo Shoji, Kazushi Tamura, Toshimasa Utaka, Hideki Kamano
Abstract Supercharged direct-injection engines are known to have a tendency toward abnormal combustion such as spontaneous low-speed pre-ignition and strong knock because they operate under low-speed, high-load conditions conducive to the occurrence of irregular combustion. It has been hypothesized that one cause of such abnormal combustion is the intrusion of engine oil droplets into the combustion chamber where they become a source of ignition. It has also been reported that varying the composition of engine oil additives can change susceptibility to abnormal combustion. However, the mechanisms involved are not well understood, and it is not clear how the individual components of engine oil additives affect autoignition. In this study, abnormal combustion experiments were conducted to investigate the effect on autoignition of a calcium-based additive that is typically mixed into engine oil to act as a detergent. The experiments were performed with a single-cylinder 4-cycle gasoline engine using a primary reference fuel (PRF 50) into which the calcium salicylate (CaSa)-based detergent was mixed at various ratios.
2014-11-11
Technical Paper
2014-32-0096
Norikuni Hayakawa, Kenta Miura, Tomomi Miyasaka, Takashi Ishino, Akira Iijima, Hideo Shoji, Kazushi Tamura, Toshimasa Utaka, Hideki Kamano
Abstract Spontaneous low-speed pre-ignition, strong knock and other abnormal combustion events that occur in supercharged direct-injection engines are viewed as serious issues. The effects of the engine oil and the components of engine oil additives have been pointed out as one cause of such abnormal combustion. However, the mechanisms involved have yet to be elucidated, and it is unclear how the individual components of engine oil additives influence autoignition. This study investigated the effect on autoignition of boundary lubricant additives that are mixed into the engine oil for the purpose of forming a lubricant film on metal surfaces. A high-speed camera was used to photograph and visualize combustion through an optical access window provided in the combustion chamber of the four-stroke naturally aspirated side-valve test engine. Spectroscopic measurements were also made simultaneously to investigate the characteristics of abnormal combustion in detail. We mixed Zinc additive into primary reference fuel (PRF50) at zinc concentration of 115 ppm, 570 ppm and 800 ppm.
2014-11-11
Technical Paper
2014-32-0108
Sejun Lee, Kyohei Ozaki, Norimasa Iida, Takahiro Sako
Abstract Recently, a potentiality of Dedicated EGR (D-EGR) concept SI engine has been studied. This concept engine had four cylinders and operated with exhaust gas supplied from the single cylinder to the intake manifold. Compared with conventional SI engines, it was able to increase thermal efficiency and decrease CO, HC, and NOx emission by the high D-EGR ratio 0.25. In this study, numerical analysis of a SI engine with D-EGR system with various D-EGR ratios was conducted for detailed understanding the potentiality of this concept in terms of thermal efficiency and NOx emission. #1 cylinder of assumed engine was used as D-EGR cylinder that equivalence ratio varied from 0.6 to 3.4. Entire exhaust gas from #1 cylinder was recirculated to the other cylinders. The other cylinders run with this exhaust gas and new premixed air and fuel with various equivalence ratios from 0.6-1.0. To study the effect of D-EGR ratio, the number of engine cylinders was considered from 3 to 6, same meaning with D-EGR ratio 0.5-0.2.
2014-11-11
Technical Paper
2014-32-0060
Giovanni Vichi, Luca Romani, Giovanni Ferrara, Luca Carmignani, Francesco Maiani
Abstract In the last years, the engineering in the automotive industry is revolutionized by the continuous research of solutions for the reduction of consumptions and pollutant emissions. On this topic maximum attention is paid by both the legislative bodies and the costumers. The more and more severe limitations in pollutant and CO2 emissions imposed by international standards and the increasing price of the fuel force the automotive research to more efficient and ecological engines. Commonly the standard approach for the definition of the engine parameters at the beginning of the design process is based on the wide-open throttle condition although, both in homologation cycles and in the daily usage of the scooters, the engines work mainly at partial load where the efficiency dramatically decreases. This aspect has recently become strongly relevant also for two wheeled vehicles especially for urban purpose. Within this context the authors developed an integrated numerical model, in MatLab Simulink ambient, in order to couple the engine simulation, performed by means of a 1D computer-aided engineering code, with the dynamic behaviour of the whole vehicle.
2014-11-11
Technical Paper
2014-32-0082
Stefano Frigo, Roberto Gentili, Franco De Angelis
Abstract Storing hydrogen is one of the major issues concerning its utilization on board vehicles. A promising solution is storing hydrogen in the form of ammonia that contains almost 18% hydrogen by mass and is liquid at roughly 9 bar at environmental temperature. As a matter of fact, liquid ammonia contains 1.7 times as much hydrogen as liquid hydrogen itself, thus involving relatively small volumes and light and low-cost tanks. It is well known that ammonia can be burned directly in I.C. engines, however a combustion promoter is necessary to support and speed up combustion especially in the case of high-speed S.I. engines. The best promoter is hydrogen, due to its opposed and complementary characteristics to those of ammonia, Hydrogen has high combustion velocity, low ignition energy and wide flammability range, whereas ammonia has low flame speed, narrow flammability range, high ignition energy and high self-ignition temperature. Another important point is the possibility to obtain hydrogen on board from ammonia, by means of a catalytic reactor.
2014-11-11
Technical Paper
2014-32-0091
Kazushi Tamura, Toshimasa Utaka, Hideki Kamano, Norikuni Hayakawa, Tomomi Miyasaka, Takashi Ishino, Akira Iijima, Hideo Shoji
Abstract Although metallic compounds are widely known to affect combustion in internal combustion engines, the potential of metallic additives in engine oils to initiate abnormal combustion has been unclear. In this study, we investigated the influence of combustion chamber deposits derived from engine oil additives on combustion in a spark-ignited engine. We used a single-cylinder four-stroke engine, and measured several combustion characteristics (e.g., cylinder pressure, in-cylinder ultraviolet absorbance in the end-gas region, and visualized flame propagation) to evaluate combustion anomalies. To clarify the effects of individual additive components, we formed combustion products of individual additives in a combustion chamber prior to measuring combustion characteristics. We tested three types of metallic additives: a calcium-based detergent, a zinc-based antiwear agent, and a molybdenum-based friction modifier. Measurements of combustion characteristics after deposit formation revealed that the deposits derived from the calcium and zinc compounds facilitated auto-ignition and increased knock intensity.
2014-11-10 ...
  • November 10-11, 2014 (8:30 a.m. - 4:30 p.m.) - Chennai, India
  • November 13-14, 2014 (8:30 a.m. - 4:30 p.m.) - Pune, India
  • April 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 22-23, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. Engines can and do experience failures in the field in a variety of equipment, vehicles, and applications. On occasion, a single vehicle type or equipment family will even experience multiple engine failures leading to the inevitable need to determine...
2014-11-01
Technical Paper
2014-01-9079
Yongming Bao, Qing Nian Chan, Sanghoon Kook, Evatt Hawkes
Abstract The spray development of ethanol, gasoline and iso-octane has been studied in an optically accessible, spark-ignition direct-injection (SIDI) engine. The focus is on how fuel properties impact temporal and spatial evolution of sprays at realistic ambient conditions. Two optical facilities were used: (1) a constant-flow spray chamber simulating cold-start conditions and (2) a single-cylinder SIDI engine running at normal, warmed-up operating conditions. In these optical facilities, high-speed Mie-scattering imaging is performed to measure penetrations of spray plumes at various injection pressures of 4, 7, 11 and 15 MPa. The results show that the effect of fuel type on the tip penetration length of the sprays depends on the injection conditions and the level of fuel jet atomisation and droplet breakup. It is observed that at 4 MPa injection pressure, the tip penetration length of ethanol sprays is shorter than that of gasoline sprays, likely due to lower injection velocity and increased nozzle loss associated with higher density and increased viscosity of ethanol, respectively.
2014-10-21
Event
This session covers the Power Cylinder: piston, piston rings, piston pins, and connecting rods. The papers include information on reducing friction and increasing fuel economy, improving durability by understanding wear, and decreasing oil consumption and blow-by.
2014-10-21
Event
This session focuses on technologies such as advanced and partially mixed combustion, cooled EGR boosting, ignition and direct injection technologies, pressure boosting, intelligent combustion, thermal efficiency, fully variable valvetrains, and other new and developing technologies.
2014-10-21
Event
This session focuses on technologies such as advanced and partially mixed combustion, cooled EGR boosting, ignition and direct injection technologies, pressure boosting, intelligent combustion, thermal efficiency, fully variable valvetrains, and other new and developing technologies.
2014-10-21
Event
Separate sub-sessions cover zero-dimensional, one-dimensional, and quasi-dimensional models for simulation of SI and CI engines with respect to: engine breathing, boosting, and acoustics; SI combustion and emissions; CI combustion and emissions; fundamentals of engine thermodynamics; numerical modeling of gas dynamics; thermal management; mechanical and lubrication systems; system level models for controls; system level models for vehicle fuel economy and emissions predictions.
2014-10-21
Event
This session covers topics regarding new CI and SI engines and components. This includes analytical, experimental, and computational studies covering hardware development as well as design and analysis techniques.
2014-10-20
Event
Mixed modes with both flame propagation and slow auto ignition. Distinct from SI knock: autoignition is desired and will not ruin the engine. Papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, and SACI mode change are invited and will be placed in appropriate sub-sessions. Papers with an emphasis on the modeling aspects of combustion are encouraged to be submitted into PFL 110 or PFL120 modeling sessions.
2014-10-13
Technical Paper
2014-01-2550
Bo Hu, Chris Brace, Sam Akehurst, Colin Copeland, J.W.G. Turner
Abstract The Divided Exhaust Period (DEP) concept is an approach which has been proved to significantly reduce the averaged back pressure of turbocharged engines whilst still improving its combustion phasing. The standard layout of the DEP system comprises of two separately-functioned exhaust valves with one valve feeding the blow-down pulse to the turbine whilst the other valve targeting the scavenging behaviour by bypassing the turbine. Via combining the characteristics of both turbocharged engines and naturally aspirated engines, this method can provide large BSFC improvement. The DEP concept has only been applied to single-stage turbocharged engines so far. However, it in its basic form is in no way restricted to a single-stage system. This paper, for the first time, will apply DEP concept to a regulated two-stage (R2S) downsized SI engine. By controlling the timing of the exhaust valves separately to feed the exhaust mass flow to the high-pressure turbine or the low-pressure turbine or the exhaust pipe, it is anticipated that such system could achieve even better breathing characteristics than the standard one-stage turbocharged engine.
2014-10-13
Technical Paper
2014-01-2548
Pawel Magryta, Miroslaw Wendeker, Adam Majczak, Michal Bialy, Ksenia Siadkowska
Abstract The paper presents the simulation of engine model that was made in AVL Boost Software. The model assumption was the indirect additive supplying hydrogen to the SI engine. The simulation test model of a spark ignition engine, have been developed in the AVL Boost software. The model is based on a real four-cylinder engine, codenamed A14XER that meets the Euro 5 emission standard. This engine is used in passenger vehicles Opel Corsa. In order to most accurate reflection of real engine, the model was developed based on data provided by the engine manufacturer. In the simulation studies two-zone combustion model Vibe (Vibe 2 zone) was used. A General Species Transportation model was also defined, which allowed to use the fuel as a blend of gasoline and hydrogen to supply the engine. Calculations were performed for a full load for different values of rotational speed of the engine crankshaft (from 1000 rpm to 6400 rpm). Simulation studies were performed for the original fuel (gasoline) and hydrogen additives 5, 10, 15 and 20%.
2014-10-13
Technical Paper
2014-01-2554
Fabio Bozza, Vincenzo De Bellis, Daniela Siano
Abstract Control of knock phenomenon is becoming more and more important in modern SI engine, due to the tendency to develop high boosted turbocharged engines (downsizing). To this aim, improved modeling and experimental techniques are required to precisely define the maximum allowable spark advance. On the experimental side, the knock limit is identified based on some indices derived by the analysis of the in-cylinder pressure traces or of the cylinder block vibrations. The threshold levels of the knock indices are usually defined following an heuristic approach. On the modeling side, in the 1D codes, the knock is usually described by simple correlation of the auto-ignition time of the unburned gas zone within the cylinders. In addition, the latter methodology commonly refers to ensemble-averaged pressure cycles and, for this reason, does not take into account the cycle-by-cycle variations. In this work, an experimental activity is carried out to characterize the effects of cyclic dispersion on knock phenomena for different engine speeds, at full load operations and referring to a spark advance of borderline knock.
2014-10-13
Technical Paper
2014-01-2569
Fabrizio Bonatesta, Salvatore La Rocca, Edward Hopkins, Daniel Bell
Abstract Gasoline Direct Injection engines are efficient devices which are rivaling diesel engines with thermal efficiency approaching the 40% threshold at part load. Nevertheless, the GDI engine is an important source of dangerous ultra-fine particulate matter. The long-term sustainability of this technology strongly depends on further improvement of engine design and combustion process. This work presents the initial development of a full-cycle CFD model of a modern wall-guided GDI engine operated in homogeneous and stoichiometric mode. The investigation was carried out at part-load operating conditions, with early injections during the intake stroke. It included three engine speeds at fixed engine-equivalent load. The spray model was calibrated using test-bed and imaging data from the 7-point high-pressure fuel injectors used in the test engine. Experimental data on combustion were also used for calibration purposes, whereas measurements of engine-out soot number density from a Differential Mobility Spectrometer formed the basis and motive of the investigation.
2014-10-13
Technical Paper
2014-01-2568
Girish V. Nivarti, Jian Huang, W K Bushe
Abstract Conditional source-term estimation (CSE) is a novel chemical closure method for the simulation of turbulent combustion. It is less restrictive than flamelet-based models since no assumption is made regarding the combustion regime of the flame; moreover, it is computationally cheaper than conventional conditional moment closure (CMC) models. To date, CSE has only been applied for simulating canonical laboratory flames such as steady Bunsen burner flames. Industry-relevant problems pose the challenge of accurately modelling a transient ignition process in addition to involving complex domaingeometries. In this work, CSE is used to model combustion in a homogeneous-charge natural gas fuelled SI engine. The single cylinder Ricardo Hydra research engine studied here has a relatively simple chamber geometry which is represented by an axisymmetric mesh; moving-mesh simulations are conducted using the open-source computational fluid dynamics software, OpenFOAM. An oxygen-based reaction progress variable is employed as the conditioning variable, and its stochastic behaviour is approximated by the β probability density function (PDF).
2014-10-13
Technical Paper
2014-01-2572
Chen Huang, Andrei Lipatnikov, Lars Christian Riis Johansen, Stina Hemdal
Abstract A Spray-Guided (SG) Direct-Injection (DI) Spark-Ignition (SI) engine is widely recognized to be a promising technology capable for substantially reducing fuel consumption and carbon dioxide emissions. Accordingly, there is a strong need for developing models of some effects specific to stratified turbulent burning under conditions of elevated and rapidly varying pressure. Two such effects were addressed in the present work by performing unsteady three-dimensional URANS simulations of stratified turbulent combustion in a SG DISI engine. First, a simple method of evaluation equilibrium combustion temperature, implemented into the CFD code OpenFOAM®, was improved in order to take into account the dissociation of the combustion products. Second, stratified turbulent combustion is affected by fluctuations in mixture composition. A widely used approach to modeling this effect consists of invoking a presumed Probability Density Function (PDF) for mixture fraction f. Because parameters of this PDF are determined using the first and second Favre moments of the mixture fraction field, the PDF is density-weighted.
2014-10-13
Technical Paper
2014-01-2585
Miroslaw Wendeker, Grzegorz Baranski, Pawel Magryta
Abstract This paper proposes a fast and simple model of a Compressed Natural Gas indirect injection system to predict the system dynamics with high accuracy for different operating conditions. In a retrofit system the CNG Engine Control Unit (ECU) is able to translate the petrol ECU control strategy in CNG operation. The adaptation of the engine to the natural gas type is handled by using the factory engine control strategy embodied in the factory ECU. The ECU monitors the engine through various sensors and controls its operation using a variety of actuators. Because of many input parameters, the control over the engine becomes quite complex. The use of advanced emission control systems makes such process even more complicated. The new Gas Control Unit is used to reprogram the ECU control parameters to correspond with the use of Natural Gas along with the characteristics of the Natural Gas injectors. Since gaseous fuels are not affected by evaporation effects, the intake fuel-air mixing transfer function has very little dynamic effects.
Viewing 1 to 30 of 8965

Filter

  • Range:
    to:
  • Year: