Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4130
2017-08-15 ...
  • August 15-16, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Stringent requirements of reduced NOx emission limits in the US have presented engineers and technical staff with numerous challenges. Several in-cylinder technical solutions have been developed for diesel engines to meet 2010 emission standards. These technologies have been optimized and have yielded impressive engine-out results in their ability to reduce emissions to extremely low levels. However, current and state-of-the-art in-cylinder solutions have fallen short of achieving the limits imposed on diesel emissions for 2010.
2017-05-08 ...
  • May 8-9, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
2017-04-05
Event
This session describes the design, modeling and performance validation of cylinder heads, lubrication systems and pumps, coolant systems and pumps, intake manifolds, exhaust manifolds, and engine block structures.`
2017-04-04
Event
This session describes the design, modeling and performance validation of cylinder heads, lubrication systems and pumps, coolant systems and pumps, intake manifolds, exhaust manifolds, and engine block structures.`
2017-04-04
Event
This session describes the design, modeling and performance validation of cylinder heads, lubrication systems and pumps, coolant systems and pumps, intake manifolds, exhaust manifolds, and engine block structures.`
2017-04-03 ...
  • April 3-4, 2017 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
Training / Education Classroom Seminars
As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device. This seminar covers many DPF-related topics using fundamentals from various branches of applied sciences such as porous media, filtration and materials sciences and will provide the student with both a theoretical as well as an applications-oriented approach to enhance the design and reliability of aftertreatment platforms.
2017-03-28
Technical Paper
2017-01-1089
Jose Grande, Julio Abraham Carrera, Manuel Dieguez Sr
Exhaust Gas Recirculation system (EGR) has been used for years for NOx emissions control in commercial vehicle applications. Emissions limits are tighter with every regulation while durability requirements are increasing, so EGR systems manufacturers must be able to provide high performance and robust designs even with high thermal loads. Commercial vehicle market is characterized by lower production rates than passenger car programs, but same engine has multiple applications with totally different engine calibrations. In some cases it is necessary to design two or more EGR systems for an engine platform, with the consequent impact on cost and development timeline. The optimal design of and EGR system needs to take into consideration several topics related with performance and durability: efficiency and pressure drop, fouling, boiling, thermal fatigue, vibrations, pressure fatigue and corrosion among others.
2017-03-28
Technical Paper
2017-01-1086
Cagri Sever, Todd Brewer, Scott Eeley, Xingfu Chen, Ruichen Jin, Emad Khalil, Michael Herr
For aluminum automotive cylinder head designs, one of the concerning failure mechanisms is the thermo-mechanical fatigue from changes in engine operating conditions. After an engine is assembled, it goes many different operating conditions while it is cold and during the warmed up condition. Strain alternation from the variation in engine operation conditions change may cause thermo-mechanical failure in combustion chamber and exhaust port. Integrated exhaust manifold heads are especially exposed to this failure mode due to the length and complexity of the exhaust gas passage. First a thermo-mechanical fatigue model is developed to simulate a known dynamometer thermal cycle and the corresponding thermo-mechanical fatigue damage is quantified. Additionally, strain state of the cylinder head and its relation to thermo-mechanical fatigue are discussed. For field risk assessment, the customer usage profiles are analyzed and corresponding duty cycles are built.
2017-03-28
Technical Paper
2017-01-1083
Chawin Chantharasenawong
This study focuses on achieving a lower overall lap time at SAE Formula Student competition through a modification to the standard intake system. The lower lap time is achieved by widening the range of engine RPM which produces torque higher than 90% of the maximum value and lowering the engine RPM corresponding to the maximum torque. An intake system with ‘variable runner length’ is introduced to the 2015 racecar of KMUTT team. The values of intake lengths are determined from the wave equation with the goal of producing over 90% of the maximum torque of the baseline configuration over a range of engine RPM. Computer simulations are performed to determine the pressure at engine entry at various runner lengths. Finally, a prototype variable runner length intake system with linear motor actuators is constructed and installed on the racecar. Chassis dynamometer tests are performed to determine the engine torque for 3,000 – 10,500 RPM at all interested runner lengths.
2017-03-28
Technical Paper
2017-01-1087
Pengfei Zang, Zhe Wang, Yu Fu, Chenle Sun
The Linear Internal Combustion Engine-Linear Generator Integrated System (LICELGIS) is different from conventional crank-based engine for reducing frictional losses by eliminating the crankshaft. Thus, the LICELGIS piston stroke is not constrained geometrically and the system compression ratio is variable. During steady-state operation, the LICELGIS converts the fuel chemical energy into electric power with piston assembly reciprocating motion, which can for example be used as a range-extender in hybrid electric vehicles. The LICELGIS scavenging process is prerequisite and key for the system steady-state operation, which has remarkable influence on mixture gas and, eventually, on engine combustion performance. In order to achieve high scavenging performance, a LICELGIS is investigated in this paper. The LICELGIS motion characteristics and scavenging process were analyzed.
2017-03-28
Technical Paper
2017-01-1077
Nicolas Arnault, Nicolas BATAILLEY, Arnaud MARIA, Laurent BECHU
PSA Group, SOLVAY and SOGEFI have teamed-up to produce the first Plastic Diesel Fuel Filter fully made of recycled polyamide 66, ready for mass-production. This has been achieved by using the brand new plastic compound developed by SOLVAY Engineering Plastics. This material is 100% recycled from airbag wastes, providing a premium material able to stand demanding applications requirements supplied though circular economy, which is quite unusual in automotive industry yet. SOGEFI has tested this material through its existing plastic injection process, and tested the parts on extensive bench validation tests. It confirmed that this material is fully compatible with standard injection process, and that all the tests have been passed successfully. Finally, PSA Group has driven the choice of the tested parts: DV engine 1.6l Euro6b application, homologated the material grade and evaluated the whole validation process.
2017-03-28
Technical Paper
2017-01-1076
Mohammad Moetakef, Abdelkrim Zouani, Esra Demren
Engine and transmission oil pumps are one of the primary sources of tonal noise or whine inside the vehicles. The whine is specially a cause for NVH concern during vehicle coast down when the engine background noise acting as sound masking for the whine is decreasing. To prevent and/or reduce the risk of oil pump-induced tonal noise, upfront NVH evaluation of the oil pump is required. Through analytical CAE approach oil pump pressure pulsations corresponding to different orders of the pump can be evaluated. And modifications to the oil pump design can be studied in order to reduce the pressure peaks and/or breaking down the peaks over their frequency spectrums to introduce self-masking effect. In this presentation, a couple of CAE case studies addressing oil pump-induced whine in an I4 during coast down along with test data are reviewed. The studied pump is of a variable displacement vane type.
2017-03-28
Technical Paper
2017-01-1082
Mohammed Yusuf Ali, Thomas Sanders, Mikhail A. Ejakov, Reda Adimi, Alexander Boucke, Jochen Lang, Gunter Knoll
Strict requirements for fuel economy and emissions are the main drivers for recent automotive engine downsizing and an increase of boosting technologies. For high power density engines, among other design challenges, valve and guide interactions are very important. Undesirable contact interactions may lead to poor fuel economy, engine noise, valve stem to valve guide seizure, and in a severe case, engine failure. In this paper, the valve stem and valve guide contact behavior is investigated using computational models for the camshaft drive in push and pull directions under several misalignment conditions for an engine with roller finger follower (RFF) valvetrain and overhead cam configuration. An engine assembly analysis with the appropriate assembly and thermal boundary conditions are first carried out using the finite element solver ABAQUS.
2017-03-28
Technical Paper
2017-01-0558
Lei Cui, Zhizhao Che, Zhen Lu, Kai Sun
The scavenging process lasts for a fairly short period in the two-stroke marine engines. It not only transports the burnt gas out of the cylinder but also provides the fresh air for the next cycle, thereby significantly affecting the engine performance. In order to promote fuel-air mixing, the scavenging process usually generates swirling flow in uniflow-type scavenging engines. The scavenging stability, however, directly determines the scavenging efficiency and even influences fuel-air mixing, combustion and emission of the engine. In the present study, a computational fluid dynamics (CFD) analysis of the scavenging process in the steady-state scavenging flow test is conducted. Obvious precession phenomenon is found in the high swirl model, and Proper Orthogonal Decomposition (POD) method is used to analyze its multi-scale characteristics.
2017-03-28
Technical Paper
2017-01-1354
Timothy Morse, Michael Cundy, Harri Kytomaa
One potential fire ignition source in a motor vehicle is the hot surfaces of the engine exhaust system. These hot surfaces can come into contact with combustible liquids (such as engine oil, transmission fluid, brake fluid, gasoline, or diesel fuel) due to a fluid leak, or during a vehicle collision. If the surface temperature is higher than the hot surface ignition temperature of the combustible liquid in a given geometry, a fire can ignite and potentially propagate. In addition to automotive fluids, another potential fuel in post-collision vehicle fires is grass, leaves, or other vegetation. Studies of hot surface ignition of dried vegetation have found that ignition depends on the type of vegetation, surface temperature, and on the duration of contact. Ignition can occur at surface temperatures as low as 300 °C, if the vegetation is in contact with the surface for 10 minutes or longer.
2017-03-28
Technical Paper
2017-01-1081
Chongzhi Zhong, Tieqiang Fu, Chunbei Dai, Taiyu Zhang, Ke Wu, Wangwen Gu
To study on the influence of L/D, diameter of the adsorption tube, purge tube and air tube about carbon canister, based on the ORVR canister and ordinary canister whether with single or double cavity. The results demonstrate that the similar of L/D,efficient work ability and efficient adsorption rate of the carbon canister with partition is better than the one without partition; the diameter of adsorption tube is smaller or as similar as purge tube. For ORVR canister, it is larger than purge tube and similar as air tube, which makes more effective for canister gas adsorption from the fuel tank. The vehicle purge flow test results demonstrate that the maximum purge flow of double cavity canister is bigger than that of single cavity, while the total amount of purge flow is similar with each other. The change of the quality about double cavity canister is smaller than that of single cavity. The results provide theoretical basis for canister design.
2017-03-28
Technical Paper
2017-01-0930
Christine K. Lambert, Timothy Chanko, Mark Jagner, Jon Hangas, Xin Liu, James Pakko, Carl Justin Kamp
To meet future particle mass and particle number standards, gasoline vehicles may require particle control, either by way of an exhaust gas filter and/or engine modifications. Soot levels for gasoline engines are much lower than diesel engines; however, non-combustible material (ash) will be collected that can potentially cause increased backpressure, reduced power, and lower fuel economy. The purpose of this work was to examine the ash loading of gasoline particle filters (GPFs) during rapid aging cycles and at real time low mileages, and compare the filter performances to both fresh and very high mileage filters. Current rapid aging cycles for gasoline exhaust systems are designed to degrade the three-way washcoat both hydrothermally and chemically to represent full useful life catalysts. The ash generated during rapid aging is low in quantity although similar in quality to real time ash. Filters were also examined after a low mileage break-in of approximately 3000 km.
2017-03-28
Technical Paper
2017-01-0953
Jinyong Luo, Yadan Tang, Saurabh Joshi, Krishna Kamasamudram, Neal Currier, Aleksey Yezerets
Selective Catalytic Reduction of nitrogen oxides (NOx) with NH3 is a leading technology for lean-burn engines to meet the increasingly stringent environmental regulations worldwide. Among various SCR catalysts, Cu/CHA catalysts have been widely used in the industry, due to their desirable performance characteristics including their unmatched hydrothermal stability. While broadly recognized for their outstanding activity at or above 200oC, these catalysts may not show desired NOx conversion at lower temperatures. To achieve high NOx conversions it is desirable to have NO2/NOx close to 0.5 which is possible to achieve by DOC selection and optimization of its location. However even under such optimal gas feed conditions, sustained use of Cu/CHA below 200C leads to ammonium nitrate formation and accumulation leading to the inhibition of NOx conversion. In addition, the decomposition of accumulated NH4NO3 will lead to the formation of N2O, an undesired greenhouse gas.
2017-03-28
Technical Paper
2017-01-0931
Michiel Van Nieuwstadt, Joseph Ulrey
While not commonly in production today, Gasoline Particulate Filters (GPFs) are likely to see widespread deployment to meet stringent EU6.2 and China particulate number (PN) standards. In many ways the operating conditions for GPFs are orthogonal to those of their diesel counterparts, and this leads to different and interesting requirements for the control strategy. We will present some generic system architectures for exhaust systems containing a GPF and will lay out an architecture for the GPF control strategy components which include: regeneration assist feature, soot estimation algorithm, GPF protection. Lastly, we will show validation data of the control strategy under different operating conditions.
2017-03-28
Technical Paper
2017-01-0964
Jakob Heide, Mikael Karlsson, Mireia Altimira
Selective Catalytic Reduction (SCR) of NOx through injection of Urea-Water-Solution (UWS) into the hot exhaust gas stream is an effective and extensively used strategy in internal combustion engines. Even though actual SCR systems have 95-96% de-NOx efficiency over test cycles, real driving emissions of NOx are much higher, hence proving that there is room for improvement. The efficiency of the NOx conversion is highly dependent on the size of UWS droplets and their spatial distribution. These factors are, in turn, mainly determined by the spray characteristics and its interaction with the exhaust gas flow. The main purpose of this study is to numerically investigate the sensitivity to the modelling framework of the evaporation and mixing of the spray upstream of the catalyst. The dynamics of discrete droplets is handled through the Lagrangian Particle Tracking framework, with models that account for droplet breakup and coalescence, turbulence effects, and water evaporation.
2017-03-28
Technical Paper
2017-01-0927
Carl Justin Kamp, Shawn Zhang, Greg Monahan, Sujay Bagi, Alexander Sappok, Yujun Wang
Diesel engine exhaust aftertreatment components, especially the diesel particulate filter (DPF), are subject to various modes of degradation over their lifetimes. One form of DPF degradation is the significant rise in pressure drop due to the accumulation of engine lubricant-derived ash which coats the inlet channel walls effectively decreasing the permeability of the wall. The decreased permeability due to ash in the DPF can result in increased filter pressure drop and decreased fuel economy. A unique two-step approach, consisting of experimental measurements and direct numerical simulations using ultra-high resolution 3D imaging data, has been utilized in this study to better understand the effects of ash accumulation on engine aftertreatment component functionality. In this study, ash permeability was directly measured on the surface of ceramic (cordierite) wafers as a function of ash type (field ash, lab-generated and with chemical/morphological variations) and packing density.
2017-03-28
Technical Paper
2017-01-1079
Suresh Kumar Kandreegula, Sayak Mukherjee, Rahul Jain, Shivdayal Prasad, Kamal Rohilla
Flex Connectors are intended for mitigating the relative movement of exhaust system components along the axis of the system arising from the thermal expansion due to intermittent engine operation. Flex connectors must not be installed in locations, where they will be subjected to destructive vibration. Hence, the stiffness of the flex connector plays an important role, while designing/selecting the right design. It consists of a multi-ply bellows combined with an inside and an outside steel braid. The liner is included to reduce the temperature of the bellows and improve flow conditions. The braid is included for mechanical protection and to limit the possible extension of the joint. It has only axial translational motion.
2017-03-28
Technical Paper
2017-01-0472
Gyoko Oh
To prevent the corrosion of the inlet part with aqueous ammonia injection, high chromium corrosion-resistant materials have been applied for the welded joints. The bending fatigue strengths of the flange-pipe welded joint samples were defined by the fatigue experiments,  modeling that high fluctuating stresses exist in the inlet and outlet flange-pipes of the muffler caused by the vibration of a moving vehicle. The factors that caused the fatigue to failure such as the welding bead shape and metallographic structure have been identified by the local stress measurement, FEM stress simulation, microscopic observation, and SEM-EDS composition analysis. By comparing the sample A having a smaller flank angle with the sample B having a larger flank angle, the result suggested that the difference of the bending fatigue strengths at 2x105 cycles was 24% when based on the nominal stress, and the difference was 10% when based on measured maximum stress.
2017-03-28
Technical Paper
2017-01-0141
Ray Host, Peter Moilanen, Marcus Fried, Bhageerath Bogi
Future vehicle North American emissions standards (e.g., North American SULEV 30) require the exhaust catalyst to be >80% efficient by 20 seconds after the engine has been started in the Federal Test Procedure. Turbocharged engines are especially challenged to deliver fast catalyst lightoff since the presence of the turbocharger in the exhaust flow path significantly increases exhaust system heat losses. A solution to delivering cost effective SULEV30 emissions in turbocharged engines is to achieve fast catalyst light-off by reducing exhaust system heat losses in cold start, without increasing catalyst thermal degradation during high load operation. A CAE methodology to assess the thermal performance of exhaust system hardware options, from the exhaust port to the catalyst brick face is described, which assures compliance with future emissions regulations.
2017-03-28
Technical Paper
2017-01-1088
Katherine Randall, Cody Bradford, Jeremy Ross, Jeremy Church, Nolan Dickey, Adam Christian, Matthew Dunn
Variations in crankcase pressure have been observed in I4 engines and an understanding of the causes, frequency and magnitude of these variations is helpful in the design and effective operation of various engine systems. This paper shows through measured vehicle data and an understanding and explanation of the physics related to engine operation the relationship between crankcase volume change throughout the engine cycle and crankcase pressure fluctuations. It can be demonstrated that for a known or proposed engine design, through knowledge of key engine design parameters of number of cylinders, firing frequency, engine displacement, crankcase volume and engine stroke the frequency and amplitude and frequency of the cyclic variation in crankcase pressure can be predicted and thus utilized in the design of other engine systems.
2017-03-28
Technical Paper
2017-01-1333
Sasikumar P, C. Sujatha, Chinnaraj K.
In commercial vehicles, exhaust system is normally mounted on frame side members (FSM) using hanger brackets. These exhaust system hanger brackets are tested either as part of full vehicle durability testing or as a subsystem in a rig testing. During initial phases of product development cycle, the hanger brackets are validated for its durability in rig level testing using time domain signals acquired from mule vehicle test data. These signals are then used in uni-axial, bi-axial or tri-axial rig facilities based on their severity and the availability of test rigs. This paper depicts the simulation method employed to replicate the bi-directional rig testing through modal transient finite element analysis (FEA). The FEA analysis is carried out with the inclusion of rubber isolator modeling, meshing guidelines etc. FEA results are in good agreement with rig level test results.
2017-03-28
Technical Paper
2017-01-0943
Cory S. Hendrickson, Devesh Upadhyay, Michiel Van Nieuwstadt
Over the past decade urea-based selective catalytic reduction (SCR) has become a leading aftertreatment solution to meet increasingly stringent Nitrogen oxide (NOx) emissions requirements in diesel powertrains. A common trend seen in modern SCR systems is the use of "split-brick" configurations where two SCR catalysts are placed in thermally distinct regions of the aftertreatment. One catalyst is close-coupled to the engine for fast light-off and another catalyst is positioned under-floor to improve performance at high space velocities. Typically, a single injector is located upstream of the first catalyst to provide the reductant necessary for efficient NOx reduction. This paper explores the potential benefit, in terms of improved NOx reduction and control of NH3 slip, of having independently actuated injectors in front of each catalyst.
2017-03-28
Technical Paper
2017-01-0988
Michael Cunningham, Mi-Young Kim, Venkata Lakkireddy, William Partridge
Measuring axial exhaust species concentration distributions within a wall-flow aftertreatment device provides unique and significant insights regarding the performance of complex devices like the SCR-on-filter. In this particular study, a less complex aftertreatment configuration which includes a DOC followed by two uncoated partial flow filters (PFF) was used to demonstrate the potential and challenges. The PFF design in this study was a particulate filter with both through and plugged (or wall-flow) channels. A SpaciMS instrument was used to measure the axial NO2 profiles within adjacent through and plugged channels of each filter element during an extended passive regeneration event using a full-scale engine and catalyst system. By estimating the mass flow through the plugged and through channels, the axial soot load profile history could be assessed.
2017-03-28
Technical Paper
2017-01-1311
Suman Mishra, Nagesh Gummadi, Lloyd Bozzi, Neil Vaughn, Rob Higley
Air rush noise is exhaust gas driven flow induced noise in the frequency range of 500-6500 Hz. It is very essential to understand the flow physics of exhaust gases with in the mufflers in order to identify any counter measures that can attenuate this error state. This study is aimed at predicting the flow physics and hence of air rush noise of exhaust mufflers in the aforementioned frequency range at a typical exhaust flow rate and temperature. The study is performed on 2 different muffler designs which show a significant air rush noise level difference when tested on the vehicle. The transient computational study was performed using DES with 2nd order spatial discretization and 2nd order implicit scheme for temporal discretization in StarCCM+. To compare with test data, a special flow test stand is designed so that all high and low frequency contents emanating from the engine are attenuated before the flow enters the test part.
2017-03-28
Technical Paper
2017-01-1639
Gerard W. Malaczynski, Gregory Roth
Title: “Real-time Sensing of Particulate Matter in a Vehicle Exhaust System” Authors: Gerard W. Malaczynski, Gregory T. Roth Abstract: Onboard diagnostic regulations require performance monitoring of diesel particulate filters (DPF) used in vehicle aftertreatment systems. One method of performing this monitoring function is through the use of a particulate matter (PM) sensor. The objective of this sensor is to provide monitoring of the soot concentration in the exhaust downstream of the diesel particulate filter (DPF) which provides a means to calculate filter efficiency. The particulate matter sensor monitors the deposition of soot on its internal sensing element by measuring the resistance of the deposit. Correlations are established between the soot resistance and soot mass deposited on the sensing element.
Viewing 1 to 30 of 4130

Filter

  • Range:
    to:
  • Year: