Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4180
2017-10-08
Technical Paper
2017-01-2382
Tul Suthiprasert, Sirichai Jirawongnuson, Ekathai Wirojsakunchai, Tanet Aroonsrisopon, Krisada Wannatong, Atsawin Salee
One of the most important challenges on implementing Diesel Dual Fuel (DDF) engine into the vast market is CH4 emission in its exhaust. This is due to the fact that CH4 is hard to oxidize at lower temperature environment of DDF exhaust comparing to that of conventional or bi-fuel engines. In addition, another parameter such as exhaust flow rate, specie concentration, especially CO, C3H8, and water have tremendous impact on Diesel Oxidation Catalyst performance on reducing CH4. Combining of all these factors together, a study of CH4 reduction is a major research problems that researchers around the world are keen to gain more fundamental understandings. In this work, a new CH4 kinetic model, which is based on Langmuir Hinshelwood mechanism, including CO, C3H8, and water is implemented into 1-D and 3-D Catalytic Converter models. The CH4 kinetic model is calibrated with the experiment by using synthetic exhaust gas generator.
2017-10-08
Technical Paper
2017-01-2383
Guoyang Wang, Jun Zhang, Bo Yang, Chuandong Li, Shi-Jin Shuai, Shi Yin, Meng Jian
Urea selective catalytic reduction (SCR) is a key technology for heavy-duty diesel engines to meet the increasingly stringent nitric oxides (NOx) emission limits of regulations. The urea water solution injection control is critical for urea SCR systems to achieve high NOx conversion efficiency while keeping the ammonia (NH3) slip at a required level. In general, an open loop control strategy is sufficient for SCR systems to satisfy Euro IV and Euro V NOx emission limits. However, for Euro VI emission regulation, advanced control strategy is essential for SCR systems due to its more tightened NOx emission limit and more severe test procedure compared to Euro IV and Euro V. This work proposed an approach to achieve model based closed loop control for SCR systems to meet the Euro VI NOx emission limits. A chemical kinetic model of the SCR catalyst was established and validated to estimate the ammonia storage in the SCR catalyst.
2017-10-08
Technical Paper
2017-01-2201
Zhongye Cao, Tianyou Wang, Kai Sun, Lei Cui, Yong Gui
For uniflow scavenged two-stroke marine diesel engines, the main function of scavenging process is to replace the burned gas with fresh charge. The end state of scavenging process is integral to the subsequent compression and combustion, thereby affecting the engine’s fuel economy, power output and emissions. In this paper, a complete working cycle of a large marine diesel engine was simulated by using the 3D-CFD software CONVERGE. The model was validated by mesh sensitivity test and experiment data. Based on this calibrated model, the influences of swirl ratio and exhaust valve closing (EVC) timing on the scavenging process were investigated. The parameters evaluating the performance of scavenging process were introduced. The results show that, by adjusting the swirl orientation angle(SOA) from SOA=10° to SOA=30°, different swirl ratios are generated and have obvious differences in flow characteristics and scavenging performance.
2017-10-08
Technical Paper
2017-01-2287
Aniseh Abdalla, Guoyang Wang, Jun Zhang, Shi-Jin Shuai
Emission control technologies are required to achieve stringent emission regulations such as Beijing 6 (equivalent to Europe 6). In order to meet Europe 6 emission regulation, diesel oxidation catalyst (DOC) upstream of catalyzed diesel particulate filter (CDPF) with supplementary fuel injection (hydrocarbon injection (HCI)) are used for the X7 diesel engine to control the particulate matter (PM) for a heavy-duty diesel engine. This study investigated soot loading and active regeneration process in a CDPF by using secondary fuel injection in order to enhance exothermal heat which is needed to raise the CDPF temperature. The injected fuel is burnt in a DOC where the injector is mounted in the tailpipe upstream of DOC.
2017-10-08
Technical Paper
2017-01-2364
Jiaqiang Li, Yunshan Ge, Chao He, Jianwei Tan, Zihang Peng, Zidi Li, Wei Chen, Shijie Wang
Urea selective catalytic reduction is the most promising technique to reduce NOx emissions from heavy duty diesel engines. 32.5wt% aqueous urea solution is widely used as ammonia storage species for the urea selective catalytic reduction process. The thermolysis and hydrolysis of urea produces reducing agent ammonia and provides to catalysts to reduce NOx emissions to nitrogen and water. However, the application of urea SCR technology has many challenges at low temperature conditions, such as deposits formation in the exhaust pipe, lack deNOx performance at low temperature and freezing below -12℃. For preventing deposits formation, the aqueous urea solution is difficult to be injected into the exhaust gas stream at temperature below 200℃. The aqueous urea solution used as reducing agent precursor is the main obstacle for achieving high deNOx performances at low temperature conditions.
2017-10-08
Technical Paper
2017-01-2366
Wenzheng Xia, Yi Zheng, Xiaokun He, Dongxia Yang, Huifang Shao, Joesph Remias, Joseph Roos, Yinhui Wang
Because of the increased use of gasoline direct engine (GDI) in automobile industry, there is a significant need to control particulates from GDI engines based on emission regulations. One potential technical approach is the utilization of a gasoline particulate filter (GPF). The successful adoption of this emission control technology needs to take many aspects into consideration and requires a system approach for optimization. This study conducted research to investigate the impact of vehicle driving cycles, fuel properties, catalyst coating on the performance of GPF. It was found that driving cycle has significant impact on particulate emission. Fuel quality still plays a role in particulate emissions, and can affect the GPF performance. Catalyzed GPF is preferred for soot regeneration, especially for the case that the vehicle operation is dominated by congested city driving condition, i.e. low operating temperatures. The details of the study are presented in the paper.
2017-10-08
Technical Paper
2017-01-2367
Ganesan Mahadevan, Sendilvelan Subramanian
Control of harmful emissions during cold start of the engine has become a challenging task over the years due to the ever increasing stringent emission norms. Positioning the catalytic converter closer to the exhaust manifold is an efficient way of achieving rapid light-off temperature. On the other hand, the resulting higher thermal loading under high-load engine operation may substantially cause thermal degradation and accelerate catalyst ageing. The objective of the present work is to reduce the light-off time of the catalyst and at the same time reduce the thermal degradation and ageing of the catalyst to the minimum possible extent by adopting an approach with Dynamic Catalytic Converter System (DCCS). The emission tests were conducted at the cold start of a 4 cylinder spark ignition engine with DCCS at different positions of the catalyst at no load conditions.
2017-10-08
Technical Paper
2017-01-2371
Hiroki Kambe, Naoto Mizobuchi, Eriko Matsumura
Diesel Particulate filter (DPF) is installed as after treatment device of exhaust gas in diesel engine, and it collects Particulate Matter (PM). However, as the operation time of engine increases, the PM is accumulated in the DPF, resulting in deterioration of PM collection efficiency and increase in pressure loss. Therefore, Post injection has been attracted attention as the DPF regeneration method for burning and removing PM in the DPF. But, Post injection causes oil dilution when fuel is injected at the middle to late stage of expansion stroke. Oil dilution are concern to decrease the stroke lubricity of piston movement and the thermal efficiency. In order to estimate deposition amount of fuel spray that influences oil film, we should elucidate spray impingement behavior on wall surface of oil film, to research more from the behavior of in-cylinder spray during post injection.
2017-10-08
Technical Paper
2017-01-2378
Takayuki Ogata, Mikio Makino, Takashi Aoki, Takehide Shimoda, Kyohei Kato, Takahiko Nakatani, Koji Nagata, Claus Dieter Vogt, Yoshitaka Ito, Dominic Thier
In order to meet the challenging CO2 targets beyond 2020 despite keeping high performance engines, Gasoline Direct Injection (GDI) technology usually combined with charged aspiration is expanding in the automotive industry. While providing more efficient powertrains to reduce fuel consumption one side effect of GDI is the increased particle formation during the combustion process. For the first time for GDI from September 2014 there is a Particle Number (PN) limit of 6E12 #/km, which will be further reduced by one order of magnitude to 6E11 #/km effective from September 2017 to be the same level as applied to Diesel engines. In addition to the PN limit of the certification cycle NEDC further certification of Real Driving Emissions (RDE) including portable PN measurements are under discussion by the European Commission. RDE test procedure requires stable and low emissions in a wide range of engine operations and durable over a distance of 160 000 km.
2017-10-08
Technical Paper
2017-01-2368
Wenji Song, Weiyong Tang, Bob Chen
The 4JB1 diesel engine originated from Isuzu has large share in the China light duty truck market. However, the tightened NOx emission target enforced by NS-V legislation compared with NS-IV regulatory standard is very challenging for this engine platform which originally adopted the DOC+POC catalyst layout. Furthermore, combustion characterization of this type engine leads to high soluble organic fration (SOF) content in engine out particulates, which requires the catalysts in the exhaust after-treatment system (ATS) to deliver high SOF conversion efficiency in order to meet the regulation limit for particulate matters (PM). In this paper, an innovative DOC+V-SCR exhaust catalyst layout with DOC+V-SCR is introduced. The front DOC is specially formulated with optimized PGM (Platinum Group Metal) loading which ensures effective SOF oxidation while keeping sulfuric acid and sulfate generation minimal.
2017-10-08
Technical Paper
2017-01-2387
Yonge Wu, Xingyu Liang, Ge-Qun Shu, Boxi Shen, Yuesen Wang, Xikai Liu, Zhijun Li
SCR (selective catalytic reduction) is one of the main after-treatment systems currently to control engine NOx emission, and its structure parameters affect its performance and cost directly. In this study, the structural parameters of the SCR reactor are optimized by considering the coupling relationship between each structural parameter by using the RSM (Response Surface Methodology). Finally, the new reactor with the optimized parameters was simulated to double check its NOx reduction ability. A 1D model of SCR system is constructed using AVL BOOST software. The influence of structure parameters, such as catalyst cross-section area, catalyst length, substrate wall thickness, washcoat thickness, substrate cell density (CPSI), have been taken into consideration to study their effects on the SCR performance. Using BBD (Box Behnken Design) experimental design method, the tests of every factor under different levels are carried out by Design Expert software.
2017-10-08
Technical Paper
2017-01-2432
Xiangwang Li, Weimin Wang, Xiongcai Zou, Zhiming Zhang, Wenlong Zhang, Shemin Zhang, Tao Chen, Yuhuang Cao, Yuanda Chen
In order to reduce emissions, size and manufacturing cost, integrated exhaust manifold become popular in gasoline engine, especially in three-cylinder engine. Moreover, due to shorter length, lighter weight, and less component connections, the exhaust manifold and hot end durability will improve apparently. In this work, an advanced cylinder head with integrated exhaust manifold is in adopted in one three-cylinder turbo engine. Because of this integration characteristic, the gas retain in cylinder head longer and the temperature reach higher level than normal cylinder head, which will cause thermal fatigue failure more easily. To validate the exhaust manifold and hot end durability, series simulation and test validation work have been done. Firstly, overall steady state and transient temperature simulation was done for global model. The global model include cylinder head, block, turbocharger, and catalyst components.
2017-10-08
Journal Article
2017-01-2386
Naoki Ohya, Kohei Hiyama, Kotaro Tanaka, Mitsuru Konno, Atsuko Tomita, Takeshi Miki, Yutaka Tai
Diesel engines have better fuel economy over comparable gasoline engines and useful for the reduction of CO2 emissions. However, to meet stringent emission standards, the technology for reducing NOx and particulate matter (PM) in diesel engine exhaust needs to be improved. A conventional selective catalytic reduction (SCR) system consists of a diesel oxidation catalyst (DOC), a diesel particulate filter (DPF), and an urea-SCR catalyst. Recently, more stringent regulations have led to the development of SCR systems with a larger volume and increased the cost of such systems. In order to solve these problems, an SCR catalyst coated on DPF (SCR/DPF) is proposed. An SCR/DPF system has a lower volume and cost compared with the conventional SCR system. The SCR/DPF catalyst has two functions: one is combustion of PM and the other is reduction of NOx emissions.
2017-10-08
Journal Article
2017-01-2375
Akihiro Niwa, Shogo Sakatani, Eriko Matsumura, Takaaki Kitamura
Diesel engine has low carbon emissions and high fuel efficiency. However, diesel engine needs to reduce both Nitrogen Oxide (NOx) and Particulate matters (PM). To meet the demand of strict exhaust gas regulation, after-treatment device is required. Therefore, urea SCR (Selective Catalytic Reduction) system is used to clean NOx in diesel engine exhaust gas. In urea SCR system, it is necessary to inject the urea water solution upstream the SCR catalyst. And, it can reduce NOx applying the generated ammonia (NH3) by urea thermolysis and isocyanic acid (HNCO) hydrolysis. In this study, it focused on urea SCR system. The spray behavior injected in tail-pipe can be divided into the regime of a free spray, an impingement spray, an evaporation of liquid film and a separation droplets, and an urea water solution dispersion. Also, in each region, after evaporation of H2O in urea water solution completely, NH3 is generated by urea thermolysis and HNCO hydrolysis.
2017-09-19
Technical Paper
2017-01-2048
Bryan Shambaugh, Patrick Browning
This paper investigates the effect of various magnetic field configurations on an ionized exhaust plume operating under near vacuum conditions. The purpose of this investigation is to determine if deploying a toroidal magnetic field around an ionized exhaust plume can alter the exhaust profile. The test apparatus utilizes a series of twelve N52 grade neodymium magnets mounted on a steel toroid. The design is proposed as a low-cost alternative to toroidal electromagnets. Five different apparatus configurations were tested in this experiment. Each test was documented using 12 sets of photographs taken from a fixed position with respect to the flow. Photographs were taken after the arc jet had run for 10, 20, and 30 seconds. Data from each configuration was compiled using image processing and compared with data from other configurations at corresponding time periods. Two configurations were run as control tests without any magnetic interference.
2017-09-04
Technical Paper
2017-24-0096
Laura Sophie Baumgartner, Stephan Karmann, Fabian Backes, Andreas Stadler, Georg Wachtmeister
Abstract Due to its molecular structure, methane provides several advantages as fuel for internal combustion engines. To cope with nitrogen oxide emissions high levels of excess air are beneficial, which on the other hand deteriorates the flammability and combustion duration of the mixture. One approach to meet these challenges and ensure a stable combustion process are fuelled prechambers. The flow and combustion processes within these prechambers are highly influenced by the position, orientation, number and overall cross-sectional area of the orifices connecting the prechamber and the main combustion chamber. In the present study, a water-cooled single cylinder test engine with a displacement volume of 0.5 l is equipped with a methane-fuelled prechamber. To evaluate influences of the aforementioned orifices several prechambers with variations of the orientation and number of nozzles are used under different operating conditions of engine speed and load.
2017-09-04
Technical Paper
2017-24-0121
Ivan Arsie, Giuseppe Cialeo, Federica D'Aniello, Cesare Pianese, Matteo De Cesare, Luigi Paiano
Abstract In the last decades, NOx emissions legislations for Diesel engines are becoming more stringent than ever before and the selective catalytic reduction (SCR) is considered as the most suitable technology to comply with the upcoming constraints. Model-based control strategies are promising to meet the dual objective of maximizing NOx reduction and minimizing NH3 slip in urea-selective catalytic reduction. In this paper, a control oriented model of a Cu-zeolite urea-SCR system for automotive diesel engines is presented. The model is derived from a quasi-dimensional four-state model of the urea-SCR plant. To make it suitable for the real-time urea-SCR management, a reduced order one-state model has been developed, with the aim of capturing the essential behavior of the system with a low computational burden. Particularly, the model allows estimating the NH3 slip that is fundamental not only to minimize urea consumption but also to reduce this unregulated emission.
2017-09-04
Technical Paper
2017-24-0024
Andrea Piano, Federico Millo, Davide Di Nunno, Alessandro Gallone
Abstract The need for achieving a fast warm up of the exhaust system has raised in the recent years a growing interest in the adoption of Variable Valve Actuation (VVA) technology for automotive diesel engines. As a matter of fact, different measures can be adopted through VVA to accelerate the warm up of the exhaust system, such as using hot internal Exhaust Gas Recirculation (iEGR) to heat the intake charge, especially at part load, or adopting early Exhaust Valve Opening (eEVO) timing during the expansion stroke, so to increase the exhaust gas temperature during blowdown. In this paper a simulation study is presented evaluating the impact of VVA on the exhaust temperature of a modern light duty 4-cylinder diesel engine, 1.6 liters, equipped with a Variable Geometry Turbine (VGT).
2017-09-04
Technical Paper
2017-24-0123
Christopher Eck, Futoshi Nakano
Abstract Small commercial vehicles (SCV) with Diesel engines require efficient exhaust aftertreatment systems to reduce the emissions while keeping the fuel consumption and total operating cost as low as possible. To meet current emission legislations in all cases, a DOC and DPF and some NOx treatment device (e,g. lean NOx trap or SCR) are required. Creating a cost-effective SCV also requires keeping the cost for the exhaust aftertreatment system as low as possible because the contribution to total vehicle cost is high. By using more sophisticated and more robust operating strategies and control algorithms, the hardware cost can be reduced. To keep the calibration effort at a low level, it is necessary to apply only algorithms which have a time-efficient calibration procedure. This paper will focus on the active regeneration of the DPF. For safe and efficient DPF regeneration, a very reliable and stable DOC out temperature control is required.
2017-09-04
Technical Paper
2017-24-0124
Michael Maurer, Peter Holler, Stefan Zarl, Thomas Fortner, Helmut Eichlseder
Abstract To minimize nitrogen oxide (NOx) as well as carbon monoxide (CO) and hydrocarbon (HC) emissions to fulfil the new European real driving emissions (RDE) legislation, the LNT operation strategy - especially for DeNOx events (rich mode) - has to be optimized. On one hand the DeNOx purges should be long enough to fully regenerate the lean NOx trap, on the other hand the purges should be as short as possible to reduce the fuel consumption penalty from rich mode. Fundamental experiments have been conducted on a synthetic-gas-test-bench, purposely designed to test LNT catalysts. This methodology allowed to remove NOx from the gasfeed after the lean storage phase. The actually reduced amount of NOx could be easily calculated from the NOx storage before a regeneration event minus the NOx that was desorbed during the DeNOx event and afterwards thermally desorbed NOx.
2017-09-04
Technical Paper
2017-24-0126
Christian Zöllner, Dieter Brueggemann
Abstract The removal of particulate matter (PM) from diesel exhaust is necessary to protect the environment and human health. To meet the strict emission standards for diesel engines an additional exhaust aftertreatment system is essential. Diesel particulate filters (DPF) are established devices to remove emitted PM from diesel exhaust. But the deposition and the accumulation of soot in the DPF influence the filter back pressure and therefore the engine performance and the fuel consumption. Thus a periodical regeneration through PM oxidation is necessary. The oxidation behavior should result in an effective regeneration mode that minimizes the fuel penalty and limits the temperature rise while maintaining a high regeneration efficiency. Excessive and fast regenerations have to be avoided as well as uncontrolled oxidations, which may lead to damages of the filter and fuel penalty.
2017-09-04
Technical Paper
2017-24-0127
Lauretta Rubino, Dominic Thier, Torsten Schumann, Stefan Guettler, Gerald Russ
Abstract With the increased use of engines utilizing direct fuel injection and the upcoming introduction of more stringent emissions legislation that regulates not only particulate mass (PM) but also particulate number (PN), the emissions from Direct Injection Spark Ignition Engines (DISI) are an increasing concern. Gasoline Particle Filters (GPF) represent a potential way to reduce particle number emissions from DISI engines and are particularly effective considering the tough performance requirements during cold start and over RDE operation. Even though some learning from the development and application of particulate filters to diesel engines can be transferred to gasoline engines, the particle composition, mass to number ratio as well as the exhaust gas temperature and composition from gasoline engines are significantly different to diesel engines. Therefore, there is the need to study the application of particulate filters to gasoline engines in more depth.
2017-09-04
Technical Paper
2017-24-0128
Lauretta Rubino, Jan Piotr Oles, Antonino La Rocca
Abstract Environmental authorities such as EPA, VCA have enforced stringent emissions legislation governing air pollutants released into the atmosphere. Of particular interest is the challenge introduced by the limit on particulate number (PN) counting (#/km) and real driving emissions (RDE) testing; with new emissions legislation being shortly introduced for the gasoline direct injection (GDI) engines, gasoline particulate filters (GPF) are considered the most immediate solution. While engine calibration and testing over the Worldwide harmonized Light vehicles Test Cycle (WLTC) allow for the limits to be met, real driving emission and cold start constitute a real challenge. The present work focuses on an experimental durability study on road under real world driving conditions. Two sets of experiments were carried out. The first study analyzed a gasoline particulate filter (GPF) (2.4 liter, diameter 5.2” round) installed in the underfloor (UF) position and driven up to 200k km.
2017-09-04
Technical Paper
2017-24-0135
Shuxia Miao, Lin Luo, Yan Liu, Zhangsong Zhan
New emissions regulations of light-duty vehicles (China 6) will be implemented in China from July 1, 2020. This standard includes two stages, China 6a and China 6(b), in which the PM limits of 4.5 mg/km and 3.0 mg/km are introduced respectively; the PN limit is set to be 6×1011 #/km for both stages. The WLTC testing cycle will be implemented in China 6 regulation as well. In this study a light-duty vehicle satisfying China 6(b) emission standards was developed by improving the engine raw emissions, optimizing the calibration and adding a coated GPF to the after-treatment system. The impacts of ash content and consumption of engine oil and the fast ash accumulation to vehicle emissions and backpressure were analyzed through dynamometer testing. The vehicle after-treatment system was then designed and developed to meet China 6(b) emission standards. The characteristics of soot accumulated through mimicking routine driving under cold environments were tested.
2017-09-04
Technical Paper
2017-24-0139
Francesco Barba, Alberto Vassallo, Vincenzo Greco
Abstract The aim of the present study is to improve the effectiveness of automotive diesel engine and aftertreatment calibration process through the critical evaluation of several methodologies to estimate the soot mass flow produced by diesel engines fueled by petroleum fuels and filtered by Diesel Particulate Filters (DPF). In particular, its focus has been the development of a reliable simulation method for the accurate prediction of the engine-out soot mass flow starting from Filter Smoke Number (FSN) measurements executed in steady state conditions, in order to predict the DPF loading considering different engine working conditions corresponding to NEDC and WLTP cycles. In order to achieve this goal, the study was split into two main parts: Correlation between ‘wet PM’ (measured by soot filter weighing) and the ‘dry soot’ (measured by the Micro Soot Sensor MSS).
2017-09-04
Technical Paper
2017-24-0144
Carlo Beatrice, Maria Antonietta Costagliola, Chiara Guido, Pierpaolo Napolitano, Maria Vittoria Prati
Abstract Diesel particulate filter (DPF) is the most effective emission control device for reducing particle emissions (both mass, PM, and number, PN) from diesel engines, however many studies reported elevated emissions of nanoparticles (<50 nm) during its regeneration. In this paper the results of an extensive literature survey is presented. During DPF active regeneration, most of the literature studies showed an increase in the number of the emitted nanoparticles of about 2-3 orders of magnitude compared to the normal operating conditions. Many factors could influence their amount, size distribution, chemical-physical nature (volatiles, semi-volatiles, solid) and the duration of the regenerative event: i.e. DPF load and thermodynamic conditions, lube and fuel sulfur content, engine operative conditions, PN sampling and measurement methodologies.
2017-09-04
Technical Paper
2017-24-0146
Vincent Raimbault, Jerome Migaud, David Chalet, Michael Bargende, Emmanuel Revol, Quentin Montaigne
Abstract Upcoming regulations and new technologies are challenging the internal combustion engine and increasing the pressure on car manufacturers to further reduce powertrain emissions. Indeed, RDE pushes engineering to keep low emissions not only at the bottom left of the engine map, but in the complete range of load and engine speeds. This means for gasoline engines that the strategy used to increase the low end torque and power by moving out of lambda one conditions is no longer sustainable. For instance scavenging, which helps to increase the enthalpy of the turbine at low engine speed cannot be applied and thus leads to a reduction in low-end torque. Similarly, enrichment to keep the exhaust temperature sustainable in the exhaust tract components cannot be applied any more. The proposed study aims to provide a solution to keep the low end torque while maintaining lambda at 1.
2017-09-04
Technical Paper
2017-24-0167
Enrico Mattarelli, Carlo Rinaldini, Tommaso Savioli, Giuseppe Cantore, Alok Warey, Michael Potter, Venkatesh Gopalakrishnan, Sandro Balestrino
Abstract This work reports a CFD study on a 2-stroke (2-S) opposed piston high speed direct injection (HSDI) Diesel engine. The engine main features (bore, stroke, port timings, et cetera) are defined in a previous stage of the project, while the current analysis is focused on the assembly made up of scavenge ports, manifold and cylinder. The first step of the study consists in the construction of a parametric mesh on a simplified geometry. Two geometric parameters and three different operating conditions are considered. A CFD-3D simulation by using a customized version of the KIVA-4 code is performed on a set of 243 different cases, sweeping all the most interesting combinations of geometric parameters and operating conditions. The post-processing of this huge amount of data allow us to define the most effective geometric configuration, named baseline.
2017-09-04
Journal Article
2017-24-0109
Nic Van Vuuren, Lucio Postrioti, Gabriele Brizi, Federico Picchiotti
Selective Catalytic Reduction (SCR) diesel exhaust aftertreatment systems are virtually indispensable to meet NOx emissions limits worldwide. These systems generate the NH3 reductant by injecting aqueous urea solution (AUS-32/AdBlue®/DEF) into the exhaust for the SCR NOx reduction reactions. Understanding the AUS-32 injector spray performance is critical to proper optimization of the SCR system. Specifically, better knowledge is required of urea sprays under operating conditions including those where fluid temperatures exceed the atmospheric fluid boiling point. Results were previously presented from imaging of an AUS-32 injector spray which showed substantial structural differences in the spray between room temperature fluid conditions, and conditions where the fluid temperature approached and exceeded 104° C and “flash boiling” of the fluid was initiated.
2017-08-18
Journal Article
2017-01-9378
Eric Kurtz, Christopher J. Polonowski
Abstract The design of modern diesel-powered vehicles involves optimization and balancing of trade-offs for fuel efficiency, emissions, and noise. To meet increasingly stringent emission regulations, diesel powertrains employ aftertreatment devices to control nitrogen oxides, hydrocarbons, carbon monoxide, and particulate matter emissions and use active exhaust warm-up strategies to ensure those devices are active as quickly as possible. A typical strategy for exhaust warm-up is to operate with retarded combustion phasing, limited by combustion stability and HC emissions. The amount of exhaust enthalpy available for catalyst light-off is limited by the extent to which combustion phasing can be retarded. Diesel cetane number (CN), a measure of fuel ignition quality, has an influence on combustion stability at retarded combustion phasing. Diesel fuel in the United States tends to have a lower CN (both minimum required and average in market) than other countries.
Viewing 1 to 30 of 4180

Filter

  • Range:
    to:
  • Year: