Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3645
2016-10-24
Event
Papers are invited on technology developments and the integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in sensors and control systems will also be considered.
2016-10-24
Event
This session describes the design, modeling and performance validation of cylinder heads, lubrication systems and pumps, coolant systems and pumps, intake manifolds, exhaust manifolds, and engine block structures.
2016-08-15 ...
  • August 15-16, 2016 (8:30 a.m. - 4:30 p.m.) - Rosemont, Illinois
Training / Education Classroom Seminars
Stringent requirements of reduced NOx emission limits in the US have presented engineers and technical staff with numerous challenges. Several in-cylinder technical solutions have been developed for diesel engines to meet 2010 emission standards. These technologies have been optimized and have yielded impressive engine-out results in their ability to reduce emissions to extremely low levels. However, current and state-of-the-art in-cylinder solutions have fallen short of achieving the limits imposed on diesel emissions for 2010.
2016-06-15
Technical Paper
2016-01-1822
Drasko Masovic, Franz Zotter, Eugene Nijman, Jan Rejlek, Robert Höldrich
Abstract Radiation of sound from an open pipe with a hot mean flow presents one of the classic problems of acoustics in inhomogeneous media. The problem has been especially brought into focus in the last several decades, in the context of noise control of vehicle exhaust systems and jet engines. However, the reports on the measurements of the radiated sound field are still rare and scattered over different values of subsonic and supersonic flow speeds, cold and hot jets, as well as different sound frequency ranges. This paper focuses on low Mach number values of the mean flow speed and low frequencies of the incident (plane) sound waves inside an unflanged cylindrical pipe with a straight cut. It presents the results of the far-field radiation pattern measurements and compares them with an existing analytical model from the literature. The mean flow inside the pipe reached Mach number values up to 0.25 and temperature up to 300°C.
2016-06-15
Technical Paper
2016-01-1820
Mikael Karlsson, Magnus Knutsson, Mats Abom
Abstract This work explores how fluid driven whistles in complex automotive intake and exhaust systems can be predicted using computationally affordable tools. Whistles associated with unsteady shear layers (created over for example side branches or perforates in resonators) are studied using vortex sound theory; vorticity in the shear layer interacts with the acoustic field while being convected across the orifice. If the travel time of a hydrodynamic disturbance over the orifice reasonably matches a multiple of the acoustic period of an acoustic feedback system, energy is transferred from the flow field to the acoustic field resulting in a whistle. The actual amplitude of the whistle is set by non-linear saturation phenomena and cannot be predicted here, but the frequency and relative strength can be found. For this not only the mean flow and acoustic fields needs to be characterized separately, but also the interaction of the two.
2016-06-15
Technical Paper
2016-01-1826
Roman Gartz, Detlev Rammoser, Matthew Maunder
Abstract The transfer characteristics, location of the mounting points, where the exhaust system is attached to the vehicle structure, and the level of excitation forces have a significant contribution to the overall interior noise. The aim of this study is to define targets for the excitation forces of the exhaust line in order to identify its contribution to the overall vehicle interior cabin noise in the early vehicle concept phase when the hardware is not yet available. Furthermore, psychoacoustic parameters are calculated, e.g. the articulation index which provide a representation of the human hearing perception. Therefore a software tool was developed in MATLAB to cascade the interior noise contributions of the exhaust system using the corresponding transfer paths. This tool enables a quick prediction of different combinations (different hanger stiffness and other parameters) to evaluate the potential for improvements.
2016-06-15
Technical Paper
2016-01-1843
Jan Krueger, Viktor Koch, Ralf Hoelsch
Abstract Over the past few years, the measurement procedure for the pass-by noise emission of vehicles was changed and new limit values have been set by the European Parliament which will come into force within the next few years. Moreover, also the limits for chemical emissions such as NOx, particulates and CO2 have been lowered dramatically and will continue to be lowered according to a roadmap decided not only in Europe but also in other markets throughout the world. This will have an enormous impact on the design of future passenger cars and in particular on their powertrains. Downsizing, downspeeding, forced induction, and hybridization are among the most common general technology trends to keep up with these challenges. However, most of these fuel saving and cleaner technologies also have negative acoustic side effects.
2016-06-14
Event
2016-06-03
Magazine
Executive viewpoints Industry leaders offer their insights on the state of the heavy-duty on- and off-highway industries in this annual series of opinion pieces. The executives share their views on the most pressing technologies and trends shaping their business and the industry moving forward. Annual Product Guide Top products from throughout the industry covering technologies such as Powertrain & Energy, Hydraulics, Electronics, and Testing & Simulation.
2016-05-18
Journal Article
2016-01-9109
Roxanna Moores, Nicholas Cernansky, Gregory Birky, Timothy Suder
Abstract In this study a 1-dimensional computational model of a Fe-Zeolite catalyst, implementing conservation of mass, species and energy for both gas and catalyst surface phases has been developed to simulate emissions conversion performance. It is applied to both a fresh catalyst and one that has been aged through exposure to the exhaust system of a Heavy Duty Diesel engine performing in the field for 376K miles. Details of the chemical kinetics associated with the various NOx reduction reactions in the two Fe-Zeolite configurations have been examined and correlated with data from a synthetic gas rig test bench. It was found that the Standard reaction, (4NH3 + 4NO + O2 → 2N2 + 6H2O), which is one of the main reactions for NOx reduction, degraded significantly at the lower temperatures for the aged system.
2016-05-17
Magazine
Base-engine value engineering for higher fuel efficiency and enhanced performance Continuous improvement in existing engines can be efficiently achieved with a value engineering approach. The integration of product development with value engineering ensures the achievement of specified targets in a systematic manner and within a defined timeframe. Integrated system engineering for valvetrain design and development of a high-speed diesel engine The lead time for engine development has reduced significantly with the advent of advanced simulation techniques. Cars poised to become 'a thing' Making automobiles part of the Internet of Things brings both risks and rewards. Agility training for cars Chassis component suppliers refine vehicle dynamics at the high end and entry level with four-wheel steering and adaptive damping.
2016-04-13
Event
This session deals with particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Topics include the environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This includes particulate emissions from both gasoline and diesel engines.
2016-04-13
Event
This session describes the design, modeling and performance validation of cylinder heads, lubrication systems and pumps, coolant systems and pumps, intake manifolds, exhaust manifolds, and engine block structures.
2016-04-13
Event
This session deals with particle emissions from combustion engines, including measurement and testing methods, and the effects of changes in fuel composition. Topics include the environmental and health effects of elemental carbon and organic carbon that constitutes solid cored particles plus the environmental and health effects of secondary organic aerosol emissions. This includes particulate emissions from both gasoline and diesel engines.
2016-04-05
Technical Paper
2016-01-1087
He Changming, Xu Sichuan
To achieve more stringent exhaust emission regulations will face more and more daunting challenges nowadays. It needs more new technologies to improve the IC engine performance but needing higher costs in order to meet Euro 6 and EPA standards in USA. Recently the opposed-piston engine (OPE) has been treated as the promising product to meet these new regulations but relatively lower costing. Although two-stroke OPE owning inherent thermal efficiency and power density advantages, the inefficient scavenge efficiency appears to become the main obstacle to enhance combustion efficiency whilst reducing exhaust gas emission. For the improvement of scavenge efficiency the transient gas exchange simulation was carried out for multiple Cases here, including two intake port configurations at various back pressures in exhaust system and two port timings.
2016-04-05
Journal Article
2016-01-1080
Narendra V. Bansode, Arnab Ganguly, Vikas Kumar Agarwal
Abstract A single cylinder gasoline engine of a sports bike generates sufficient hot gases to pose great challenge to the designers of exhaust system. The high temperature exhaust gases in muffler creates thermal elongation on the solid parts of exhaust system, which is mounted on the chassis. This arrangement induces thermal stress in exhaust assembly. It is necessary to analyze this thermal stress to ensure the durability of muffler components. The exhaust design has a diversion at the header pipe to distribute the flow in two branches. This junction and the branches heated up excessively and showed repeated failure. To analyze the thermal stress, the temperature distribution in the muffler components is obtained from Computational Fluid Dynamics (CFD) analysis. The complete motorcycle with detailed exhaust system is modelled in the standard wind tunnel using a commercial CFD software.
2016-04-05
Technical Paper
2016-01-1049
Xinyan Wang, Jun Ma, Hua Zhao
Abstract The 2-stroke engine has great potential for aggressive engine downsizing due to its double firing frequency which allows lower indicated mean effective pressure (IMEP) and peak in-cylinder pressure with the same output toque compared to the 4-stroke engine. With the aid of new engine technologies, e.g. direct injection, boost and variable valve trains, the drawbacks of traditional 2-stroke engine, e.g. low durability and high emissions, can be resolved in a Boosted Uniflow Scavenged Direct Injection Gasoline (BUSDIG) engine. Compared to the loop-flow or cross-flow engines, the BUSDIG engine, where intake ports are integrated to the cylinder liner and controlled by the movement of piston top while exhaust valves are placed in the cylinder head, can achieve excellent scavenging performance and be operated with high boost.
2016-04-05
Technical Paper
2016-01-1054
Jorge Martins, Carlos Pereira, F.P. Brito
Abstract One way to increase efficiency and performance of 2-stroke engines is the addition of an exhaust valve to control the opening/closure of the exhaust port. With this implementation it is possible to change the exhaust timing for different conditions. However, conventional systems cannot change the exhaust opening and closure timings independently. The work herein presented shows the development of a new exhaust rotary valve enabling the control of the opening independently from the control of the closure of the exhaust port. The study is based on kinetic and thermodynamic analysis. Some manufacturers use exhaust rotary valves but none of them performs a fully rotary motion. This kind of motion has various benefits such as smoothness and most notably the ability to control both the opening and the closure timing of the exhaust independently. Regarding the kinematic analysis, a simple model was created to determine the most suitable valve angles.
2016-04-05
Technical Paper
2016-01-1005
Yuanzhou Xi, Nathan Ottinger, Z. Gerald Liu
Abstract Regulations on methane emissions from lean-burn natural gas (NG) and lean-burn dual fuel (natural gas and diesel) engines are becoming more stringent due to methane’s strong greenhouse effect. Palladium-based oxidation catalysts are typically used for methane reduction due to their relative high reactivity under lean conditions. However, the catalytic activity of these catalysts is inhibited by the water vapor in exhaust and decreases over time from exposure to trace amounts of sulfur. The reduction of deactivated catalysts in a net rich environment is known to be able to regenerate the catalyst. In this work, a multicycle methane light-off & extinction test protocol was first developed to probe the catalyst reactivity and stability under simulated exhaust conditions. Then, the effect of two different regeneration gas compositions, denoted as regen-A and regen-B, was evaluated on a degreened catalyst and a catalyst previously tested on a natural gas engine.
2016-04-05
Technical Paper
2016-01-0205
Mattia De Rosa, Roy Douglas, Stephen Glover
Abstract The internal combustion (IC) engines exploits only about 30% of the chemical energy ejected through combustion, whereas the remaining part is rejected by means of cooling system and exhausted gas. Nowadays, a major global concern is finding sustainable solutions for better fuel economy which in turn results in a decrease of carbon dioxide (CO2) emissions. The Waste Heat Recovery (WHR) is one of the most promising techniques to increase the overall efficiency of a vehicle system, allowing the recovery of the heat rejected by the exhaust and cooling systems. In this context, Organic Rankine Cycles (ORCs) are widely recognized as a potential technology to exploit the heat rejected by engines to produce electricity. The aim of the present paper is to investigate a WHR system, designed to collect both coolant and exhausted gas heats, coupled with an ORC cycle for vehicle applications.
Viewing 1 to 30 of 3645

Filter

  • Range:
    to:
  • Year: