Criteria

Text:
Display:

Results

Viewing 1 to 30 of 3435
2015-06-26 ...
  • June 26, 2015 (12:30 p.m. - 4:30 p.m.) - Grand Rapids, Michigan
Training / Education Classroom Seminars
Most muffler design in the automotive industry is accomplished by using "cut-and-try" methods that rely on what has worked in the past and/or extensive full-scale testing on engines for validation. New computer software aimed at muffler design can shorten the design cycle and yield more effective results. This four hour seminar provides an introduction to the behavior of mufflers and silencers including a description of the two-port approach to muffler design. This seminar covers the acoustic simulation of muffler and silencer systems and the use of experimental methods to measure muffler performance.
2015-06-22
Event
This session covers experimental, computational, and analytical efforts related to the basic mechanisms and control techniques of noise and vibration in the breathing system (induction, combustion chamber, and exhaust) of naturally aspirated and supercharged/turbocharged engines. Noise sources include airborne, flow, flow‐acoustic and flow‐structure coupling.
2015-05-14 ...
  • May 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 19-20, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Stringent requirements of reduced NOx emission limits in the US have presented engineers and technical staff with numerous challenges. Several in-cylinder technical solutions have been developed for diesel engines to meet 2010 emission standards. These technologies have been optimized and have yielded impressive engine-out results in their ability to reduce emissions to extremely low levels. However, current and state-of-the-art in-cylinder solutions have fallen short of achieving the limits imposed on diesel emissions for 2010.
2015-04-21
Event
This session describes design, performance, and operating characteristic of crucial peripheral devices, intake and exhaust manifolds, and engine block structures and features.
2015-04-21
Event
This session covers the complete particulate filter system. There are papers covering the DOC aging as well as the effect of high sulfur fuel on the DOC. A couple of paper study the effect of ash accumulation and two papers cover a novel new asymmetric cell design and modeling of this new design. Finally we have a paper on gasoline particulate filters.
2015-04-20 ...
  • April 20-21, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • September 30-October 1, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device.
2015-03-23 ...
  • March 23-24, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • September 14-15, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
2015-01-14
Technical Paper
2015-26-0109
Prashant Kumar Sharma, Suryanarayanan Venkatachalam, Pradeep Paulraj, Vasudeo Ganesh Halbe, Senthur Pandian
As the number of vehicles and environment pollution is increasing day by day, the emission regulation gets more stringent by the emission regulation authorities. Oxides of Nitrogen gases are one of the most harmful emissions from the IC Engines. In EURO 5 regulation NOx emission value is 0.18g/km for passenger cars which is further reduced to 0.08 g/km in EURO 6 regulation for CI engines. In order to achieve these NOx limits SCR (Selective Catalytic Reduction) technology is used for CI engines. In SCR technology the reduction of NOx is done through aqueous urea solution injected in exhaust stream. The composition of aqueous urea solution is 62.5% water and 32.5% is urea. After injection, this aqueous urea solution disintegrated into Ammonia and carbon dioxide by Thermolysis and Hydrolysis.
2015-01-14
Journal Article
2015-26-0104
Santhoji Katare, Carolyn Hubbard, Seha Son
Abstract Aftertreatment system design involves multiple tradeoffs between engine performance, fuel economy, regulatory emission levels, packaging, and cost. Selection of the best design solution (or “architecture”) is often based on an assumption that inherent catalyst activity is unaffected by location within the system. However, this study acknowledges that catalyst activity can be significantly impacted by location in the system as a result of varying thermal exposure, and this in turn can impact the selection of an optimum system architecture. Vehicle experiments with catalysts aged over a range of mild to moderate to severe thermal conditions that accurately reflect select locations on a vehicle were conducted on a chassis dynamometer. The vehicle test data indicated CO and NOx could be minimized with a catalyst placed in an intermediate location.
2015-01-14
Journal Article
2015-26-0108
Vijay Narkhede, Dinesh Kumar, R M Cursetji, Touquire A Sidiquie
Abstract Diesel engines are becoming popular because of more fuel efficient and durability. While the CO and HC impurities are significantly lower than in gasoline engines, the design strategies for reduction of Particulate Matter and Nitrogen Oxides remain a major challenge for environment. The work mainly focused on reduction of NOx from diesel engines using SCR technology under Indian driving conditions and furl availability. With BS III/IV fuel available in the country, the catalyst system of choices the Vanadia Tungsten Titania (VWT) system because of its proven resistance to Sulfur poisoning. However, under urban driving conditions on Indian roads, the major obstacle is the low engine out temperatures which are below the normal operating temperature window (200 to 450 °C) of VWT - SCR.
2015-01-14
Technical Paper
2015-26-0106
Amartya Ghosh, Vasudevan C, Sachin gogia, Senthur Pandian, Ghodke Pundlik Rambhaji
With the implementation of stringent PM emission norms in various countries for diesel vehicles, the legislation demands a PM mass limit as low as 5mg/km in the NEDC cycle starting from Euro5. This makes the usage of Diesel particulate filters (DPF) mandatory. The same is going to be mandated for upcoming BSV emission norms in India. Now, the major challenges for DPF technology adaptation are: 1) Soot mass estimation and loading for the DPF 2) DPF Regeneration - Process involving soot mass burning inside a DPF(temperature based/ under fuel post injection) This paper deals with the most important aspect of the regeneration of DPF – Regeneration Interval and factors affecting the same. Regeneration interval: kilometers of driving a vehicle after which the DPF will reach the maximum limit of soot mass present inside it.
2015-01-14
Journal Article
2015-26-0090
Federico Stola, Matteo De Cesare, Luca Lacchini, Nicolò Cavina, Sandeep Sohal
Abstract The Selective Catalytic Reduction (SCR) system installed on the exhaust line is currently widely used on Diesel heavy-duty trucks and it is considered a promising technique for light and medium duty trucks, large passenger cars and off-highway vehicles, to fulfill future emission legislation. Some vehicles of these last categories, equipped with SCR, have been already put on the market, not only in the US, where the emission legislation on Diesel vehicles is more restrictive, but also in Europe, demonstrating to be already compliant with the upcoming Euro 6. Moreover, new and more stringent emission regulations and homologation cycles are being proposed all over the world, with a consequent rapidly increasing interest for this technology. As a matter of fact, a physical model of the Diesel Exhaust Fluid (DEF) supply system is very useful, not only during the product development phase, but also for the implementation of the on-board real-time controller.
2015-01-14
Technical Paper
2015-26-0214
Sivanandi Rajadurai, Guru Prasad Mani, Kavin Raja, Sundaravadivelu Mohan, Balaji Manivannan
In an automotive, exhaust system components are stripped to many types of vibrations from simple sinusoidal to maximum random excitations. Hot Vibration shakers plays a crucial role in durability testing of these components. This is due to minimum development time, number of available prototypes, also value of the money. In design and validation of vibration assembly, CAE simulation plays a inevitable role due to its virtual verification also it provides the optimized solution rather than "over engineering" . Hot vibration test is an accelerated key life test required to establish durability life in field. Key life test conditions are chosen in such a way that "those parts which passes key life test will always pass in the field" and "those parts which fail key life test need not necessarily fail in the field". During test, it is more critical to understand the effects of the test component as well as the total assembly and environment.
2015-01-14
Technical Paper
2015-26-0037
Kartik Kulkarni, Ayush Sood
The heat losses through exhaust gases and the engine coolant contribute significantly towards reduction in thermal efficiency of an Internal Combustion (IC) engine. This largely impacts the fuel economy and power output. Waste Heat Recovery (WHR) has proven to be an effective method of overcoming these challenges. A Rankine cycle is a reverse refrigeration cycle that circulates a working fluid through the four basic components namely the pump, evaporator, turbine and condenser. It is a popular WHR approach in automotive applications with varying levels of success in the past. As the heat transfer capability in organic working fluids is greater than the conventionally used inorganic fluids, the former is used to capture maximum waste heat from low grade heat sources such as the automobile engine. A dual-loop Organic Rankine Cycle (ORC) is proposed for a heavy duty IC Engine with working fluids R245fa and R236fa for the High Temperature (HT) and Low Temperature (LT) loops respectively.
2014-12-09
Event
2014-12-09
Event
2014-12-09
Event
Lean NOx Trap (LNT) is one of the two NOx control technologies for diesel cars. However, LNT generates high levels of H2S during its desulfation process. We have successfully developed an advanced CSF technology that can effectively control the H2S emission and at the same time maintain its oxidation function for CO/HC. We will show engine and lab data for LNT+CSF system, discuss the chemistry for H2S control and illustrate the functional principle for CSF design.
2014-12-09
Event
Gasoline particulate filters (GPFs) are being developed to enable compliance with the Euro 6c particulate number limit for gasoline direct injection engines. Applying a precious metal containing coating to the GPF has been found to improve soot combustion, enabling better passive regeneration under typical driving conditions. Furthermore, examples will demonstrate how coating the GPF with a three-way catalyst also provides benefits including system compactness and improved conversion efficiencies under transient and high speed driving conditions. The effects of PGM content and washcoat design on soot combustion and conversion activity will be discussed.
2014-12-09
Event
Lube oil-driven ash is inevitable for particulate filters and thus the filters need to be designed in consideration of ash loading. Since passive soot oxidation occurs at a high exhaust temperature range in GPF, ash behaviors in GPF are distinct from DPF. Our studies have shown that soot oxidation reactivity increases proportionally with increasing ash content in soot. The effect of ash loading on GPF pressure drop, filtration efficiency, and passive soot oxidation will be discussed.
2014-12-09
Event
The Tier-III and LEV-III fleet emission rollout is reviewed with the federal fuel economy standards. An emission rollout is generated compliant to the light duty LEV-III emission regulations to 2025. PGM loadings are estimated for the fleet based on current 4 cylinder Bin-4 and PZEV applications. Pd and Rh loadings will increase as the fleet average approaches SULEV30 in 2025. Non-traditional technologies such as HC trap and SCR catalyst may find a market.
2014-12-09
Event
The proposed legislative requirements on particle number emissions for EU6c and the reduced particle mass emission limits of CARB LEV-III / EPA Tier-3 pose a new challenge in the development of gasoline direct injection engines. Bosch is actively pursuing system level solutions, including the development of next generation DI injection systems, to aid OEMs in meeting the new legislative requirements without the need for additional exhaust gas after-treatment or penalties in fuel economy. This presentation will highlight key development areas and show system level pathways to successfully address these challenges.
2014-12-09
Event
In order to meet the future US 2025 CAFE standards, the average fuel economy of automobiles has to increase dramatically. Many OEM’s have a positive outlook towards considering highly efficient light-duty diesel powertrains as one possibility to reach the fleet average fuel economy goals. According to many market sales indicators, the annual sales of light-duty diesel vehicles in North America will reach nearly 1 million units by 2018. This growing emphasis for light-duty diesel powertrains has drawn attention to how the emission control technologies can be tailored to best meet the LEV III emissions standards, while still maintaining a high fuel economy advantage over their gasoline counterparts. In this presentation, beginning with a quick discussion about motivation, an in-depth technical analysis about future light-duty diesel engine and aftertreatment configurations will be discussed.
2014-11-11
Journal Article
2014-32-0122
Andrea Fioravanti, Giulio Lenzi, Giovanni Vichi, Giovanni Ferrara, Stefano Ricci, Leonardo Bagnoli
Abstract The intake and exhaust lines provide the main abatement of the acoustic emissions of an Internal Combustion Engine (ICE). Many different numerical approaches can be used to evaluate the acoustic attenuation, which is commonly expressed by the Transmission Loss. One-dimensional (1D) and three-dimensional (3D) simulations are conventionally carried out only considering the acoustic domain of the muffler or of the air-box. The walls of the acoustic filter are considered fully rigid and the interaction between the acoustic waves and the structure is consequently negligible. Moreover, the effect of the manufacturing characteristics and the attenuation of the acoustic waves due to the fluid viscous-thermal effects are also commonly disregarded in the numerical analysis of the filters. In addition, the presence of a catalytic converter or a filter cartridge may have an influence on the numerical results.
2014-11-11
Technical Paper
2014-32-0121
Kazuhiko Tanaka, Haruomi Sugita, Hibiki Saito, Masahiko Sekita
Abstract Recently, it has been widely practiced in motorcycle developments that the same type of engine is commonly applied to various vehicle categories. Accordingly, it is drawing more attention to develop the methodology for creating the best suitable sound for each individual vehicle category regardless of restriction from the engine configurations. In our study, we aimed to establish a procedure to control exhaust sounds beyond the borders across the inherent sound qualities originated from their engine configurations. Firstly, we conducted subjective tests in order to extract essential factors, depicted by adjectives that appear in verbal expressions commonly used to illustrate sound qualities in general. The results enabled us to conduct quantitative evaluations of the exhaust sound qualities of various motorcycles. Next, we clarified the relationships among the individual factors of sound qualities under our study and physical parameters in waveforms of the sounds.
2014-11-11
Journal Article
2014-32-0119
Diego Copiello, Ze Zhou, Gregory Lielens
Abstract This paper addresses the numerical simulation of motorcycle exhaust system noise using a transfer matrix method (TMM) supporting high order analytical acoustic modes representation combined with finite element method (FEM) included in the Actran software, R15. In the state-of-the-art of hybrid TMM/FEM approach the main assumption consists in a 1D plane wave acoustic propagation in the components connections which is intrinsically limiting the maximum frequency of the analysis. In motorcycle exhaust systems this limitation is even stronger because typical geometries exhibit strong curvatures and bends causing the scattering of the acoustic wave into higher order modes. Therefore, results might be erroneous even at frequencies at which only the plane wave is expected to be propagating. The improved transfer matrix method presented in this paper overcomes this limitation allowing to increase the range of applicability of this method.
2014-10-16
Event
2014-10-15
Event
Viewing 1 to 30 of 3435

Filter

  • Range:
    to:
  • Year: