Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4079
2017-08-15 ...
  • August 15-16, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Stringent requirements of reduced NOx emission limits in the US have presented engineers and technical staff with numerous challenges. Several in-cylinder technical solutions have been developed for diesel engines to meet 2010 emission standards. These technologies have been optimized and have yielded impressive engine-out results in their ability to reduce emissions to extremely low levels. However, current and state-of-the-art in-cylinder solutions have fallen short of achieving the limits imposed on diesel emissions for 2010.
2017-05-08 ...
  • May 8-9, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Heat transfer affects the performance, emissions and durability of the engine as well as the design, packaging, material choice and fatigue life of vehicle components. This course covers the broad range of heat transfer considerations that arise during the design and development of the engine and the vehicle with a primary focus on computational models and experimental validation covering the flow of heat from its origin in the engine cylinders and its transfer via multiple paths through engine components.
2017-04-04
Event
This session describes the design, modeling and performance validation of cylinder heads, lubrication systems and pumps, coolant systems and pumps, intake manifolds, exhaust manifolds, and engine block structures.`
2017-04-03 ...
  • April 3-4, 2017 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
Training / Education Classroom Seminars
As diesel emissions regulations have become more and more stringent, diesel particulate filters (DPF) have become possibly the most important and complex diesel aftertreatment device. This seminar covers many DPF-related topics using fundamentals from various branches of applied sciences such as porous media, filtration and materials sciences and will provide the student with both a theoretical as well as an applications-oriented approach to enhance the design and reliability of aftertreatment platforms.
2017-01-10
Technical Paper
2017-26-0135
Bandu Shamrao Zagade, Vijay Sharma, Thomas Körfer
Proposed Title: "Tuning & validation of DPF for India Market" Authors: Bandu Zagade1 , Vijay Sharma1 Thomas Körfer2 1FEV India, 2FEV Group Holding GmbH Corresponding author: zagade@fev.com Key Words: Diesel engine, emissions, DPF, Fuel, driving cycles, DPF regeneration, DeSOx & oil dilution ABSTRACT: In a move to curb vehicular pollution, Indian Government decided to bring forward the date for BSVI standards into effect from April 2020 while skipping the intermediate BSV stage. The plan to implement BSVI norms, which was initially scheduled for 2024 according to the National Auto Fuel Policy dated April 27, 2015, has now been slotted for April 2020. For particulate mass (PM) emissions to be brought down to the BS VI level (4.5mg/km), diesel passenger cars need to be fitted with a diesel particulate filter (DPF). The diesel particulate filter (DPF) is a device designed to remove soot from the exhaust gas of the diesel engine.
2017-01-10
Technical Paper
2017-26-0111
MY Raghu, Prashant Sharma
In recent times diesel powered vehicles are becoming popular due to improved performance and economic viability, with this the market share of diesel passenger cars is expected to approach 60 percent over the next few years. In compliance with future emission standards for diesel powered vehicles, it is required to use Diesel Particulate Filters (DPF) along with other exhaust emission control devices. There is a need for use of optimized DPF cell structure for maximum soot load capacity with low pressure drop to suit Indian driving conditions. In this paper a detailed parametric study have been carried out on different DPF cell structures like Square, Hexagonal and combined cell geometry. The performances of different cell structure has been evaluated for maximum soot loading capacity , regeneration rate, pressure drop, temperature distribution across cell structure.
2017-01-10
Journal Article
2017-26-0233
Solairaj Perumal, Abhay Kumar, Arun Mahajan, Dinesh Redkar, Sureshkumar Balakrishnan
The tractor engine related mounting brackets are very critical due to different aspects of vehicle performance, durability and noise. These mounting bracket have been designed as a framework to support engine external parts like muffler, exhaust tail pipe, fuel filter, alternator etc. Vibration and fatigue has been continuously a concern which may lead to structural failure and performance issues. Various such failures are faced regularly by automotive industry and finite element based analysis are used to resolve them. The resolution is done by playing with the component thicknesses, material, by providing additional support etc. However, due to large degree of uncertainty associated with the loading, boundary conditions, manufacturing, environmental effects; still there is some probability of failure. This paper focuses on a field failure issue of an exhaust system of a tractor and subsequent concern resolution.
2016-11-16
Journal Article
2016-01-9047
Taewon Han, Huajun Zhen, Gediminas Mainelis
Abstract We recently developed a novel diesel emissions control device, Electrostatic Screen Battery for Emissions Control (ESBEC), where diesel exhaust particles are collected onto metal screens using electrostatic principle. This paper focuses on further development of this technology: design and integration of a particle charger and testing of ESBEC with diesel exhaust. Two units - 0.038 and 0.152 m (1.5 and 6 inches) in diameter - were fabricated using 3D printing. Both units feature cylinder-shaped housing integrating the electrical charger and up to seven pairs of metal screens, which collect airborne particles. In the small-scale version, particles are charged by ions emitted from a carbon fiber brush, while in the large-scale version, this is done by using two tungsten wires traversing the cross-section of ESBEC in a crisscross pattern.
2016-11-08
Technical Paper
2016-32-0039
Andrea Fioravanti, Giovanni Vichi, Isacco Stiaccini, Giovanni Ferrara, Lorenzo Ferrari
Abstract In recent years, the motorcycle muffler design is moving to dissipative silencer architectures. Due to the increased of restrictions on noise emissions, both dissipative and coupled reactive-dissipative mufflers have substituted the most widely used reactive silencers. This led to higher noise efficiency of the muffler and size reduction. A dissipative muffler is composed by a perforated pipe that crosses a cavity volume filled by a fibrous porous material. The acoustic performance of this kind of muffler are strictly dependent on the porosity of the perforated pipe and the flow resistivity characteristic of the porous material. However, while the acoustic performance of a reactive muffler is almost independent from the presence of a mean flow for typical Mach numbers of exhaust gases, in a dissipative muffler the acoustic behaviour is strictly linked to the mass flow rate intensity.
2016-11-08
Technical Paper
2016-32-0076
Rahul Sharma, Srikanth Setlur, Satish Vemuri, Chithambaram Subramoniam
Abstract The effect of ethanol blended gasoline fuels on vehicle emissions was investigated in a spark ignited single cylinder carbureted vehicle meeting Bharat Stage III (BS III) emission norms. The effect of fuel blended with 10(E10) & 20(E20) percentage by volume of ethanol; was studied on vehicular mass emissions on World Harmonized Motorcycle Test Cycle (WMTC) as well as on Indian drive cycle (IDC) without any modifications on the vehicle. These cycles are simulation of real world driving conditions. The addition of ethanol to gasoline fuel enhances the octane number of the blended fuels and increases leaning effect. It has been observed on IDC that addition of ethanol reduces CO up to 41%, THC emissions decreases by 9% and NOx reduces up to 12%. In WMTC Cycle, the CO reduces up to 32%, THC emission increases by 30%. NOx emissions on WMTC cycle decrease with the use of E10 by 6% while increase with the use of E20 by 7%.
2016-11-08
Journal Article
2016-32-0043
Bernhard J. Graf, Christian Hubmann, Markus Resch, Mehdi Mehrgou
Abstract Beside hard facts as performance, emissions and fuel consumption especially the brand specific attributes such as styling and sound are very emotional, unique selling prepositions. To develop these emotional characters, within the given boundary conditions of the future pass-by regulation, it is necessary to define them at the very beginning of the project and to follow a consequent development process. The following paper shows examples of motorcycle NVH development work on noise cleaning and sound engineering using a hybrid development process combining front loading, simulation and testing. One of the discussed solutions is the investigation of a piston pin offset in combination with a crankshaft offset for the reduction of friction. The optimization of piston slap noise as a result of the piston secondary motion was performed by simulation. As another example a simulation based development was performed for the exhaust system layout.
2016-11-08
Journal Article
2016-32-0050
Francesco Testa, Vincenzo Gagliardi, Marco Ferrari, Stefano Fontanesi, Andrea Bertani
Abstract It is well known that 3D CFD simulations can give detailed information about fluid and flow properties in complex 3D domains while 1D CFD simulation can provide important information at a system level, i.e. about the performance of the entire engine. The drawbacks of the two simulation methods are that the former requires high computational cost while the latter is not able to capture complex local 3D features of the flow. Therefore, the two simulation methods are to be seen as complementary, indeed a coupling of the two approaches can benefit from the pros of the two methods while minimizing the cons. In particular, with a multi-scale modeling approach (1D-3D) it is possible to simulate large and complex domains by modeling the complex part with a 3D approach and the rest of the domain with a 1D approach.
2016-11-08
Journal Article
2016-32-0023
Shinji Kasatori, Yuji Marui, Hideto Oyama, Kosuke Ono
Abstract Amidst of the recent concerns on depletion of natural resources, a new heat resistant titanium alloy has been developed using the minimum amount of rare metals. Using Ti-811 as a basis and modifying the alloy composition to Ti-7Al-2Mo-0.2Si-0.15C-0.2Nb, the mechanical property, the creep resistance and the oxidation resistance at high temperatures are improved. At the same time, with the β transformation point shifted to a higher temperature, the hot formability is also improved. The newly developed alloy has made it possible to expand the application of titanium material to exhaust valves in reciprocating engines.
2016-11-01
Magazine
The comeback car The Cal Poly Pomona FSAE Team implements several measures to help overcome setbacks and achieve a podium finish at Formula SAE Lincoln. Going deep The uBox concept car developed as part of Clemson's Deep Orange program features a uniquely formed roof part. Creating a monster North Dakota State University SAE Clean Snowmobile Challenge team brings to life a war-torn engine pieced together with parts from another.
2016-10-26
Event
Papers are invited on technology developments and the integration of these technologies into new emission control systems. Topics include the integration of various diesel particulate matter (PM) and diesel Nitrogen Oxide (NOx) reduction technologies plus analogous technologies for the growing population of direct injection gasoline engines. Novel developments in DEF injection system, sensors and control systems will also be considered.
2016-10-25
Event
This session describes the design, modeling and performance validation of cylinder heads, lubrication systems and pumps, coolant systems and pumps, intake manifolds, exhaust manifolds, and engine block structures.
2016-10-24
Journal Article
2016-01-9079
Ryoko Sanui, Katsunori Hanamura
Time-lapse images of particulate matter (PM) deposition on diesel particulate filters (DPFs) at the PM-particle scale were obtained via field-emission scanning electron microscopy (FE-SEM). This particle scale time-series visualization showed the detailed processes of PM accumulation inside the DPF. First, PM introduced into a micro-pore of the DPF wall was deposited onto the surface of SiC grains composing the DPF, where it formed dendritic structures. The dendrite structures were locally grown at the contracted flow area between the SiC grains by accumulation of PM, ultimately constructing a bridge and closing the porous channel. To investigate the dominant parameters governing bridge formation, the filtration efficiency by Brownian diffusion and by interception obtained using theoretical filtration efficiency analysis of a spherical collector model were compared with the visualization results.
2016-10-17
Technical Paper
2016-01-2280
Emilio Xuereb, Mario Farrugia
Abstract Diesel particulate filters (DPF) regeneration is required to remove accumulated particulate matter in DPF. High pressure drop across DPF triggers an active regeneration by the ECU to burn off the accumulated soot. In city driving such as in a small island as Malta, exhaust gas temperatures are not high enough for passive regenerations, and ECU active regeneration might fail due to short trips. The particulate loading quantity in DPF is beneficial information as it provides an estimate of the remaining mileage expectancy of the DPF. Many vehicles provide information on particulate filter loading quantity in the OBD data. However, since this parameter is not on the mandatory list, different manufacturers provide this loading parameter in different forms, e.g.: grams; percentage (%); remaining mileage; etc. Thus comparison of the loading quantity across different manufacturers is not straightforward.
2016-10-17
Technical Paper
2016-01-2283
Stephane Zinola, Stephane Raux, Mickael Leblanc
Abstract The more and more stringent regulations on particle emissions at the vehicle tailpipe have led the car manufacturers to adopt suitable emissions control systems, like particulate filters with average filtration efficiency that can exceed 99%, including particulate mass (PM) and number (PN). However, there are still some specific operating conditions that could exhibit noticeable particle number emissions. This paper aims to identify and characterize these persistent sources of PN emissions, based on tests carried out both at the engine test bench and at the chassis dynamometer, and both for Diesel and Gasoline direct injection engines and vehicles. For Diesel engines, highest particle numbers were observed downstream of the catalyzed DPF during some operation conditions like engine warm up or filter regeneration phases.
2016-10-17
Technical Paper
2016-01-2320
Tsuyoshi Asako, Ryuji Kai, Tetsuo Toyoshima, Claus Vogt, Shogo Hirose, Shiori Nakao
Abstract Ammonia Selective Catalytic Reduction (SCR) is adapted for a variety of applications to control nitrogen oxides (NOx) in diesel engine exhaust. The most commonly used catalyst for SCR in established markets is Cu-Zeolite (CuZ) due to excellent NOx conversion and thermal durability. However, most applications in emerging markets and certain applications in established markets utilize vanadia SCR. The operating temperature is typically maintained below 550°C to avoid vanadium sublimation due to active regeneration of the diesel particulate filter (DPF), or some OEMs may eliminate the DPF because they can achieve particulate matter (PM) standard with engine tuning. Further improvement of vanadia SCR durability and NOx conversion at low exhaust gas temperatures will be required in consideration of future emission standards.
2016-10-17
Technical Paper
2016-01-2319
Kihong Kim, Rahul Mital, Takehiro Higuchi
Abstract In the previous research1), the authors discovered that the sudden pressure increase phenomenon in diesel particulate filter (DPF) was a result of soot collapse inside DPF channels. The proposed hypothesis for soot collapse was a combination of factors such as passive regeneration, high humidity, extended soak period, high soot loading and high exhaust flow rate. The passive regeneration due to in-situ NO2 and high humidity caused the straw like soot deposited inside DPF channels to take a concave shape making the collapse easier during high vehicle acceleration. It was shown that even if one of these factor was missing, the undesirable soot collapse and subsequent back pressure increase did not occur. Currently, one of the very popular NOx reduction technologies is the Selective Catalytic Reduction (SCR) on Filter which does not have any platinum group metal (PGM) in the washcoat.
2016-10-17
Technical Paper
2016-01-2161
Gangfeng Tan, Xuefeng Yang, Li Zhou, Kangping Ji, Mengying Yang
Abstract In this research, the Mg2Si1-xSnx thermoelectric material is used in the exhaust temperature difference power-generating system, and the material's heat transfer characteristic and power-generating characteristic were analyzed. Firstly, steady heat transfer model from vehicle exhaust to cooling water was established. Then the impact of Sn/Si ratio to the thermoelectric characteristic parameter was analyzed. Finally, considering the influence of varying thermal conductivity to the heat transfer process along the material's heat transfer direction, when the cold end temperature of thermoelectric materials was controlled by cooling water respectively boiling at 343K and 373K, the thermoelectric conversion efficiency and power output of Mg2Si1-xSnx thermoelectric materials with different x value were evaluated based on simulation calculation.
2016-10-17
Technical Paper
2016-01-2185
Jialin Liu, Hu Wang, Zunqing Zheng, Zeyu Zou, Mingfa Yao
Abstract In this work, both the ‘SCR-only’ and ‘EGR+SCR’ technical routes are compared and evaluated after the optimizations of both injection strategy and turbocharging system over the World Harmonized Stationary Cycle (WHSC) in a heavy duty diesel engine. The exhaust emissions and fuel economy performance of different turbocharging systems, including wastegate turbocharger (WGT), variable geometry turbocharger (VGT), two-stage fixed geometry turbocharger (WGT+FGT) and two-stage variable geometry turbocharger (VGT+FGT), are investigated over a wide EGR range. The NOx reduction methods and EGR introduction strategies for different turbocharger systems are proposed to improve the fuel economy. The requirement on turbocharging system and their potential to meet future stringent NOx and soot emission regulations are also discussed in this paper.
2016-10-17
Technical Paper
2016-01-2193
Gen Shibata, Hideyuki Ogawa, Fukei Sha, Kota Tashiro
Abstract Diesel particulate filters (DPF) are widely used in diesel engines, and forced regeneration is necessary to remove particulate matter (PM) accumulating on the DPF. This may be achieved with fuel injected after the main combustion is complete, the socalled “post fuel injection”, and supplied to the diesel oxidation catalyst (DOC) upstream of the DPF. This increases the exhaust gas temperature in the DOC and the DPF is regenerated with the high temperature gas flow. In most cases, the post fuel injection takes place at 30-90CA ATDC, and fuel may impinge on and adhere to the cylinder liner wall in some cases. Buddie and Pischinger [1] have reported a lubricant oil dilution with the post fuel injection by engine tests and simulations, and adhering fuel is a cause of worsening fuel consumption.
2016-10-17
Technical Paper
2016-01-2214
Teuvo Maunula, Thomas Wolff
The latest emission regulations for mobile and stationary applications require the use of aftertreatment methods for NOx and diesel particulate filters (DPF) for particulate matter (PM). SCR catalysts were evaluated by laboratory experiments and the most promising SCR catalysts were also scaled up to full-size. Development with copper (Cu) and iron (Fe) on zeolitic materials (Beta, ZSM-5, SAPO, chabazite) has resulted in the new generation of thermally durable SCR (selective catalytic reduction) catalysts, which have also an improved sulfur tolerance and a low N2O formation tendency. Opposite to Cu on Beta and ZSM-5, Cu on chabazite and SAPO showed clearly lower N2O formation. Cu-SCR catalysts had a low dependency on NO2/NOx but Fe-SCR catalysts required a higher NO2/NOx ratio (>0.3) to keep a high NOx efficiency.
2016-10-17
Technical Paper
2016-01-2327
Scott Eakle, Svitlana Kroll, Cary Henry
Abstract Ideally, complete decomposition of urea should produce only two products in active Selective Catalytic Reduction (SCR) systems: ammonia and carbon dioxide. In reality, urea decomposition reaction is a two-step process that includes the formation of ammonia and isocyanic acid as intermediate products via thermolysis. Being highly reactive, isocyanic acid can initiate the formation of larger molecular weight compounds such as cyanuric acid (CYN), biuret (BIU), melamine (MEL), ammeline (AML), ammelide (AMD), and dicyandimide (DICY). These compounds can be responsible for the formation of deposits on the walls of the decomposition reactor in urea SCR systems. Composition of these deposits varies with temperature exposure, and under certain conditions can create oligomers that are difficult to remove from exhaust pipes.
2016-10-17
Technical Paper
2016-01-2350
Zhien Liu, Jiangmi Chen, Sheng-hao Xiao
Abstract This paper combines fluid software STAR-CCM+ and finite element software ABAQUS to solve the temperature field of this Gasoline engine exhaust manifold based on loose coupling method. Through the simulation of car parking cooling - full load condition at full speed, we estimate thermal fatigue life of the exhaust manifold with the plastic strain increment as the evaluation parameters. It can guide the direction of optimal design of the exhaust manifold. Here we also revealed how the bolt force affects the manifold elastic and plastic behavior.
2016-10-17
Technical Paper
2016-01-2212
Peter Larsson, Will Lennard, Jessica Dahlstrom, Oivind Andersson, Per Tunestal
Abstract Yearly 3.3 million premature deaths occur worldwide due to air pollution and NOx pollution counts for nearly one seventh of those [1]. This makes exhaust after-treatment a very important research and has caused the permitted emission levels for NOx to decrease to very low levels, for EURO 6 only 0.4 g/kWh. Recently new legislation on ammonia slip with a limit of 10 ppm NH3 has been added [2], which makes the SCR-technology more challenging. This technology injects small droplets of an aqueous Urea solution into the stream of exhaust gases and through a catalytic reaction within the SCR-catalyst, NOx is converted into Nitrogen and Water. To enable the catalytic reaction the water content in the Urea solution needs to be evaporated and the ammonia molecules need to have sufficient time to mix with the gases prior to the catalyst.
Viewing 1 to 30 of 4079

Filter

  • Range:
    to:
  • Year: