Criteria

Text:
Display:

Results

Viewing 1 to 30 of 5555
2017-11-01 ...
  • November 1-3, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Hydraulic brake systems, one of the most important safety features on many road vehicles today, must meet manufacturer and customer requirements in addition to Federal Motor Vehicle Safety Standards. This course will analyze automotive braking from a system's perspective, emphasizing legal requirements as well as performance expectations such as pedal feel, stopping distance, fade and thermal management. Calculations necessary to predict brake balance and key system sizing variables that contribute to performance will be discussed.
2017-10-16 ...
  • October 16, 2017 (8:00 a.m. - 12:00 p.m.) - St. Louis, Missouri
Training / Education Classroom Seminars
This 4 hour short course provides an overview of Power Electronics (PE) in use in modern transport aircraft. This course includes the context, principles, design drivers, and the main PE components of various flight applications, including those for harsh environments. This course is designed to deliver and demystify the basic theories and best practices of mechanical, electronics, thermal management, safety, reliability and maintainability disciplines. In addition, future trends in Power Electronics will be discussed.
2017-10-16 ...
  • October 16, 2017 (1:30 p.m. - 5:30 p.m.) - St. Louis, Missouri
Training / Education Classroom Seminars
This four hour short course provides an overview of hydraulic system design of typical business and commercial aircraft. Topics will include the principles, system architectures, power sources, and the main components and technologies of hydraulic systems including hydraulic power generation, filtration, fluid storage, distribution, sensing and control. The step by step process of designing a hydraulic system will also be reviewed. Additionally, future trends in hydraulic systems will be discussed.
2017-09-23
Technical Paper
2017-01-1964
Xiangkun He, Xuewu Ji, Kaiming Yang, Yulong Liu, Jian WU, Yahui Liu
Abstract Highway traffic safety has been the most serious problem in current society, statistics show that about 70% to 90% of accidents are caused by driver operational errors. The autonomous emergency braking (AEB) is one of important vehicle intelligent safety technologies to avoid or mitigate collision. The AEB system applies the vehicle brakes when a collision is eminent in spite of any reaction by the driver. In some technologies, the system forewarns the driver with an acoustic signal when a collision is still avoidable, but subsequently applies the brakes automatically if the driver fails to respond. This paper presents the development and implementation of a rear-end collision avoidance system based on hierarchical control framework which consists of threat assessment layer, wheel slip ratio control layer and integrated-electro-hydraulic brake (IEHB) actuator control layer.
2017-09-19
Journal Article
2017-01-2036
William Schley
Abstract Of all aircraft power and thermal loads, flight controls can be the most challenging to quantify because they are highly variable. Unlike constant or impulsive loads, actuator power demands more closely resemble random processes. Some inherent nonlinearities complicate this even further. Actuation power consumption and waste heat generation are both sensitive to input history. But control activity varies considerably with mission segment, turbulence and vehicle state. Flight control is a major power consumer at times, so quantifying power demand and waste heat is important for sizing power and thermal management system components. However, many designers sidestep the stochastic aspects of the problem initially, leading to overly conservative system sizing. The overdesign becomes apparent only after detailed flight simulations become available. These considerations are particularly relevant in trade studies comparing electric versus hydraulic actuation.
2017-09-17
Technical Paper
2017-01-2513
Haocheng Li, Zhuoping Yu, Lu Xiong, Wei Han
With the development of electric vehicles, electronic hydraulic brake system becomes a hot spot of present research. In this paper,a new type of integrated electronic hydraulic brake(I-EHB) system is introduced, which is mainly composed of a motor, a worm gear, a worm, a gear, a rack etc. Motor and mechanical structure can cause friction, which leads the system to the creeping phenomenon and the dead zone. These phenomenon seriously affect the response speed and the hydraulic pressure control .In order to realize the accurate hydraulic pressure control of I-EHB system, a new friction compensation control method is proposed based on LuGre dynamic friction model. Because of the external interference or the abrasion of the system, the main parameters will change over time. So the adaptive control is of great importance. The theoretical design of adaptive control method is designed based on the feedback of the master cylinder pressure and the operating state of the system.
2017-09-17
Technical Paper
2017-01-2503
Binyu Mei, Xuexun Guo, Bo Yang, Shengguang Xiong, Gangfeng Tan
In order to ensure driving safety, heavy vehicles are often equipped with hydraulic retarder, which provides sustained and stable braking torque and converts the kinetic energy of the vehicle into heat taken away by the cooling system when the vehicle on a long downhill journey. The braking torque of conventional hydraulic retarder is modulated by adjusting the liquid filling rate, which leads to slow response and difficult control. In this paper, a new kind of magnetorheological (MR) fluid hydraulic retarder is designed by replacing the traditional transmission oil with MR fluid and arranging the excitation coils outside the working impellers. The braking torque can be controlled by the fluid viscosity of MR fluid with the variation of magnetic field. Compared with the traditional hydraulic retarder, the system has the advantages of fast response, easy control and high adjustment sensitivity.
2017-09-17
Journal Article
2017-01-2498
David B. Antanaitis, E Lloyd
This paper describes the development work that went into the creation of the J3052 “Brake Hydraulic Component Flow Rate Measurement at High Delta Pressure”, and also shows some example applications of it. The J3052 recommended practice is intended to measure flow characteristics through brake hydraulic components and subsystems driven by pressure differentials above 1 bar, and was anticipated by the task force to be invoked for components and subsystems for which pressure response characteristics are critical for the operation of the system (such as service brake pressure response and stopping distance, or pressure rise rate of a single hydraulic circuit in response to an Electronic Stability Control command).
2017-09-17
Technical Paper
2017-01-2515
Christian Riese, Armin Verhagen, Simon Schroeter, Frank Gauterin
Abstract The ongoing changes in the development of new power trains and the requirements due to driver assistance systems and autonomous driving could be the enabler for completely new brake system configurations. The shift in the brake load collective has to be included in the systems requirements for electric vehicles. Many alternative concepts for hydraulic brake systems, even for decentralized configurations, can be found in the literature. For a decentralized system with all state of the art safety functionalities included, four actuators are necessary. Therefore, the single brake module should be as cost-effective as possible. Previous papers introduced systems which are for example based on plunger-like concepts, which are very expensive and heavy due to the needed gearing and design. In this paper a comparison between a state of the art hydraulic brake system using an electromechanical brake booster, and a completely new decentralized hydraulic brake concept is presented.
2017-09-17
Technical Paper
2017-01-2516
Xiong Yang, Jing Li, Hui Miao, Zheng Tang Shi
Abstract A general principle scheme of IEHB (Integrated Electro-Hydraulic Brake system) is proposed, and the working principle of the system is simply introduced in this paper. Considering the structure characteristics of the hydraulic control unit of the system, a kind of time-sharing control strategy is adopted to realize the purpose of independent and precise hydraulic pressure regulation of each wheel brake cylinder in various brake conditions of a vehicle. Because of the strong nonlinear and time varying characteristics of the dynamic brake pressure regulation processes of IEHB, its comprehensive brake performance is mainly affected by temperature, humidity, load change, the structure and control parameters of IEHB, and so on.
CURRENT
2017-08-18
Standard
MS1005_201708
ISO 7745 shall be used for providing detailing, operational characteristics, advantages, disadvantages, and factors affecting the choice to be made among fire-resistant fluids.
CURRENT
2017-08-18
Standard
AS1006G
SCOPE IS UNAVAILABLE.
CURRENT
2017-08-18
Standard
AS4669C
SCOPE IS UNAVAILABLE.
CURRENT
2017-08-18
Standard
AS4670B
SCOPE IS UNAVAILABLE.
2017-08-15
WIP Standard
ARP900C
The purpose of this test procedure is to present test methods that can be utilized to evaluate the filtration and operating characteristics of filters that will be utilized in a cryogenic system. The methods presented herein are intended to supplement standard filter testing specifications to allow evaluation of filter performance characteristics in areas that could be affected by extreme low temperatures. The test methods can be utilized to evaluate filters up to and including 60 gpm (230 lpm) capacity. If higher flow rate filters are to be evaluated in accordance with the test methods presented herein, it will be necessary to increase the system flow capacity and the size of effluent sampling system. The test methods presented herein do not encompass testing of cryogenic bypass relief valves, delta P indicators, gages, or components other than a basic filter housing and element.
2017-07-27
WIP Standard
J1406
This SAE Recommended Practice covers the application of hydraulic brake hose (as defined by current issue of SAE J1401) as used to provide a flexible hydraulic connection between wheel end or axle brake system components on motor vehicles. The purpose of this document is to outline design, operating, and service factors in routing a hydraulic brake hose assembly to a vehicle. It is intended to serve as a recommended practice for original equipment manufacturers. Vehicle design circumstances may exist that prevent strict adherence to this document. Any deviations should have the concurrence of all engineering functions involved.
2017-07-19
WIP Standard
AS5420G
This SAE Aerospace Standard (AS) covers the requirements for a flexible, lightweight, low pressure, self-extinguishing, integrally heated silicone hose assembly. The hose has a fully fluorinated fluoropolymer inner liner and is primarily intended for use in aircraft potable water systems with an environmental operating temperature range of -65 °F (-54 °C) to +160 °F (+71 °C).
Viewing 1 to 30 of 5555

Filter

  • Range:
    to:
  • Year: