Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 7006
2017-08-16 ...
  • August 16, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The improved efficiencies of the modern diesel engine have led to its increased use within the mobility industry. The vast majority of these diesel engines employ a high-pressure common rail fuel injection system to increase the engine's fuel-saving potential, emissions reduction, and overall performance. This one-day seminar will begin with a review of the basic principles of diesel engines and fuel injection systems. Diesel and alternative fuels will be discussed, followed by current and emerging diesel engine applications.
2017-04-05 ...
  • April 5-6, 2017 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 3-4, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
2017-04-04
Event
This session focuses on fuel injection, combustion, controls, performance and emissions of SI engines fueled with gaseous fuels such as methane, natural gas (NG), biogas, producer gas, coke oven gas, hydrogen, or hydrogen-NG blends. Papers on Diesel-NG or diesel-hydrogen dual-fuel engines will also be accepted in this session.
2017-04-04
Event
Mixed mode with auto ignition but inhomogeneous charge. Injection-controlled but with EOI before SOC. Papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, combustion control, and PPC injection strategies are invited and will be placed in appropriate sub-sessions. Papers with an emphasis on the modeling aspects of combustion are encouraged to be submitted into PFL110 or PFL120 modeling sessions.
2017-04-04
Event
The session covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are also encouraged.
2017-04-04
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2017-01-10
Technical Paper
2017-26-0263
Vikas Palve, Prashant Bhavsar, Shyamsundar Kumbhar, Gyanendra Roy
In fuel tank virtual validation, not much attention is given to the effect fluid-structure interaction which is very important in dynamic analysis of two-wheeler. Currently, in fuel tank analysis the fuel mass is represented by non-structural mass (NSM) or density adjusted elements of shell. This paper describes the suitability of FE analysis using the virtual fluid mass methodology in fuel tank validation. Using the VFM method modal analysis is performed keeping the fuel tank 90% filled and results are compared with physical testing. The VFM (using MFLUID) method is much more reliable and accurate than the NSM or density adjusted method. The modal frequencies obtained in VFM technique are in proximity with the physical testing results. Further, the fuel tank and its mountings are evaluated for frequency response analysis with excitation in vertical direction using VFM.
CURRENT
2016-12-06
Standard
J2601_201612
SAE J2601 establishes the protocol and process limits for hydrogen fueling of light duty vehicles. These process limits (including the fuel delivery temperature, the maximum fuel flow rate, the rate of pressure increase and the ending pressure) are affected by factors such as ambient temperature, fuel delivery temperature and initial pressure in the vehicle’s compressed hydrogen storage system. SAE J2601 establishes standard fueling protocols based on either a look-up table approach utilizing a fixed pressure ramp rate, or a formula based approach utilizing a dynamic pressure ramp rate continuously calculated throughout the fill. Both protocols allow for fueling with communications or without communications. The table-based protocol provides a fixed end-of-fill pressure target, whereas the formula-based protocol calculates the end-of-fill pressure target continuously.
2016-12-01
WIP Standard
J1616
Compressed Natural Gas (CNG) is a practical automotive fuel, with advantages and disadvantages when compared to gasoline. Large quantities of natural gas are available in North America. It has a higher octane number rating, produces low exhaust emissions, no evaporative emissions and can cost less on an equivalent energy basis than other fuels. Natural gas is normally compressed from 20 684 to 24 821 kPa (3000 to 3600 psig) to increase its energy density thereby reducing its on-board vehicle storage volume for a given range and payload. CNG can also be made from liquefied natural gas by elevating its pressure and vaporizing it to a gas. Once converted it is referred to LCNG.
CURRENT
2016-11-29
Standard
AS5877B
This SAE Aerospace Standard (AS) prescribes requirements for the various types of nozzles that are used for the refueling and defueling of aircraft fitted with pressure fuel servicing systems. It is to be used as a replacement for MIL-N-5877, MS29520 and for all commercial applications.
CURRENT
2016-11-23
Standard
AIR4069C
This SAE Aerospace Information Report (AIR) presents preferred design, assembly, and repair practices for sealing of aircraft integral fuel tanks, including rework of applied fuel tank seals. It addresses engineering designs for integral fuel tanks as they are currently found in practice; and discusses the most practical and conservative methods for producing a reliable, sealed system. Although this AIR presents practices for sealing of integral fuel tanks, the practices presented within this report are practices that are carried throughout sealing that include both pressure and environmental aircraft sealing. Design preferences for optimum sealing are not within the scope of this document. Such discussions can be found in the United States Air Force (USAF) sponsored report, entitled Aircraft Integral Fuel Tank Design Handbook, AFWAL-TR-87-3078.
2016-11-16
Journal Article
2016-01-9048
Martin Theile, Egon Hassel, Dominique Thévenin, Bert Buchholz, Karsten Michels, Martin Hofer
Abstract Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
2016-11-08
Technical Paper
2016-32-0001
Franz Winkler, Roland Oswald, Oliver Schoegl, Nigel Foxhall
Abstract High performance engines are used in many different powersports applications. In several of these applications 2-stroke engines play an important role. The direct injection technology is a key technology for 2-stroke engines to fulfill both the customers’ request for high power and the environmental requirements concerning emissions and efficiency. As the load spectrum differs from one application to the other, it was interesting to find out if different injection technologies can answer the needs for different applications more efficiently regarding performance but also economic targets. Therefore, the results of the BRP Rotax 600 cm3 E-TEC (direct injection system) engine are compared to the same base engine but adopted with the LPDI (low pressure direct injection) technology developed by IVT at Graz University of Technology. The systems were compared on the engine testbench over 17 rpm / load points representing different product usage profiles.
2016-11-08
Technical Paper
2016-32-0068
Joel Prince Lobo, James Howard Lee, Eric Oswald, Spenser Lionetti, Robert Garrick
Abstract The performance and exhaust emissions of a commercially available, propane fueled, air cooled engine with Electronic Fuel Injection (EFI) were investigated by varying relative Air to Fuel Ratio (λ), ignition timing, and Compression Ratio (CR). Varying λ and ignition timing was accomplished by modifying the EFI system using TechniCAL Industries’ engine development software. The CR was varied through using pistons with different bowl sizes. Strong relationships were recorded between λ and ignition timing and the resulting effect these parameters have on engine performance and emissions. Lean operation (λ > 1) has the potential to significantly reduce NOx production (110 g/kW-hr down to 5 g/kW-hr). Unfortunately, it also reduces engine torque by up to an order of magnitude (31 Nm down to 3 Nm).
2016-11-08
Technical Paper
2016-32-0064
Keiya Nishida, Takeru Matsuo, Kang Yang, Youichi Ogata, Daisuke Shimo
Abstract The injection amount per stage in a multiple injection strategy is smaller than a conventional single-stage injection. In this paper, the effect of the injection amount (0.27mg, 0.89mg, 2.97mg) under 100MPa injection pressure and the effect of injection pressure (100MPa, 150MPa, 170MPa) under different injection amounts (0.27mg, 2.97mg) on the spray and mixture formation characteristics were studied by analyzing the vapor/liquid phase concentration distributions obtained under various conditions via using the tracer LAS technique. The spray was injected into a high-pressure and high-temperature constant volume vessel by using a single-hole nozzle with a diameter 0.133mm. The higher the injection pressure with a smaller injection amount is, the shorter the spray tip penetration and leaner air-fuel mixture occur. The combustion processes had been examined by a high-speed video camera with the two-color pyrometry method.
Viewing 1 to 30 of 7006

Filter

  • Range:
    to:
  • Year: