Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 6657
2015-06-15 ...
  • June 15-17, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Liquid fuel atomization and spray formation is the heart of the majority of stationary and mobile power generation machines that we rely on. This seminar focuses on the process of liquid atomization and spray formation and how it relates to fuel injection systems and emission of pollutants in modern engines. The seminar begins with background coverage of terminology, the purposes of liquid atomization and spray formation, and different designs of atomizers and nozzles employed in various industries.
2015-04-23
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-23
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-22
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-22
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-21
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-21
Event
Focuses on SI combustion technologies that employ direct, in-cylinder fuel injection. Topics of particular interest include in-cylinder fuel injection and spray studies, flow/spray interaction and in-cylinder mixture formation studies, and combustion chamber shape optimization. Focus includes "stratified" operation or other modes enabled by DI hardware, DI-specific emissions issues such as particulates and smoke, and technologies enabled by DISI (such as downsizing).
2015-04-21
Event
Papers focusing on fuel and fuel additive effects on classical diesel engine combustion with relatively short ignition delay, including papers dealing with low CR and high EGR calibrations. Subject matter may include both experimental and simulation results focused on oxygenated or bio-derived fuels, alternative petroleum formulations, fuel blends, or any other fuel-related factors affecting engine performance and emissions.
2015-04-21
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-21
Event
Papers focusing on fuel and fuel additive effects on classical diesel engine combustion with relatively short ignition delay, including papers dealing with low CR and high EGR calibrations. Subject matter may include both experimental and simulation results focused on oxygenated or bio-derived fuels, alternative petroleum formulations, fuel blends, or any other fuel-related factors affecting engine performance and emissions.
2015-04-21 ...
  • April 21-22, 2015 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • June 16-17, 2015 (8:30 a.m. - 4:30 p.m.) - Charlotte, North Carolina
  • August 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 8-9, 2015 (8:30 a.m. - 4:30 p.m.) - Norwalk, California
Training / Education Classroom Seminars
Attendees to the seminars held in conjunction with the SAE 2015 World Congress will receive COMPLETE access to Congress activities for only $55 per day. If interested, please contact our Customer Service department at +1.877.606.7323 (U.S. and Canada only) or +1.724.776.4970 (outside U.S. and Canada) to register for this special Congress daily rate. As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry.
2015-04-14
Technical Paper
2015-01-0672
Douglas Marriott, Takeshi Ohtomo, Tohru Wako
Abstract Predicting sloshing noise as early as possible during the design process has become an increasingly desired simulation for fuel tank suppliers as the demand for quieter vehicles increase. Simulating early on in the design process enables suppliers to build products directly to customer specifications, at a lower cost and shorter timeframe. The procedure to accurately and efficiently analyze complete sloshing noise behavior has to date not been fully established. Current methods rely on indirect noise deduction based on specific positions from Fluid-Structure Interaction (FSI) analyses or uncoupled fluid analysis with separate structural and acoustic analyses. In this paper, we introduce a technique to analyze the fully coupled sloshing noise generated in the fuel tank of an automobile. The technique takes advantage of combining an explicit coupled Lagrangian and Eulerian solver with an acoustics solver.
2015-04-14
Technical Paper
2015-01-0749
J. Sureshkumar, Ganesan Venkitachalam, J M Mallikarjuna, R Elayaraja
Abstract In gasoline direct injection (GDI) engines, air-fuel mixture homogeneity plays a major role on engine performance, especially in combustion and emission characteristics. The performance of the engine largely depends on various engine operating parameters viz., start of injection, duration of injection and spark timing. In order to achieve faster results CFD is becoming a handy tool to optimize and understand the effect of these parameters. Therefore, this study aims on evaluating the two injection parameters viz., single and split injection to evaluate different flame characteristics. Novelty in this study is to define five different parameters which are called α, β, γ, δ and η the details of which are explained in the paper. In order to understand the flame characteristics, these five parameters are found to be very useful.
2015-04-14
Technical Paper
2015-01-0794
Zongyu Yue, Randy Hessel, Rolf D. Reitz
Abstract The application of close-coupled post injections in diesel engines has been proven to be an effective in-cylinder strategy for soot reduction, without much fuel efficiency penalty. But due to the complexity of in-cylinder combustion, the soot reduction mechanism of post-injections is difficult to explain. Accordingly, a simulation study using a three dimensional computational fluid dynamics (CFD) model, coupled with the SpeedChem chemistry solver and a semi-detailed soot model, was carried out to investigate post-injection in a constant volume combustion chamber, which is more simple and controllable with respect to the boundary conditions than an engine. A 2-D axisymmetric mesh of radius 2 cm and height 5 cm was used to model the spray. Post-injection durations and initial oxygen concentrations were swept to study the efficacy of post-injection under different combustion conditions.
2015-04-14
Technical Paper
2015-01-0745
Petter Dahlander, Stina Hemdal
Abstract To contribute to knowledge required to meet new emission requirements, relationships between multiple injection parameters, degrees of fuel stratification, combustion events, work output and flame luminosity (indicative of particulate abundance) were experimentally investigated using a single-cylinder optical GDI engine. A tested hypothesis was that advancing portions of the mass injected would enhance the fuel-air mixing and thus reduce flame luminescence. An outward-opening piezo actuated fuel injector capable of multiple injections was used to inject the fuel using different triple injection strategies, with various combinations of late and earlier injections leading to various degrees of fuel stratification. Sprays and combustion events were captured using two high-speed cameras and cylinder pressure measurements.
2015-04-14
Technical Paper
2015-01-1070
Hanzhengnan Yu, Yong Guo, Donghai Li, Xingyu Liang, Ge-Qun Shu, Yuesen Wang, Xiangxiang Wang, Lihui Dong
Abstract Impingement of injected fuel spray against the cylinder liner (wall wetting) is one of the main obstacles that must be overcome in order for early injection Homogeneous Charge Compression Ignition (EI HCCI) combustion. In the strategies to reduce or prevent wall wetting explored in the past, limiting the spray cone angle was proved to be a useful approach. This paper is presented to study the effect of the spray cone angle on the mixture formation, particularly the region near the cylinder wall (wall wetting region), and CO/Soot emissions of an EI HCCI diesel engine. Three-dimensional modeling was performed in AVL FIRE code. The calculation grid was divided into three regions which were defined as the combustion chamber region, the wall wetting region, and the central regions. The history of the CO/soot mass of each region and the equivalent ratio/temperature (φ-T map) of wall wetting region were analyzed.
2015-04-14
Technical Paper
2015-01-0764
Seokwon Cho, Namho Kim, Jongwon Chung, Kyoungdoug Min
Abstract Ethanol is becoming more popular as a fuel component for spark-ignited engines. Ethanol can be used either as an octane enhancer of low RON gasoline or splash-blended with gasoline if a single injector is used for fuel injection. If two separate injectors are used, it is possible to inject gasoline and ethanol separately and the addition of ethanol can be varied on demand. In this study, the effect of the ethanol injection strategy on knock suppression was observed using a single cylinder engine equipped with two port fuel injectors dedicated to each side of the intake port and one direct injector. If the fuel is injected to only one side of the intake port, it is possible to form a stratified charge. The experiment was conducted under a compression ratio of 12.2 for various injection strategies.
2015-04-14
Technical Paper
2015-01-0831
Wonah Park, Youngchul Ra, Eric Kurtz, Werner Willems, Rolf D. Reitz
Abstract The low temperature combustion concept is very attractive for reducing NOx and soot emissions in diesel engines. However, it has potential limitations due to higher combustion noise, CO and HC emissions. A multiple injection strategy is an effective way to reduce unburned emissions and noise in LTC. In this paper, the effect of multiple injection strategies was investigated to reduce combustion noise and unburned emissions in LTC conditions. A hybrid surrogate fuel model was developed and validated, and was used to improve LTC predictions. Triple injection strategies were considered to find the role of each pulse and then optimized. The split ratio of the 1st and 2nd pulses fuel was found to determine the ignition delay. Increasing mass of the 1st pulse reduced unburned emissions and an increase of the 3rd pulse fuel amount reduced noise. It is concluded that the pulse distribution can be used as a control factor for emissions and noise.
2015-04-14
Technical Paper
2015-01-0458
Subrata Sarkar, Sudarshan Kumar, Atul Singhal, Surbhi Kohli, Kailash Golecha, Jubin George
Abstract The objective of this paper is to provide a robust design solution for a Jet pump which is used for fuel removal from an Active Drain Liquid Trap (ADLT). This jet pump can work for both Gasoline and Diesel based automobiles. The major focus area of this paper, is improvement in the robustness of Jet pump performance parameters, such as motive flow and induced flow. A design study for such a two fuel application was first initiated using Taguchi's robust design approach. In order to reduce the inventory complexity and cost, a common design possibility was then addressed. Two approaches for robust design have been discussed, namely the Taguchi Methodology (Orthogonal Cross Array based design) and the Dual RSM (Response Surface Methodology) Technique. Results show that the Dual RSM provides improved performance with reduced variation, as compared to Taguchi's approach.
2015-04-14
Technical Paper
2015-01-0857
Valentin Soloiu, Martin Muinos, Spencer Harp
In this study, a Premixed Charge Compression Ignition (PCCI) obtained by sequential dual fueling strategy of n-butanol port fuel injection (PFI) and direct injection of ULSD#2 was investigated against binary mixtures combustion (defined as premixed in the tank) of n-butanol and ultra-low sulfur diesel (ULSD#2) with the same n-butanol to diesel ratios (35%, 50%, 65% by mass) in an omnivorous compression ignition engine. The hypothesis of the study is that combustion phasing (respectively CA50) can be successfully controlled by the above named strategies. Both fueling strategies controlled the high reactivity of the ULSD#2 and slowed down the chemical reactions with the low cetane number fuel, n-butanol. These processes led to fuel reactivity stratification and an increase in the ignition delay observed as the amount of n-butanol increased.
2015-04-14
Technical Paper
2015-01-1647
Matthieu Lecompte, Stephane Raux, Jerome Cherel, Vivien Delpech
Abstract Euro VI standards for heavy duty vehicles require the use of a DPF in order to comply with the particulate matter emission limit. Although passive regeneration of soot by NO2, promoted by a DOC located upstream the DPF, is preferred, the use of an active regeneration might be required whenever the soot mass trapped in the DPF increases. Some manufacturers made the choice of having a fuel injection in the exhaust system in order to generate an exothermic reaction in the DOC that helps to regenerate the particulate filter. This dedicated circuit avoids the use of in-cylinder post-injection which may induce oil dilution by diesel. The DPF regeneration is efficient and the DOC works durably if the exhaust diesel spray is completely vaporized before entering the DOC and is thoroughly mixed with the exhaust gases. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line is challenging.
2015-04-14
Technical Paper
2015-01-0843
Anand Nageswaran Bharath, Yangdongfang Yang, Rolf D. Reitz, Christopher Rutland
Abstract While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
2015-04-14
Technical Paper
2015-01-0844
Sanghyun Chu, Jeongwoo Lee, Jaehyuk Cha, Hoimyung Choi, Kyoungdoug Min
Abstract The alternative fuel jet propellant 8 (JP-8, NATO F-34) can be used as an auto-ignition source instead of diesel. Because it has a higher volatility than diesel, it provides a better air-fuel premixing condition than a conventional diesel engine, which can be attributed to a reduction in particulate matter (PM). In homogeneous charged compression ignition (HCCI) or dual-fuel premixed charge compression ignition (PCCI) combustion or reactivity controlled compression ignition (RCCI), nitrogen oxides (NOx) can also be reduced by supplying external exhaust gas recirculation (EGR). In this research, the diesel and JP-8 injection strategies under conventional condition and dual-fuel PCCI combustion with and without external EGR was conducted. Two tests of dual-fuel (JP-8 and propane) PCCI were conducted at a low engine speed and load (1,500 rpm/IMEP 0.55 MPa).
Viewing 1 to 30 of 6657

Filter

  • Range:
    to:
  • Year: