Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 7256
2018-08-15 ...
  • August 15, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The improved efficiencies of the modern diesel engine have led to its increased use within the mobility industry. The vast majority of these diesel engines employ a high-pressure common rail fuel injection system to increase the engine's fuel-saving potential, emissions reduction, and overall performance. This one-day seminar will begin with a review of the basic principles of diesel engines and fuel injection systems. Diesel and alternative fuels will be discussed, followed by current and emerging diesel engine applications.
2018-03-27 ...
  • March 27-28, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • October 3-4, 2018 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
CURRENT
2017-12-07
Standard
AS1650E
This SAE Aerospace Standard (AS) defines the requirements for a threadless, flexible, self-bonding coupling assembly which, when installed on machined fixed cavity ferrules, provides a flexible connection for joining tubing and components in aircraft fuel, vent or other systems. This assembled coupling, hereafter referred to as the assembly, and is designed for use from -65 to +400 °F and at 125 psig nominal operating pressure. AS1650 was not designed for the new certification requirements for flammable leakage zones and fuel tanks for lightning protection and assembly redundancy. As such their use and installation may require additional efforts and equipment to support new FAA CFR compliance. The AS7510 flexible coupling should be the preferred coupling for use in flammable leakage zones and fuel tanks that require service life and functionality for lightning protection and part redundancy.
2017-12-01
WIP Standard
J2045
This SAE Standard encompasses the recommended minimum requirements for non-metallic tubing and/or combinations of metallic tubing to non-metallic tubing assemblies manufactured as liquid- and/or vapor-carrying systems designed for use in gasoline, alcohol blends with gasoline, or diesel fuel systems. This SAE Standard is intended to cover tubing assemblies for any portion of a fuel system which operates above –40 °C (–40 °F) and below 115 °C (239 °F), and up to a maximum working gage pressure of 690 kPa (100 psig). The peak intermittent temperature is 115 °C (239 °F). For long-term continuous usage, the temperature shall not exceed 90 °C (194 °F). It should be noted that temperature extremes can affect assemblies in various manners and every effort must be made to determine the operating temperature to which a specific fuel line assembly will be exposed, and design accordingly.
CURRENT
2017-11-21
Standard
AMS3329C
This specification covers a fluorosilicone (FVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, O-ring cord, and molded in place gaskets for aeronautical and aerospace applications without complete consideration of the end use prior to the selection of this material.
CURRENT
2017-11-21
Standard
AMS3330C
This specification covers a fluorosilicone (FVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, O-ring cord, and molded in place gaskets for aeronautical and aerospace applications without complete consideration of the end use prior to the selection of this material.
CURRENT
2017-11-20
Standard
AMS3331C
This specification covers a fluorosilicone (FVMQ) elastomer that can be used to manufacture product in the form of sheet, strip, tubing, extrusions, and molded shapes. This specification should not be used for molded rings, compression seals, O-ring cord, and molded in place gaskets for aeronautical and aerospace applications without complete consideration of the end use prior to the selection of this material.
CURRENT
2017-11-16
Standard
AMS3284C
This specification covers a polysulfide sealing compound with low adhesive strength. This elastomeric compound shall be supplied as a two-component system which cures at room temperature.
CURRENT
2017-11-09
Standard
ARP594F
The requirements presented in this document address the key considerations for thermal safety in aircraft fuel pump design. Document sections focus on understanding safety relative to an electrically motor driven fuel pump assembly acting as an ignition source for explosive fuel vapors within the airplane tank.
2017-11-05
Technical Paper
2017-32-0017
Yuzuru Sasaki, Nobuhiko Yamaguchi, Akira Arioka, Katsunori Komuro, Dai Kataoka, Shunji Akamatsu
Abstract In recent times, due to the improvement of internal cylinder flow analysis technology with Computational Fluid Dynamics (CFD), the prediction accuracy of fuel consumption and emission has improved. However, small motorcycles often have complex intake ports which restrict the layout of injectors. Therefore optimization of injection spray to achieve high combustion efficiency and less wall wetting is a challenge. In this study, we predicted fuel consumption and emission performance by the simulation result of air fuel distribution and wall wetting amount with an actual motorcycle engine model. We optimized injector nozzle length, spray angle and spray tip penetration. After the optimization, we evaluated the emission performance and fuel consumption with an actual engine. As a result, we were able to confirm the improvement of fuel consumption and emission performance.
2017-11-05
Technical Paper
2017-32-0032
Rizal Mahmud, Seong Bum Kim, Toru Kurisu, Keiya Nishida, Yoichi Ogata, Jun Kanzaki, Tadashi Tadokoro
Heat loss is more critical for the thermal efficiency improvement in small size diesel engines than large-size diesel engines. More than half of total heat energy in the internal-combustion engine is lost by cooling through the cylinder walls to the atmosphere and the exhaust gas. Therefore, the new combustion concept is needed to reduce losses in the cylinder wall. In a Direct Injection (DI) diesel engine, the spray behavior, including spray-wall impingement has an important role in the combustion development to reduce heat loss. The aim of this study is to understand the mechanism of the heat transfer from the spray and flame to the impinging wall. Experiments were performed in a constant volume vessel (CVV) at high pressures and high temperatures. Fuel was injected using a single-hole injector with a 0.133 mm diameter nozzle. Under these conditions, spray evaporates, then burns near the wall. Spray/flame behavior was investigated with a high-speed video camera.
2017-11-05
Technical Paper
2017-32-0046
Tomoyuki Mukayama, Ryota Nishigami, Annisa Bhikuning, Go Asai, Masaki Kuribayashi, Eriko Matsumura, Jiro Senda
The CO2 gas dissolved fuel for the diesel combustion is effective to reduce the NOx emissions to achieve the internal EGR (Exhaust Gas Recirculation) effect by fuel. This method has supplied EGR gas to the fuel side instead of supply EGR gas to the intake gas side. The fuel has followed specific characteristics for the diesel combustion. When the fuel is injected into the chamber in low pressure, this CO2 gas is separated from the fuel spray. The distribution characteristics of the spray are improved and the improvement of the thermal efficiency by reduction heat loss in the combustion chamber wall, and reduce soot emissions by the lean combustion is expected. Furthermore, this CO2 gas decreases the flame temperature. Further, it is anticipated to reduce NOx emissions by the spray internal EGR effect.
2017-11-05
Technical Paper
2017-32-0049
Kohei Hirano, Yuki Chihara
The new titanium fuel tank has been developed to reduce weight of the fuel tank of production motocrossers. While the titanium permits deep drawing to shape a tank by presswork, the processing of titanium material is difficult, hence no past application of the material for a motorcycle fuel tank. This project was aimed at development of new techniques for mass production of titanium fuel tanks, and succeeded in mass production of titanium fuel tanks having an adequate durability to apply to a motocrosser that can receive a strong impact while driving. As a result, approximately 40% of weight reduction from the plastic fuel tank having the same fuel capacity was realized.
2017-11-05
Technical Paper
2017-32-0054
Iman Kartolaksono Reksowardojo, Phonethip Trichanh, Kevin Ferdyamin, Mega Zulfikar Akbar
This research aims to investigate the effect of ethanol blends with pure gasoline to the rate of fuel consumption and emissions of fuel injection motorcycle 115 cc with automatic transmission which is the population is dominant in Indonesia. Variations of the bioethanol mixture are 0%, 5%, 10%, and 20% ethanol. The experiment conducted in two different conditions by using three ways catalytic converter (TWC) in the exhaust pipe and without using TWC in the exhaust pipe. First, all engine setting was originally manufacture setting. Second, the AFR is set in stoichiometry condition (λ = 1) and ignition timing set in MBT timing using modified ECU. The experiment performed on the chassis dynamometer and referred on the standard cycle ECE 15. The results of this experiment showed that increment of ethanol content in the fuel makes the rate of fuel consumption and CO2 emission both increased but CO and HC emissions decreased.
2017-11-05
Technical Paper
2017-32-0059
Yoshinori Nakao, Atsushi Hisano, Masahito Saitou, Kozo Suzuki, Katsumi Sobakiri
In this paper, it is also elucidated that the influence of the downstream injection, which caused different fuel behavior in contrast with upstream injection, on the THC after warm-up and at the maximum power, as well as its mechanism. The mechanism is clarified by use of the intake port visualization system. First, at each injection position, the effect of injection timing on THC emission after warm-up was evaluated. In the downstream injection, THC emission increases during the injection timing, in which the fuel spray directly flows in-cylinder during the intake process (hereinafter defined as the intake valve opening injection timing), and the amount of THC emission is reduced at the other injection timing (hereinafter defined as the intake valve closing injection timing). Based on the results of visualizing the intake port, injected fuel phase near the intake valve is spray in the downstream injection.
2017-11-05
Technical Paper
2017-32-0067
Ranjana Meena, Pradeep Ramachandra, Adwitiya Dube
With the increased demand of mobility in the form of two-wheelers and the continued dominant share of Internal Combustion Engines (ICE) in Indian market, there is considerable influence on the deterioration of air quality. The regulators in this region have legislated Bharat Stage 6 (BS6) as a measure to restrict tail pipe emissions, which necessitates the automotive industry to work towards emission optimization measures. Some of the factors influencing this includes, air-fuel mixture formation, spray targeting, fuel properties, flow dynamics, combustion chemical kinetics, exhaust after-treatment etc. The focus area of this paper is to study the influence of air-fuel mixture formation which is highly dependent on fuel droplet atomization, injection timing, fuel injector, injection pressure and mixture preparation techniques to reduce the engine out emissions.
2017-11-05
Technical Paper
2017-32-0077
Herman Saputro, Laila fitriana, Masato Mikami
Experiments of flame-spread of fuel droplets have been performed in microgravity actively. However, the experiment has limitation in the number of droplets due to relatively short microgravity durations in the ground based facilities. It is difficult to conduct flame spread experiments of large scale droplet clouds in microgravity. This study conducted simulation of flame-spread behavior in randomly distributed large-scale droplet clouds by using a percolation approach, in order to make a theoretical link the gap between droplet combustion experiments and spray combustion phenomenon with considering two-droplet interaction. Droplets are arranged at lattice points in 2D lattice. The occurrence probability of group combustion (OPGC) is calculated as a function of the mean droplet spacing (S/d0)m.
2017-11-05
Technical Paper
2017-32-0115
Tatsuya Kuboyama, Yasuo Moriyoshi, Hidenori Kosaka
To investigate the heat transfer phenomena inside the combustion chamber of a diesel engine, a correlation for the heat transfer coefficient in a combustion chamber of a diesel engine was investigated based on heat flux measured by the authors in the previous study(8) using the rapid compression and expansion machine. In the correlation defined in the present study, thermodynamically estimated two-zone temperatures in the burned zone and the unburned zone are applied. The characteristic velocity given in the correlation is related to the speed of spray flame impinging on the wall during the fuel injection period. After the fuel injection period, the velocity term of the Woschni’s equation is applied. It was shown that the proposed correlation well expresses heat transfer phenomena in diesel engines.
2017-11-05
Technical Paper
2017-32-0096
H. R. Guru Kiran, J. M. Mallikarjuna
Today, homogenous charge compression ignition (HCCI) engines are becoming very popular because of their potential to reduce soot and nitric oxides (NOx) emissions simultaneously. But, their performance and emission characteristics are very much dependent upon fuel injection strategy and parameters. However, they also have many challenges viz., improper combustion phasing, high rate of pressure rise and narrow operating range. Therefore, addressing them is very essential before making them a commercial success. This study focuses on evaluating the effect of fuel injection strategy and parameters on the performance and emission characteristics of a HCCI engine by computational fluid dynamics (CFD) analysis. In this study, a four-stroke engine operating in the HCCI mode is considered and the CFD analysis is carried out by using the CONVERGE.
2017-11-05
Technical Paper
2017-32-0103
T. Painrungrot, C. Charoenphonphanich, H. Kosaka, M. Tongroon
Ethanol is a good choice for alternative fuel which is prefer to dual fuel diesel engine. In this study, ethanol will be injected in to the intake manifold to cool down the intake temperature and reduce the amount of diesel fuel consumption. And also, use a technique called internal exhaust gas recirculation. The exhaust valve will be reopened during the intake stroke for 4mm. to vaporized the injected ethanol in the combustion chamber. The objective of this research is to study the effect of injection timing of dual fuel (diesel) on the engine performance and exhaust emissions of a supercharged, single cylinder 4-stroke direct injection compression ignition engine including ethanol fumigation and internal EGR, and also varying the injection pressure of diesel. Then using ethanol fuel as a secondary fuel to replace the energy input from diesel fuel by 10, 20, and 30%.
2017-11-05
Technical Paper
2017-32-0038
Rose Mary Simon Palackal, Balagovind Nandakumar Kartha, Karthikeyan Ramachandran, Srikanth Vijaykumar, Pramod Reddemreddy
Today, 99% of the two wheelers in India operate with carburetor based fuel delivery system. But with implementation of Bharath Stage VI emission norms, compliance to emission limits along with monitoring of components in the system that contributes towards tail pipe emissions would be challenging. With the introduction of the OBD II (On-Board Diagnostics) and emission durability, mass migration to electronically controlled fuel delivery system is very much expected. The new emission norms also call for precise metering of the injected fuel and therefore demands extended calibration effort. The calibration of engine management system starts with the generation of pre-calibration dataset capable of operating the engine at all operating points followed by base calibration of the main parameters such as air charge estimation, fuel injection quantity, injection timing and ignition angles relative to the piston position.
Viewing 1 to 30 of 7256

Filter

  • Range:
    to:
  • Year: