Criteria

Text:
Topic:
Display:

Results

Viewing 1 to 30 of 6654
2015-09-28 ...
  • September 28, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The improved efficiencies of the modern diesel engine have led to its increased use within the mobility industry. The vast majority of these diesel engines employ a high-pressure common rail fuel injection system to increase the engine's fuel-saving potential, emissions reduction, and overall performance. This one-day seminar will begin with a review of the basic principles of diesel engines and fuel injection systems. Diesel and alternative fuels will be discussed, followed by current and emerging diesel engine applications.
2015-06-16 ...
  • June 16-17, 2015 (8:30 a.m. - 4:30 p.m.) - Charlotte, North Carolina
  • August 24-25, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 8-9, 2015 (8:30 a.m. - 4:30 p.m.) - Norwalk, California
Training / Education Classroom Seminars
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
2015-06-15 ...
  • June 15-17, 2015 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Liquid fuel atomization and spray formation is the heart of the majority of stationary and mobile power generation machines that we rely on. This seminar focuses on the process of liquid atomization and spray formation and how it relates to fuel injection systems and emission of pollutants in modern engines. The seminar begins with background coverage of terminology, the purposes of liquid atomization and spray formation, and different designs of atomizers and nozzles employed in various industries.
2015-04-24
WIP Standard
J2744
This document presents the requirements for a build-in service port to be used in vehicles intended to comply with Enhanced Evaporative Emission Requirements. The primary function of the Service Port (Valve Assembly-Evaporative Emission Canister Purge Harness Service) is to provide non-destructive access to the evaporative emissions system to enable testing of the integrity of the system. The Service Port is used to introduce air pressure or fuel vapors into, or evacuate them out of, the system. This access may be used for the following evaluations: Evaporative System Certifications Canister Loading and Pumping End-of-line Testing System Integrity Service (e.g. OBD MIL on) Leak Location and Repair Verification In-Use Compliance Testing Canister Loading and Purging Inspection/Maintenance Testing System Integrity and Purge Check
2015-04-23
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-23
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-22
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-22
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-22
WIP Standard
J285
This SAE recommended practice provided standard dimensions for liquid fuel dispenser nozzle spouts and a system for differentiating between nozzels that dispense liquid fuel into vehicles with Spark Ignition (SI) Engines and compression Ignition (CI) Engines for land vehicles. Current legal definitions only distinguish between "UNLEADED Fuel" and "All Other Types of Fuel." These definitions are no longer valid. This document establishes a new set of definitions that have practical application to current automobile liquid fuel inlets and liquid fuel dispenser nozzle spouts.
2015-04-21
Event
Papers focusing on fuel and fuel additive effects on classical diesel engine combustion with relatively short ignition delay, including papers dealing with low CR and high EGR calibrations. Subject matter may include both experimental and simulation results focused on oxygenated or bio-derived fuels, alternative petroleum formulations, fuel blends, or any other fuel-related factors affecting engine performance and emissions.
2015-04-21
WIP Standard
AIR6325
This Aerospace Information Report (AIR) is intended to provide comprehensive reference and background information pertaining to aircraft point level sensing
2015-04-21
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-21
Event
Focuses on SI combustion technologies that employ direct, in-cylinder fuel injection. Topics of particular interest include in-cylinder fuel injection and spray studies, flow/spray interaction and in-cylinder mixture formation studies, and combustion chamber shape optimization. Focus includes "stratified" operation or other modes enabled by DI hardware, DI-specific emissions issues such as particulates and smoke, and technologies enabled by DISI (such as downsizing).
2015-04-21
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2015-04-21
Event
Papers focusing on fuel and fuel additive effects on classical diesel engine combustion with relatively short ignition delay, including papers dealing with low CR and high EGR calibrations. Subject matter may include both experimental and simulation results focused on oxygenated or bio-derived fuels, alternative petroleum formulations, fuel blends, or any other fuel-related factors affecting engine performance and emissions.
2015-04-14
Journal Article
2015-01-1177
Steven Mathison, Kiyoshi Handa, Timothy McGuire, Tyler Brown, Todd Goldstein, Michael Johnston
Abstract Appendix H of the SAE J2601 standard defines a development hydrogen fueling protocol named the MC Default Fill, which builds upon the foundation of the table based protocol, utilizing the same assumptions, boundary conditions, and process limits as the current standard. The MC Default Fill facilitates the following beyond the table based protocol: 1) the potential to provide faster, more consistent fueling times for fuel cell electric vehicle customers, and 2) the ability to continuously and dynamically adjust to a wide range of dispenser fuel delivery temperatures, allowing for more flexibility in station design. Computer simulations and laboratory bench tests were previously conducted and documented, validating the function and operation of the protocol.
2015-04-14
Technical Paper
2015-01-1163
Gabriel Elias, Stephen Samuel, Alessandro Picarelli
Abstract This study details the investigation into the hybridization of engine ancillary systems for 2014+ Le Mans LMP1-H vehicles. This was conducted in order to counteract the new strict fuel-limiting requirements governing the powertrain system employed in this type of vehicle. Dymola 1D vehicle simulation software was used to construct a rectilinear vehicle model with a map based 3.8L V8 engine and its associated ancillary systems, including oil pumps, water pump and fuel pump as well as a full kinetic energy recovery system (ERS). Appropriate validation strategy was implemented to validate the model. A validated model was used to study the difference in fuel consumption for the conventional ancillary drive off of the internal combustion engine in various situational tests and a hybrid-electric drive for driving engine ancillaries.
2015-04-14
Technical Paper
2015-01-0672
Douglas Marriott, Takeshi Ohtomo, Tohru Wako
Abstract Predicting sloshing noise as early as possible during the design process has become an increasingly desired simulation for fuel tank suppliers as the demand for quieter vehicles increase. Simulating early on in the design process enables suppliers to build products directly to customer specifications, at a lower cost and shorter timeframe. The procedure to accurately and efficiently analyze complete sloshing noise behavior has to date not been fully established. Current methods rely on indirect noise deduction based on specific positions from Fluid-Structure Interaction (FSI) analyses or uncoupled fluid analysis with separate structural and acoustic analyses. In this paper, we introduce a technique to analyze the fully coupled sloshing noise generated in the fuel tank of an automobile. The technique takes advantage of combining an explicit coupled Lagrangian and Eulerian solver with an acoustics solver.
2015-04-14
Journal Article
2015-01-0521
Yong-Yuan Ku, Ta-Wei Tang, Ko Wei Lin, Steven Chan
With the development of world economy, the shortage in the supply of oil energy as well as the greenhouse effect have become a public concern around the world. The application of biodiesel on vehicle transportation has become the focus of development in many countries. Biodiesel, Fatty Acid Methyl Esters (FAME), is made during the process of transesterification of the animal and vegetable oils. Compared with fossil diesel, biodiesel has some characteristics, such as organic acid, higher water saturation, and oxygen content. From the results of the literatures [1] to [5], it showed that biodiesel would cause the inflation of some plastic and flexible products and the corrosion of metal materials. Metal fuel tanks have the characteristics of high flammability, high impact resistance, and good workability and are often used in commercial vehicles. The corrosion of metal materials is a natural chemical change and it can be influenced by the environment.
2015-04-14
Technical Paper
2015-01-1350
Peng Liu, Liyun Fan, De Xu, Xiuzhen Ma, Enzhe Song
Abstract High-speed solenoid valve (HSV) is one of the most critical components of electronic control fuel system for diesel engine, whose dynamic response characteristics have a direct impact on the key performance indicators of diesel engine. For the improvement of dynamic response speed of HSV, a design method of multi-objective optimization based on response surface methodology and genetic algorithm (GA) is employed. Firstly, the finite element model (FEM) of HSV was developed and verified. Secondly, the second order polynomial response surface model (RSM) of the electromagnetic force was constructed by the method of optimal latin hypercube design along with the FEM of HSV, taking the key structural parameters of armature and iron core as variables. Then the multi-objective optimization mathematical model (MOMM) of HSV based on RSM was analyzed and established, taking the electromagnetic force and the mass of armature as objectives.
2015-04-14
Technical Paper
2015-01-1270
Philip Anderson, Mohammed Aslam, Partab Jeswani
Abstract In the current state of the art automotive fuel pumps there is only one channel on each side of the impeller. For high flow and pressure applications the size of such pumps becomes excessive. In order to reduce the size to a manageable level it may be necessary to have two or more channels on each side. But the problem with a multichannel pump is that the peak efficiency of each channel happens at a different operating point and the overall pump efficiency may not be that good. This problem can be overcome by synchronizing the channels. In a synchronous pump the channel diameter and cross sectional area of channels are such that the peak efficiency happens at the same operating point and the overall pump efficiency is improved. In this paper we derive the governing equations for flow, pressure and efficiency and layout a methodology for synchronizing the channels.
2015-04-14
Technical Paper
2015-01-1267
Jae-Cheon Lee, Hao Liu, Yoo-Jeong Noh, Hyun Myung Shin, Yong Nam Shin, Myung Kweon Kang
Abstract A high-pressure fuel pump in a GDI (Gasoline Direct Injection) engine has been increasingly applied on passenger vehicles because of its high fuel efficiency and reduction of exhaust emissions. The design specifications of principal components of GDI high-pressure pump should be validated prior to the manufacturing. This study presents the analytical results of the specifications for the design of a GDI pump of Motonic Co. by using computational model based simulation. The results are largely divided into two parts. First, cam-follower dynamics with the proper design of cam profile, and second, the discharge flow performance of the pump in consideration of the characteristics of inlet control valve.
Viewing 1 to 30 of 6654

Filter

  • Range:
    to:
  • Year: