Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4905
2017-10-08
Technical Paper
2017-01-2294
Julien Gueit, Jerome Obiols
Abstract In order to be ever more fuel efficient the use of Direct Injection (DI) is becoming standard in spark ignition engines. When associated with efficient turbochargers it has generated a significant increase in the overall performance of these engines. These hardware developments lead to increased stresses placed upon the fuel and the fuel injection system: for example injection pressures increased up to 400 bar, increased fuel and nozzle temperatures and contact with the flame in the combustion chamber. DISI injectors are thus subjected to undesirable deposit formation which can have detrimental consequences on engine operation such as reduced power, EOBD (Engine On Board Diagnostics) issues, impaired driveability and increased particulate emissions. In order to evaluate the sensitivity of DI spark ignition engines to fuel-related injector deposit formation, a new engine test procedure has been developed.
2017-10-08
Technical Paper
2017-01-2301
Hongli Gao, Fujun Zhang, Wenwen Zeng, Tianpu Dong, Zhengkai Wang
Abstract The electronic control of direct injection fuel system, which could improve engine fuel efficiency, dynamics and engine emission performance through good atomization, precise control of fuel injection time and improvement of fuel-gas mixture, is the key technology to achieve the stratified combustion and lean combustion. In this paper, a direct injection injector that based on voice coil motor was designed aiming at the technical characteristics of one 800cc two-stroke cam-less engine. Prior to a one - dimensional simulation model of injector was established by AMEsim and the maximal fuel injection demand was met via the optimization of the main parameters of the injector, the structure of the voice coil motor was optimized by magnetic equivalent circuit method. After that, the maximal flow rate of the injector was verified by the injector bench test while the atomization characteristic of the injector was verified by using a high-speed camera.
2017-10-08
Technical Paper
2017-01-2303
Yan Wang, Xudong Wang, Zhen Zhang, Yong Wang, Guoxiu Li, Yusong Yu
Abstract Fuel spray impingement is a common phenomenon during the combustion processes of a DI diesel engine. When liquid droplets impinge on the hot surface of a combustion chamber, a complex heat transfer and mechanical interaction occur between the droplets and combustion chamber. This probably changes the surface topography and microstructure of the impact position. Based on the experimental method, the fuel spray phenomenon and conditions of a surface pit caused by droplet impingement were investigated. The experimental results indicate that the surface pit is formed under specific conditions, i.e., a specific droplet diameter and surface temperature. Scanning electron microscopy of the pit area shows that the microstructure of the pit changed from an original dense and smooth surface to a loose structure. The microstructure of the pit did not show a molten state. The concentration of metal and nonmetallic elements in the pit area changed significantly.
2017-10-08
Technical Paper
2017-01-2283
Anand Prabu Kalaivanan, Gnanasekaran Sakthivel
Abstract Electronic Fuel Injection Systems have revolutionised Fuel Delivery and Ignition timing in the past two decades and have reduced the Fuel Consumption and Exhaust Emissions, ultimately enhancing the Economy and Ecological awareness of the engines. But the ignition/injection timing that commands the combustion is mapped to a fixed predefined table which is best suited during the stock test conditions. However continuous real time adjustments by monitoring the combustion characteristics prove to be highly efficient and be immune to varying fuel quality, lack of transient performance and wear related compression losses. For developing countries, Automotive Manufacturers have been Tuning the Ignition/Injection timing Map assuming the worst possible fuel quality. Conventional knock control system focus on engine protection only and doesn't contribute much in improving thermal efficiency.
2017-10-08
Technical Paper
2017-01-2286
A S Ramadhas, Punit Kumar Singh, Reji Mathai, Ajay Kumar Sehgal
Abstract Ambient temperature conditions, engine design, fuel, lubricant and fuel injection strategies influence the cold start performance of gasoline engines. Despite the cold start period is only a very small portion in the legislative emission driving cycle, but it accounts for a major portion of the overall driving cycle emissions. The start ability tests were carried out in the weather controlled transient dynamometer - engine test cell at different ambient conditions for investigating the cold start behavior of a modern generation multi-point fuel injection system spark ignition engine. The combustion data were analyzed for the first 200 cycles and the engine performance and emissions were analyzed for 300 s from key-on. It is observed that cumulative fuel consumption of the engine during the first 60 s of engine cold starting at 10 °C was 60% higher than at 25 °C and resulted in 8% increase in the value of peak speed of the engine.
2017-10-08
Technical Paper
2017-01-2309
Hua Wen, Shuaishuai Liang, Peng Chen, Guangjun Jiang
Abstract In this paper, a contrast experiment has been carried out for discussing the phenomenon of fuel dripping at the end of injection by using the different nozzles with varied materials. The experiment results show that the nozzle deformation has an important effect on the fuel dripping at the end of injection. The duration of the fuel shut-off process with the steel nozzle which producing smaller deformation is shorter than the polymethyl methacrylate nozzle. The mass of fuel dripping with the steel nozzle is less. For implementing a deep analysis on the experimental phenomenon about the fuel dripping with the polymethyl methacrylate nozzle, a three dimensional numerical simulation research was carried out for analyzing the influence of fuel flow inside nozzle on the solid deformation and stress distribution of the nozzle by using Fluid-Structure-Interaction method.
2017-10-08
Technical Paper
2017-01-2305
Jun Yamauchi, PengBo Dong, Keiya Nishida, Youichi Ogata
Abstract The performance of a diesel engine largely depends on the spray behavior and mixture formation. Nozzle configurations and operating conditions are important factors that influence spray development. Using numerical and experimental methods, this study focused on the spray development of multi-hole nozzles under non-evaporating and evaporating conditions to compare the influence of nozzle hole diameter and injection pressure on spray characteristics. High-speed video observation was employed to study the properties of spray development under the non-evaporating condition, while the Laser Absorption Scattering technique was used in the observation and quantitative analysis of evaporating spray characteristics in the evaporating condition. In addition, computational fluid dynamics study results published previously [1] were correlated with the current experimental results to provide more detailed explanations about the mechanism of the characteristics of spray behavior.
2017-10-08
Technical Paper
2017-01-2306
Xiaochuan Sun, Xiang Li, Zhong Huang, Dehao Ju, Xing-cai Lu, Dong Han, Zhen Huang
Abstract Recently, the shortage of fossil resources contributes to strict regulations of environmental protection. The research on the high efficiency and low emission of engines becomes an important direction all over the world. Technologies like high injection pressure, high levels of supercharging and higher levels of back pressure have come into application. Increasing the injection pressure and average cylinder pressure results in that parts of the spray can experience transcritical and supercritical regimes. In this paper, we established a surrogate fuel composed of n-Hexadecane, HMN and 1-Metylnaphthalene, to analyze the injection and atomization of diesel surrogate fuel with large eddy simulation (LES) in a cubic calculation region with high temperature and high pressure environment.
2017-10-08
Technical Paper
2017-01-2300
Wei Du, Juejue Lou, Fushui Liu
Abstract As known, the constant injection mass is a criterion for measuring the thermal efficiency of diesel engines. In this study, the effects of nozzle hole diameter on diesel free-spray characteristics were investigated in constant injection mass condition. The experiment was performed in a constant volume combustion chamber equipped with a high pressure common-rail injector that can change nozzles. Three single-hole axis nozzles with different hole diameters were used. High speed camera and Schlieren visualization set-up were used to capture the spray behaviors of liquid phase and vapor phase respectively. For liquid phase spray, the higher nozzle hole diameter, the higher were the liquid phase spray penetration rate and the saturated liquid phase spray penetration length. The saturated liquid phase spray penetration length wound not grow but oscillate around different mean values at the steady stage.
2017-10-08
Technical Paper
2017-01-2302
Tobias Knorsch, Dmitrii Mamaikin, Philippe Leick, Philipp Rogler, Jin Wang, Zhilong Li, Michael Wensing
Abstract The fuel spray behavior in the near nozzle region of a gasoline injector is challenging to predict due to existing pressure gradients and turbulences of the internal flow and in-nozzle cavitation. Therefore, statistical parameters for spray characterization through experiments must be considered. The characterization of spray velocity fields in the near-nozzle region is of particular importance as the velocity information is crucial in understanding the hydrodynamic processes which take place further downstream during fuel atomization and mixture formation. This knowledge is needed in order to optimize injector nozzles for future requirements. In this study, the results of three experimental approaches for determination of spray velocity in the near-nozzle region are presented. Two different injector nozzle types were measured through high-speed shadowgraph imaging, Laser Doppler Anemometry (LDA) and X-ray imaging.
2017-10-08
Technical Paper
2017-01-2312
Raouf Mobasheri, Rahman Akbari
Abstract The scope of this work is to investigate the simultaneous effects of injection pressure and Exhaust Gas Recirculation (EGR) on mixture formation and engine performance in a High Speed Direct Injection (HSDI) diesel engine. For this, the computational results have been firstly compared to the measured data and a good agreement has been achieved in order to predict the in-cylinder pressure, heat release rate and the amount of NOx and soot emissions. Then, various injection pressures have been studied to explore its benefits to achieve the low exhaust emission at different EGR rates. The results show, while no EGR has been applied, decreasing the nozzle diameter causes the reduction of Indicate Specific Fuel Consumption (ISFC) with an increase in Indicated Mean Effective Pressure (IMEP).
2017-10-08
Technical Paper
2017-01-2314
Genmiao Guo, Zhixia He, Qian Wang, Shenxin Sun, Zhou Chen
Abstract Study of the spray formation in vicinity of the nozzle is essential to better understand and predict the physical processes involved in the diesel atomization. The initial spray patterns were found to be different from one injection to another during our visualization experiments, which was carried out based on a long distance microscope with a high speed camera in this work. It was found that the initial spray might contain a clear single mushroom, tail region and intact liquid column, or have a tail in front of the mushroom without changing its direction. Occasionally, it presented as a double-mushroom shape, or did not include a clear mushroom. Our visualization results showed that the various spray structures were observed at different injection pressures and different injection cycles under the same injection pressure.
2017-10-08
Technical Paper
2017-01-2307
Yijie Wei, Tie Li, Bin Wang, Weiquan Shi
Lift-off length is defined as the distance from injector hole to the location where flame stabilized on a high injection pressure direct injection (DI) diesel spray. In this paper we used the high-speed (40 kHz) Schlieren and time-averaged OH chemiluminescence imaging technique to simultaneously measure the flame lift-off locations on a DI diesel spray in an optically accessible and constant-volume combustion vessel. The time-resolved development of the diesel spray acquired from the high-speed Schlieren imaging system enabled us to observe the instantaneous spray structure details of the spray flames. The OH chemiluminescence image obtained from a gated, intensified CCD video camera with different delay and width settings was used to determine the quiescent lift-off length. Experiments were conducted under various ambient temperatures, ambient gas densities, injection pressures and oxygen concentrations.
2017-10-08
Technical Paper
2017-01-2310
Xiaoyan Jia, Baigang Sun, Dongwei Wu, Dan Xu, Wei Zang, Wei Shang, Jie Wang
Abstract The control valve is the most important implementation part of a high pressure common rail system, and its flow characteristics have a great influence on the performance of an injector. In this paper, based on the structure and the working principle of an electromagnetic injector in a high pressure common rail system, a simulation model of the injector is established by AMESim software. Some key parameters of the control valve, including the volume of the control chamber, the diameter of the orifice Z (feeding orifice), the diameter of the orifice A (discharge orifice) and the hole diameter of the fuel diffusion hole are studied by using this model. The results show that these key structural parameters of the control valve have a great influence on the establishment of the control chamber pressure and the action of the needle valve.
2017-10-08
Technical Paper
2017-01-2316
Yuhan Huang, Guang Hong, John Zhou
Abstract Ethanol direct injection (EDI) has great potential in facilitating the downsizing technologies in spark ignition engines due to its strong anti-knock ability. The fuel temperature may vary widely from non-evaporating to flash-boiling sprays in real engine conditions. In this study, a CFD spray model was developed in the ANSYS Fluent environment, which was capable to simulate the EDI spray and evaporation characteristics under non-evaporating, transition and flash-boiling conditions. The turbulence was modelled by the realizable k-ε model. The Rinzic heterogeneous nucleation model was applied to simulate the primary breakup droplet size at the nozzle exit. The secondary breakup process was modelled by the Taylor Analogy Breakup model. The evaporation process was modelled by the Convection/Diffusion Controlled Model. The droplet distortion and drag, collision and droplet-wall interaction were also included.
2017-10-08
Technical Paper
2017-01-2317
Om Prakash Saw, Yashas Karaya, J M Mallikarjuna
Abstract The mixture formation in gasoline direct injection (GDI) engines operating at stratified condition plays an important role in deciding the combustion, performance and emission characteristics of the engine. In a wall-guided GDI engine, piston profile is such that the injected fuel is directed towards the spark plug to form a combustible mixture at the time of ignition. In these engines, fuel injection pressure and timing play an important role in creating a combustible mixture near the spark plug. Therefore, in this study, an attempt has been made to understand the effect of fuel injection pressure with single and split injection strategy on the mixture formation in a four-stroke, wall-guided GDI engine operating under stratified conditions by using computational fluid dynamics (CFD) analysis. Four fuel injection pressures viz., 90, 120, 150 and 180 bar are considered for the analysis.
2017-10-08
Technical Paper
2017-01-2194
Mateusz Pucilowski, Mehdi Jangi, Sam Shamun, Martin Tuner, Xue-Song Bai
Experimental heavy-duty DICI methanol engine is studied under high compression ratio conditions (CR=27). The fuel is injected with common-rail injector close to the top-dead-center (TDC) position with three different injector pressures, leading to a spray formation causing a so called wall-wetting. Numerical simulations using RANS/LPT/WSR and PDF models are employed to investigate the local conditions of the injection and combustion process. The CFD results are compared with the pressure trace and emissions from the metal engine experiment. It is shown that the simulations captured the same trend of increased amount of unburned hydrocarbons at higher injection pressures. Moreover, the intake temperature adjustments were required to correctly capture the ignition delay time when WSR model was used, whereas with the PDF method such adjustments were not needed.
2017-10-08
Technical Paper
2017-01-2197
Vignesh Pandian Muthuramalingam, Anders Karlsson
Owing to increased interest in blended fuels for automotive applications, a great deal of understanding is sought for the behavior of multicomponent fuel sprays. This sets a new requirement on spray model since the volatility of the fuel components in a blend can vary substantially. It calls for careful solution to implement the differential evaporation process concerning thermodynamic equilibrium while maintaining a robust solution. This work presents the Volvo Stochastic Blob and Bubble (VSB2) spray model for multicomponent fuels. A direct numerical method is used to calculate the evaporation of multicomponent fuel droplets. The multicomponent fuel model is implemented into OpenFoam CFD code and the case simulated is a constant volume combustion vessel. The CFD code is used to calculate liquid penetration length for surrogate diesel (n-dodecane)-gasoline (iso-octane) blend and the result is compared with experimental data.
2017-10-08
Technical Paper
2017-01-2198
Zhihong Li, Guoxiu Li, Lan Wang, Hongmeng Li, Jie Wang, Haizhou Guo, Shuangyi He
The electromagnetic valve driving mechanism is the significant equipment, which plays a vital role in the unit pump injection system; therefore, the performance of the electromagnetic valve directly influences the function of the control system. Based on the operation conditions of the unit pump injection system, a steady electromagnetic valve model was modified to study the influence factors of electromagnetic force and the best combination to get the maximum electromagnetic force. The validation model was verified by experiment. The effects of some crucial parameters upon the electromagnetic force were investigated in the present paper, (including working airspace, magnetic pole’s cross-sectional area, coil position, coil turn, the armature thickness). The result shows that the electromagnetic force of the solenoid valve enhanced with the increasing driving current and reduced with the decreasing of working condition.
2017-10-08
Technical Paper
2017-01-2425
Ramit Verma, Ramdas R Ugale
Abstract On two wheelers, magneto/alternator generates either single/three phase AC power and Regulator Rectifier Unit (RRU) does regulated rectification to charge the battery. In order to face the requirements of 2-wheeler engine with respect to upcoming stringent regulations like electronic fuel injection (EFI), anti-lock braking system (ABS), automatic headlamp on (AHO) in emerging markets like India; vehicles demand more electrical power from batteries. This demands higher power from alternator and consequently from RRU. Requirement of higher output power presents challenges on regulator rectifier unit in terms of size, power dissipation management and reliability. In this paper, improved performance of MOSFET based RRU is discussed in comparison to Silicon Controlled Rectifier (SCR) based RRU. The motivation/benefits of MOSFET based design is described along with the thermal behavior and temperature coefficient performance of RRU with test results.
2017-10-08
Technical Paper
2017-01-2371
Hiroki Kambe, Naoto Mizobuchi, Eriko Matsumura
Diesel Particulate filter (DPF) is installed as after treatment device of exhaust gas in diesel engine, and it collects Particulate Matter (PM). However, as the operation time of engine increases, the PM is accumulated in the DPF, resulting in deterioration of PM collection efficiency and increase in pressure loss. Therefore, Post injection has been attracted attention as the DPF regeneration method for burning and removing PM in the DPF. But, Post injection causes oil dilution when fuel is injected at the middle to late stage of expansion stroke. Oil dilution are concern to decrease the stroke lubricity of piston movement and the thermal efficiency. In order to estimate deposition amount of fuel spray that influences oil film, we should elucidate spray impingement behavior on wall surface of oil film, to research more from the behavior of in-cylinder spray during post injection.
2017-10-08
Journal Article
2017-01-2375
Akihiro Niwa, Shogo Sakatani, Eriko Matsumura, Takaaki Kitamura
Diesel engine has low carbon emissions and high fuel efficiency. However, diesel engine needs to reduce both Nitrogen Oxide (NOx) and Particulate matters (PM). To meet the demand of strict exhaust gas regulation, after-treatment device is required. Therefore, urea SCR (Selective Catalytic Reduction) system is used to clean NOx in diesel engine exhaust gas. In urea SCR system, it is necessary to inject the urea water solution upstream the SCR catalyst. And, it can reduce NOx applying the generated ammonia (NH3) by urea thermolysis and isocyanic acid (HNCO) hydrolysis. In this study, it focused on urea SCR system. The spray behavior injected in tail-pipe can be divided into the regime of a free spray, an impingement spray, an evaporation of liquid film and a separation droplets, and an urea water solution dispersion. Also, in each region, after evaporation of H2O in urea water solution completely, NH3 is generated by urea thermolysis and HNCO hydrolysis.
2017-10-08
Technical Paper
2017-01-2373
Jun Kaniyu, Shogo Sakatani, Eriko Matsumura, Takaaki Kitamura
Diesel Particulate Filter (DPF) is a very effective aftertreatment device to limit particulate emissions from diesel engines. As the amount of soot collected in the DPF increases, the pressure loss increases and the purification rate decreases. Therefore, DPF regeneration needs to be performed. Injected fuel into the exhaust line upstream of the Diesel Oxidation Catalyst (DOC), hydrocarbons are oxidized on the DOC, which increases the exhaust gas temperature at the DPF inlet. Also, it is necessary that the injected fuel is completely vaporized before entering the DOC, and uniformly mixed with the exhaust gases in order to make the DOC work efficiency and durably. However, ensuring complete evaporation and an optimum mixture distribution in the exhaust line are challenging. Therefore, it is important that the fuel spray feature are grasped to perform DPF regeneration effectively. The purpose of this study is the constructing a simulation model.
2017-10-08
Technical Paper
2017-01-2378
Takayuki Ogata, Mikio Makino, Takashi Aoki, Takehide Shimoda, Kyohei Kato, Takahiko Nakatani, Koji Nagata, Claus Dieter Vogt, Yoshitaka Ito, Dominic Thier
In order to meet the challenging CO2 targets beyond 2020 despite keeping high performance engines, Gasoline Direct Injection (GDI) technology usually combined with charged aspiration is expanding in the automotive industry. While providing more efficient powertrains to reduce fuel consumption one side effect of GDI is the increased particle formation during the combustion process. For the first time for GDI from September 2014 there is a Particle Number (PN) limit of 6E12 #/km, which will be further reduced by one order of magnitude to 6E11 #/km effective from September 2017 to be the same level as applied to Diesel engines. In addition to the PN limit of the certification cycle NEDC further certification of Real Driving Emissions (RDE) including portable PN measurements are under discussion by the European Commission. RDE test procedure requires stable and low emissions in a wide range of engine operations and durable over a distance of 160 000 km.
2017-10-08
Technical Paper
2017-01-2444
Yanzhong Wang, Guanhua Song
Abstract High-speed rotating gears are generally lubricated by spray lubrication. Lubricating oil is driven by high-speed rotating gear, and some lubricating oil will be excited into oil mist, so that the gears are in the gas-liquid mixed environment. In this paper, the computational fluid dynamics model of the spray lubrication cooling process is established based on the gear heat transfer behavior under the spray lubrication condition. The influence of different spray parameters on the liquid-solid two-phase convective heat transfer coefficient is obtained. On this basis, the accurate boundary conditions of gear temperature field calculation are analyzed by studying the heat transfer behavior of high speed gear spray lubrication. The calculation model of gear temperature based on spray lubrication is established, and the temperature field distribution of gear is obtained.
2017-10-08
Technical Paper
2017-01-2212
Jun Peng, Mingyang Ma, Wang Weizhi, Fu-qiang Bai, Qing Du, F Zhang
High-pressure common rail(HPCR)fuel injection system is the most widely used fuel system for diesel engines due to the fact that it can provide constant injection pressure and precise injection strategy. However, when multiple injection strategy is used, the pressure wave caused by the opening and closing of the needle valve will affect the subsequent injection and can not be neglected. In this paper, the influence of pressure wave on the second injection pressure, injection rate and fuel-injection quantity is carried out on a common rail fuel injection test rig under two-stage injection conditions. The results show that the pressure wave varies in terms of various rail pressure, environmental back pressure and injection intervals, resulting in a 10% fluctuation. As a consequence, the injection quantity will be changed. In detail, increasing injection intervals leads to an enhancement of injection pressure, injection pressure fluctuations and the decrease of injection quantity.
2017-10-08
Technical Paper
2017-01-2239
Andreas F. G. Glawar, Fabian Volkmer, Pauline R. Ziman, Adrian P. Groves, Roger F. Cracknell
Port fuel injected (PFI) technology remains the most common fuel delivery type present in the marketplace for gasoline spark ignition engines. Although increasingly stringent tailpipe CO2 targets in some markets are driving the industry towards more efficient direct injection (DI) technology, in the light of ever increasing vehicle lifetimes, a legacy vehicle fleet featuring PFI technology will remain in the marketplace for decades to come. This is especially the case in some Asian markets where PFI technology is still prominent, although DI technology adoption is starting to catch up. PFI engines can, in the presence of lower quality fuels and lubricants, build up harmful deposits on a range of critical engine parts including in the fuel injectors, combustion chamber and on inlet valves. Inlet valve deposits (IVDs) in more severe cases have been associated with drivability issues such as engine stumble and engine hesitation on sudden acceleration.
2017-10-08
Technical Paper
2017-01-2238
Ripudaman Singh, Travis Burch, George Lavoie, Margaret Wooldridge, Mohammad Fatouraie
Numerous studies have demonstrated the benefits of ethanol in increasing the thermal efficiency of gasoline-fueled spark ignition engines via the higher enthalpy of vaporization and higher knock resistance of ethanol compared with gasoline. This study expands on previous work by considering a split fuel injection strategy with a boosted direct injection spark ignition (DISI) engine fueled with E0 (100% by volume reference grade gasoline; with research octane number = 91 and motoring octane number = 83), E100 (100% by volume anhydrous ethanol), and various splash-blends of the two fuels. Experiments were performed using a production 3-cylinder Ford Ecoboost engine where two cylinders were de-activated to create a single-cylinder engine with a displacement of 0.33 L. The engine was operated over a range of loads with boosted intake manifold absolute pressure (MAP) from 1 bar to 1.5 bar absolute.
2017-10-08
Technical Paper
2017-01-2249
Chen Wang, Tianyou Wang, Kai Sun, Zhen Lu, Yong Gui
Clean combustion is critical for marine engines to meet the Tier III emission regulation. In this paper, the effects of EGR and injection strategies (including injection pressure, injection timing as well as multiple injection technology) on the performance and emissions of a 2-stroke, low speed marine diesel engine were investigated by using computational fluid dynamics (CFD) simulations to reach the IMO Tier III NOx emissions target and reduce the fuel consumption rate. Due to the large length scale of the marine engine, RANS simulation was performed in combination with the CTC-SHELL combustion model. Based on the simulation model, the variation of the cylinder pressure curve, the average temperature in the cylinder, the combustion heat release rule and the emission characteristics were studied.
2017-10-08
Technical Paper
2017-01-2255
Raul Payri, Jaime Gimeno, Santiago Cardona, Sridhar Ayyapureddi
In this article, a prototype multi-hole diesel injector from a high-pressure common rail system is used in a high-pressure and high-temperature test rig capable of reaching 1100 Kelvin and 150 bars under different oxygen concentrations. A novel optical set-up capable of visualizing the soot cloud evolution from 30 to 85 millimeters from the nozzle exit with the high-speed color diffused back illumination technique is used thanks to the insertion of a high-pressure window in the injector holder opposite to the frontal window of the vessel. Experimental results show the reduction of soot formation with an increase in injection pressure, a reduction in chamber temperature, a reduction in oxygen concentration or a reduction in chamber density.
Viewing 1 to 30 of 4905

Filter

  • Range:
    to:
  • Year: