Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4839
2017-08-16 ...
  • August 16, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
The improved efficiencies of the modern diesel engine have led to its increased use within the mobility industry. The vast majority of these diesel engines employ a high-pressure common rail fuel injection system to increase the engine's fuel-saving potential, emissions reduction, and overall performance. This one-day seminar will begin with a review of the basic principles of diesel engines and fuel injection systems. Diesel and alternative fuels will be discussed, followed by current and emerging diesel engine applications.
2017-04-05 ...
  • April 5-6, 2017 (8:30 a.m. - 4:30 p.m.) - Detroit, Michigan
  • October 3-4, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
2017-04-04
Event
The session covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are also encouraged.
2017-04-04
Event
The session covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are also encouraged.
2017-04-04
Event
The session covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are also encouraged.
2017-04-04
Event
The session covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are also encouraged.
2017-04-04
Event
The session covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are also encouraged.
2017-04-04
Event
The session covers advances in the development and application of models and tools involved in multi-dimensional engine modeling: advances in chemical kinetics, combustion and spray modeling, turbulence, heat transfer, mesh generation, and approaches targeting improved computational efficiency. Papers employing multi-dimensional modeling to gain a deeper understanding of processes related to turbulent transport, transient phenomena, and chemically reacting, two-phase flows are also encouraged.
2017-04-04
Event
Mixed mode with auto ignition but inhomogeneous charge. Injection-controlled but with EOI before SOC. Papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, combustion control, and PPC injection strategies are invited and will be placed in appropriate sub-sessions. Papers with an emphasis on the modeling aspects of combustion are encouraged to be submitted into PFL110 or PFL120 modeling sessions.
2017-04-04
Event
This session focuses on fuel injection, combustion, controls, performance and emissions of SI engines fueled with gaseous fuels such as methane, natural gas (NG), biogas, producer gas, coke oven gas, hydrogen, or hydrogen-NG blends. Papers on Diesel-NG or diesel-hydrogen dual-fuel engines will also be accepted in this session.
2017-04-04
Event
Mixed mode with auto ignition but inhomogeneous charge. Injection-controlled but with EOI before SOC. Papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, combustion control, and PPC injection strategies are invited and will be placed in appropriate sub-sessions. Papers with an emphasis on the modeling aspects of combustion are encouraged to be submitted into PFL110 or PFL120 modeling sessions.
2017-04-04
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2017-04-04
Event
This session focuses on fuel injection, combustion, controls, performance and emissions of SI engines fueled with gaseous fuels such as methane, natural gas (NG), biogas, producer gas, coke oven gas, hydrogen, or hydrogen-NG blends. Papers on Diesel-NG or diesel-hydrogen dual-fuel engines will also be accepted in this session.
2017-04-04
Event
Mixed mode with auto ignition but inhomogeneous charge. Injection-controlled but with EOI before SOC. Papers describing experiments and test data, simulation results focused on applications, fuel/additive effects, combustion control, and PPC injection strategies are invited and will be placed in appropriate sub-sessions. Papers with an emphasis on the modeling aspects of combustion are encouraged to be submitted into PFL110 or PFL120 modeling sessions.
2017-04-04
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2017-04-04
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2017-04-04
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2017-04-04
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2017-04-04
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2017-03-28
Technical Paper
2017-01-0852
Sathya prasad Potham, Le Zhao, Seong-Young Lee
This paper aims to present the results of numerical modeling and simulation of evaporation of single and multiple spherical n-heptane droplets impinging on a hot wall at a temperature above the Leidenfrost temperature at atmospheric pressure. Volume of Fluid (VOF) method is chosen for tracking the liquid gas interface and an open source CFD software, OpenFOAM, is chosen for modeling and simulations. The capability of VOF method implemented in interDyMFoam solver of OpenFOAM to simulate hydrodynamics during droplet-droplet interaction and droplet-film interaction is explored. The in-built solver is used to simulate problems in isothermal conditions and the simulation results are compared qualitatively with the published results to validate the solver. A numerical method for modeling heat and mass transfer during evaporation is implemented in conjunction with the VOF.
2017-03-28
Technical Paper
2017-01-0836
Hongjiang Li, Christopher Rutland
Large eddy simulations coupled with two uncertainty quantification (UQ) methods, latin-hypercube sampling and polynomial chaos expansion, were carried out to quantify the effects of model parameters and spray initial and boundary conditions on spray development. Evaporating, non-reacting n-dodecane and iso-octane experimental spray data under typical diesel and gasoline engine-like conditions was used to compare penetration lengths and probability contours. Five spray initial and boundary conditions were used for single-hole n-dodecane sprays. The Morris one-step-at-a-time method was used to identify parameters with the highest impacts for multi-hole iso-octane sprays. The resulting four most important parameters, including two model parameters and two spray boundary conditions, were chosen for further study. Penetration lengths and corresponding standard deviations derived from both UQ methods were found to be quite similar with experiments.
2017-03-28
Technical Paper
2017-01-0826
Russell P. Fitzgerald, Christopher Gehrke, Kenth Svensson, Glen Martin
The performance of five positive k-factor injector tips has been assessed in this work by analyzing a comprehensive set of injected mass, momentum, and spray measurements. Using high speed shadowgraphs of the injected diesel plumes, the sensitivities of measured vapor penetration and dispersion to injection pressure (100-250MPa) and ambient density (20-52 kg/m3) have been compared with the Naber-Siebers empirical spray model to gain understanding of second order effects of orifice diameter. Varying in size from 137 to 353µm, the orifice diameters and corresponding injector tips are appropriate for a relatively wide range of engine cylinder sizes (from 0.5 to 5L). In this regime, decreasing the orifice exit diameter was found to reduce spray penetration sensitivity to differential injection pressure. The cone angle and k-factored orifice exit diameter were found to be uncorrelated.
Viewing 1 to 30 of 4839

Filter

  • Range:
    to:
  • Year: