Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4674
2016-10-24
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2016-10-05 ...
  • October 5-6, 2016 (8:30 a.m. - 4:30 p.m.) - Norwalk, California
Training / Education Classroom Seminars
As diesel engines become more popular, a fundamental knowledge of diesel technology is critical for anyone involved in the diesel engine support industry. This course will explain the fundamental technology of diesel engines starting with a short but thorough introduction of the diesel combustion cycle, and continue with aspects of engine design, emission control design, and more. An overview of developing technologies for the future with a comprehensive section on exhaust aftertreatment is also included. The text, Diesel Emissions and Their Control, authored by Magdi Khair and W. Addy Majewski is included with the seminar.
2016-05-18
Journal Article
2016-01-9043
Timo van Overbrueggen, Marco Braun, Michael Klaas, Wolfgang Schroder
Abstract The interaction of biofuel sprays from an outward opening hollow cone injector and the flow field inside an internal combustion engine is analyzed by Mie-Scattering Imaging (MSI) and high-speed stereoscopic particle-image velocimetry (stereo-PIV). Two fuels (ethanol and methyl ethyl ketone (MEK)), four injection pressures (50, 100, 150, and 200 bar), three starting points of injection (60°, 277°, and 297° atdc), and two engine speeds (1,500 rpm and 2,000 rpm) define the parameter space of the experiments. The MSI measurements determine the vertical penetration length and the spray cone angle of the ethanol and MEK spray. Stereo-PIV is used to investigate the interaction of the flow field and the ethanol spray after the injection process for a start of injection at 60° atdc. These measurements are compared to stereo-PIV measurements without fuel injection performed in the same engine [19].
2016-05-10
Standard
J1668_201605
The correct setting and adjustment of fuel injection pumps requires standardized testing conditions. This SAE Standard summarizes the design and operating parameters for test benches so that, using certain information supplied by the pump manufacturer, the pump test schedule, and certain information supplied by the test bench manufacturer, it can be determined whether a particular test bench is suitable for driving a particular injection pump. This document is in most cases a summary of the ISO Standard 4008, Parts 1, 2, and 3 and is intended to provide its critical aspects. Standard ISO 4008 should be referred to for more details. Field of Application: This document is primarily applicable to test benches suitable for the calibration of fuel injection pumps for diesel engines requiring a fuel delivery of up to 300 mm3/st/cylinder at full load.
2016-04-14
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2016-04-14
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2016-04-13
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2016-04-13
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2016-04-12
Event
This session is devoted to experimental and computational work in the area of fuel injection systems and sprays. Topics include: spray characterization, cavitation, multi-phase jet modeling, CFD models for spray processes, wall films and impingement, hydraulic circuit analysis, and dissolved gas effects. Studies of both gasoline and diesel fuel sprays and fuel injection equipment are encouraged.
2016-04-05
Technical Paper
2016-01-1052
Adwitiya Dube, A Ramesh
Abstract Direct injection of fuel has been seen as a potential method to reduce fuel short circuiting in two stroke engines. However, most work has been on low pressure injection. In this work, which employed high pressure direct injection in a small two stroke engine (2S-GDI), a detailed study of injection parameters affecting performance and combustion has been presented based on experiments for evaluating its potential. Influences of injection pressure (IP), injection timing (end of injection - EOI) and location of the spark plug at different operating conditions in a 199.3 cm3 automotive two stroke engine using a real time open engine controller were studied. Experiments were conducted at different throttle positions and equivalence ratios at a speed of 3000 rpm with various sets of injection parameters and spark plug locations. The same engine was also run in the manifold injection (2S-MI) mode under similar conditions for comparison.
2016-04-05
Technical Paper
2016-01-0867
Yanfei Li, Haichun Ding, Hengjie Guo, Xiao Ma, Daliang Jing, Jian-Xin Wang
Abstract The spray characteristics is the key to achieve the clean combustion in diesel engines and the in-cylinder conditions are one of the factors affecting the spray process. In this work, the diesel spray characteristics were studied over a range of injection pressures and ambient pressures in a constant volume chamber and a single-hole common rail diesel injector was used. The present work is to decouple the effects of ambient pressure and ambient density on near-field spray processes by using different ambient gas (N2, and CO2). The spray processes were captured by a Photron SA X2 camera with speed of 300,000 fps and resolution of 256 by 80 pixels. The spray processes were analyzed in terms of penetration length and spray tip velocity. Difference in penetration length and tip velocity were found at the same ambient density and/or ambient pressure when different ambient gases were used.
2016-04-05
Technical Paper
2016-01-0873
Saeed Jahangirian, Aleksandra Egelja, Huiying Li
Abstract Demands for higher power engines have led to higher pressures in fuel injectors. Internal nozzle flow plays a critical role in the near nozzle flow and subsequent spray pattern. The internal flow becomes more difficult to model when the injector pressure and internal shape make it more prone to cavitation. Two Bosch injectors, proposed for experimental and computational studies under the Engine Combustion Network (namely “Spray C” and “Spray D”) are modeled in the computational fluid dynamics code ANSYS Fluent. Both injectors operate with n-dodecane as fuel at 150 MPa inlet pressures. The computational model includes cavitation effects to characterize any cavitating regions. Including compressibility of both liquid and vapor is found to be critical. Also, due to high velocity gradients and stresses in the nozzle, turbulent viscous energy dissipation is considered along with pressure work resulting from significant pressure changes in the injector.
2016-04-05
Journal Article
2016-01-0866
Chi-Wei Tsang, Christopher Rutland
Abstract Three time integration schemes and four finite volume interpolation schemes for the convection term in momentum equation were tested under turbulent planar gas jet and Sandia non-reacting vaporizing Spray-H cases. The three time integration schemes are the first-order Euler implicit scheme, the second-order backward scheme, and the second-order Crank-Nicolson scheme. The four spatial interpolation schemes are cubic central, linear central, upwind, and vanLeer schemes. Velocity magnitude contour, centerline and radial mean velocity and Reynolds stress profiles for the planar turbulent gas jet case, and fuel vapor contour and liquid and vapor penetrations for the Diesel spray case predicted by the different numerical schemes were compared. The sensitivity of the numerical schemes to mesh resolution was also investigated. The non-viscosity based dynamic structure subgrid model was used. The numerical tool used in this study was OpenFOAM.
2016-04-05
Journal Article
2016-01-0872
Layal Hakim, Guilhem Lacaze, Joseph Oefelein
Abstract Developing an improved understanding of transient mixing and combustion processes inherent in diesel injection is an important element in the design of advanced engines. This paper provides a detailed analysis of these processes using an idealized benchmark configuration designed to facilitate precise comparisons between different models and numerical methods. The computational domain is similar to the Engine Combustion Network (www.sandia.gov/ECN) Spray-A injector with n-dodecane as the fuel. Quantified idealizations are made in the treatment of boundary conditions to eliminate ambiguities and unknowns associated with the actual injector(s) used in the experiment. These ambiguities hinder comparisons aimed at understanding the accuracy of different models and the coupled effects of potential numerical errors.
2016-04-05
Technical Paper
2016-01-0871
Sanjoy Biswas, Manish Bakshi, G Shankar, Achintya Mukhopadhyay
Abstract An emissions, combustion noise and performance study were conducted to explore the effects of two different multiple injections strategies on emissions, combustion noise and performances without altering EGR %. The experiments were done on a six cylinder inline CRDI diesel production engine. The aim of this study is to improve performances (brake specific fuel consumption [BSFC], torque) and combustion noise (reduction) using multiple injection strategies without violating emission regulations. The other objective of this carried-out analysis is to examine the influence of different operating parameters (Speed and Load) and main injection timing combined, on same multiple injection strategies (Pilot- main – after {PMA}and Early - pilot- main –after {EPMA}) by means of analyzing emissions/soot, combustion noise and performances data.
2016-04-05
Technical Paper
2016-01-0877
Preetham Churkunti, Jonathan M. S. Mattson, Christopher Depcik
Abstract Biodiesel is a potential alternative to Ultra Low Sulfur Diesel (ULSD); however, it often suffers from increased fuel consumption in comparison to ULSD when injection timings and/or pressures are similar. To decrease fuel consumption, increasing biodiesel injection pressure has been found to mitigate the issues associated with its relatively high viscosity and lower energy content. When doing so, the literature indicates decreased emissions, albeit with potentially greater nitrogen oxide (NOx) emissions in contrast to ULSD. In order to better understand the trade-off between fuel consumption and NOx emissions, this study explores the influence of fuel injection pressure on ULSD, Waste Cooking Oil (WCO) biodiesel, and their blends in a single-cylinder compression ignition (CI) engine. In particular, fuel injection pressures and timings for WCO biodiesel and blended fuels are adjusted to attempt to mimic the in-cylinder pressure profile of operation using ULSD.
2016-04-05
Technical Paper
2016-01-0847
Le Zhao, Ahmed Abdul Moiz, Seong-Young Lee, Jeffrey Naber, Sam Barros, William Atkinson
Abstract Impingement of jet-to-jet has been found to give improved spray penetration characteristics and higher vaporization rates when compared to multi-hole outwardly injecting fuel injectors which are commonly used in the gasoline engine. The current work studies a non-reacting spray by using a 5-hole impinging-jet style direct-injection injector. The jet-to-jet collision induced by the inwardly opening nozzles of the multi-hole injector produces rapid and short jet breakup which is fundamentally different from how conventional fuel injectors operate. A non-reacting spray study is performed using a 5-hole impinging jet injector and a traditional 6-hole Bosch Hochdruck-Einspritzventil (HDEV)-5 gasoline direct-injection (GDI) injector with gasoline as a fuel injected at 172 bar pressure with ambient temperature of 653 K and 490 K and ambient pressure of 37.4 bar and 12.4 bar.
2016-04-05
Technical Paper
2016-01-0874
Giuseppe Quaremba, Luigi Allocca, Amedeo Amoresano, Vincenzo Niola, Alessandro Montanaro, Giuseppe Langella
Abstract Advanced numerical techniques, such as fuzzy logic and neural networks have been applied in this work to digital images acquired on a mono-component fuel spray (iso-octane), in order to define, in a stochastic way, the gas-liquid interface evolution. The image is a numerical matrix and so it is possible to characterize geometrical parameters and the time evolution of the jet by using deterministic, statistical stochastic and other several kinds of approach. The algorithm used works with the fuzzy logic concept to binarize the shades gray of the pixel, depending them, by using the schlieren technique, on the gas density. Starting from a primary fixed threshold, the applied technique, can select the ‘gas’ pixel from the ‘liquid’ pixel and so it is possible define the first most probably boundary lines of the spray.
2016-04-05
Technical Paper
2016-01-0848
Jianwei Zhou, Yanfeng Zhang, Jing Qin, Changwen Liu, Li Wang, Xin Han, Yiqiang Pei, Zhang Song Zhan, Xuesong Wu, Tie Gang Hu, Xueying Su, Chaojun Zhang, Tangming Chen
Abstract The main objective of this paper is to investigate the influence of injection pressures and fuel temperatures on the secondary injection spray evolution at the end of injection from a multi-hole gasoline direct injection (GDI) injector by Mie-scattering technique. The results of this paper show that the overall injection process can be classified into five stages which are injection delay stage, main injection stage, dwell stage, secondary injection stage and ligaments breakup stage respectively. Especially, the secondary injection occurs at the end of main injection, which is abnormal and undesirable spray behaviors. During the injection, big droplets and ligaments are injected through nozzle orifices at low speed. As the injection pressure increases, the phase of the secondary injection advances, and the injection duration decreases. At medium injection pressures (at 6, 8 MPa), more quantity of fuel are injected as ligaments.
2016-04-05
Technical Paper
2016-01-0845
Michele Bardi, Gilles Bruneaux, Louis-Marie Malbec
The Engine Combustion Network (ECN) has become a leading group concerning the experimental and computational analysis of engine combustion phenomena. In order to establish a coherent database for model validation, all the institutions participating in the experimental effort carry out tests at well-defined boundary conditions and using wellcharacterized hardware. In this framework, the reference Spray A injectors have produced different results even when tested in the same facility, highlighting that the nozzle employed and its fouling are important parameters to be accounted for. On the other hand, the number of the available Spray A injectors became an issue, due to the increasing number of research centers and simultaneous experiments taking place in the ECN community. The present work has a double aim: on the one hand, to seek for an appropriate methodology to “validate” new injectors for ECN experiments and to provide new hardware for the ECN community.
2016-04-05
Journal Article
2016-01-0851
Alexander Nygaard, Mireia Altimira, Lisa Prahl Wittberg, Laszlo Fuchs
Abstract It has been observed that intermittent injection leads to improved spray characteristics in terms of mixing and gas entrainment. Although some experimental work has been carried out in the past, the disintegration mechanisms that govern the breakup of intermittent jets remain unknown. In this paper we have carried out a systematic numerical analysis of the breakup of pulsated jets under different injection conditions. More specifically, the duty cycle (share of active injection during one cycle) is varied, while the total cycle time is kept constant. The advection of the liquid phase is handled through the Volume of Fluid approach and, in order to provide an accurate, yet computationally acceptable, resolution of the turbulent structures, the implicit Large Eddy Simulation has been adopted. The results show that the primary disintegration results from a combination of stretching, collision and aerodynamic interaction effects.
2016-04-05
Technical Paper
2016-01-0846
Daiji Ueda, Hiroki Tanada, Atsushi Utsunomiya, Jyun Kawamura, Jost Weber
Abstract Diesel common rail injectors are required to utilize a higher injection pressure and to achieve higher injection accuracy in order to meet increasingly severe emissions, less fuel consumption, and higher engine performance demand. In addition to those requirements, in conjunction with optimized nozzle geometry, a more rectangular injection rate and stable multiple injections with shorter intervals are required for further emissions and engine performance improvement by optimizing the combustion efficiency.
Viewing 1 to 30 of 4674

Filter

  • Range:
    to:
  • Year: