Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2110
2017-11-28
Event
2017-10-24
Event
2017-09-26
Event
2017-08-22
Event
2017-08-22
Event
2017-07-25
Event
2017-06-27
Event
2017-05-23
Event
2017-05-16 ...
  • May 16-17, 2017 (8:30 a.m. - 4:30 p.m.) - Shanghai, China
  • September 14-15, 2017 (8:30 a.m. - 4:30 p.m.) - Shanghai, China
Training / Education Classroom Seminars
Driven by high fuel prices, environmental regulations, and consumer demand, the market for hybrid electric vehicles (HEV) has experienced rapid growth. Every major automotive company produces an HEV. There are approximately fifty different HEV models on the market and over eight million HEVs already sold. In order to meet current and future demands in the HEV and PHEV markets, success will depend on engineering personnel knowing how to develop and manufacture HEV powertrains. This two day seminar will cover the fundamentals of HEV powertrain design.
2017-04-25
Event
2017-04-11
Journal Article
2017-01-9625
Souhir Tounsi
Abstract In this paper, we present a design and control methodology of an innovated structure of switching synchronous motor. This control strategy is based on the pulse width modulation technique imposing currents sum of a continuous value and a value having a shape varying in phase opposition with respect to the variation of the inductances. This control technology can greatly reduce vibration of the entire system due to the strong fluctuation of the torque developed by the engine, generally characterizing switching synchronous motors. A systemic design and modelling program is developed. This program is validated following the implementation and the simulation of the control model in the simulation environment Matlab-Simulink. Simulation results are with good scientific level and encourage subsequently the industrialization of the global system.
2017-04-11
Book
This is the electronic format of the Journal.
2017-04-06
Event
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2017-04-05
Event
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2017-04-05
Event
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2017-04-04
Event
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2017-04-04
Event
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification.
2017-03-28
Event
2017-03-28
Technical Paper
2017-01-1236
Shuitao Yang, Lihua Chen, Mohammed Alam, Fan Xu, Yan Zhou
Boost converter is used to boost the high voltage (HV) battery voltage to a higher dc-link voltage in some HEV traction inverter applications. The main advantages for the system with Boost converter are: 1) using the boost converter, traction inverter is de-coupled from battery voltage fluctuations causing it to be over-sized, 2) with higher dc-link voltage, traction inverter could achieve higher torque capability for motor especially at high speed condition. When designing this Boost converter, the switching frequency is a key parameter for the converter design. Switching frequency is directly related to the power loss (specifically switching loss) of IGBTs of a Boost converter. Moreover, it will also change the converter operation, causing different inductor ripple current, input battery ripple current as well as input capacitor ripple current. Therefore, the selection of switching frequency is very important to the performance of both active and passive components.
2017-03-28
Technical Paper
2017-01-1605
Paul Chambon, Dean Deter, David Smith, Grant Bauman
Electric machines, whether in battery electric vehicles (BEVs) or various other applications, are an important part of modern transportation strategies. Traditionally, mathematical models in based on steady-state mapping of electric machines have been used to evaluate the behavior of the machines under transient conditions. Hardware-in-the-Loop (HIL) testing seeks to provide a more accurate representation of a component’s behavior under transient load conditions that are more representative of real world conditions it will operate under, without resourcing to full vehicle installation. Oak Ridge National Laboratory (ORNL) developed such a HIL test platform capable of subjecting electric machines to both conventional steady-state test procedures as well as transient experiments such as vehicle drive cycles.
2017-03-28
Technical Paper
2017-01-0260
Yuanying Wang, Heath Hofmann, Denise Rizzo, Scott Shurin
The increasing electrification of military vehicles is also increasing the need for accurate models of electric motors and generators for use in powertrain design. In particular, there is a strong need to accurately model the internal temperatures of these machines. Thus, an accurate yet computationally-efficient thermal model is required. In previous work, a technique capable of dramatically reducing the order of a 3-dimensional finite-element (FE) thermal conduction model was developed. The developed model has acceptable accuracy but is orders of magnitude faster than the FE model. This new model was validated by a locked-rotor test with close agreement, but the results are unsatisfactory when the rotor is spinning, since the resulting heat convection behavior is not precisely modeled. This paper will present a computationally-efficient model of heat convection due to air circulation produced by rotor motion.
2017-03-28
Technical Paper
2017-01-1055
Baolin Yu, Zhi fu, T Bin Juang
The automotive industry is experiencing a profound change due to increasing pressure from environmental and energy concerns. This leads many auto makers to accelerate hybrid and electric vehicle development. Generally smaller engines utilized by hybrid and electric vehicles lend themselves to quieter operation. However, customer satisfaction could be negatively impacted by the peak whine emitted by electric motor. Unlike conventional gas vehicles, the strategy for reducing motor whine is still largely unexplored. This paper presents an analytical study on electric motor whine radiated from a hybrid vehicle transmission. The analysis includes two stages. Firstly a detailed finite element (FE) model of transmission is constructed, and case surface velocities are calculated utilizing electromagnetic force. Then a boundary element model is built for evaluating noise radiated from the transmission surface using acoustic transfer vector (ATV) method.
2017-03-28
Technical Paper
2017-01-0621
Sanjin Saric, Andreas Ennemoser, Branislav Basara, Heinz Petutschnig, Christoph Irrenfried, Helfried Steiner, Günter Brenn
RANS computations of heat transfer involving wall bounded flows at elevated Prandtl numbers typically suffer from a lack of accuracy and/or increased mesh dependency. This can be often attributed to an improper near-wall turbulence modeling and the deficiency of the wall heat transfer models (based on the so called P-functions) that do not properly account for the variation of the turbulent Prandtl number in the wall proximity (y+<5) [1]. As the conductive sub-layer gets significantly thinner than the viscous velocity sub-layer (for Pr >1), treatment of the thermal buffer layer gains importance as well. Various hybrid strategies utilize blending functions dependent on the molecular Prandtl number, which do not necessarily provide a smooth transition from the viscous/conductive sub-layer to the logarithmic region [2].
2017-03-28
Technical Paper
2017-01-1227
Ali Najmabadi, Michael Kress, Brett Dryer, Ahmad Khan
This abstract studies different switching schemes for loss reduction in a traction motor drive. The system under examination is composed of a battery, a 2 level Voltage Source Inverter, and an Interior Permanent Magnet motor. Discontinuous PWM (DPWM) control strategy is widely used in this type of motor drive for the reduction of losses. In some publications, the effect of the DPWM modulation scheme is compared to the reduction of the switching frequency which causes a drop in switching losses of the inverter. Similarly, extensive studies have examined the effect of variation of the switching frequency on the motor and inverter losses. However, the effect of applying both switching schemes simultaneously has not been explored. This paper will use a system that is operated at a fixed switching frequency as the base line. Afterwards, three different switching schemes will be studied and compared to the base line.
2017-03-28
Technical Paper
2017-01-1229
Ken Yamamoto, Nobuyasu Sadakata, Hidetoshi Okada, Yusuke Fujita
Electric oil pumps (EOP) for automobiles are used to lubricate and cool moving mechanisms and supply oil pressure to components. Conventional EOPs consist of two separate units including a driver and a pump system comprised of a motor and a pump, which, as a result, impedes layout flexibility for vehicles. To overcome this shortcoming, we have developed an ECU-integrated oil pump in which a driver, a motor and a pump are incorporated as a single unit. In the course of the project, we focused on improving vibration resistance and developing a compact design. The first challenge was to improve vibration resistance because of the driver located in close proximity of the powertrain. Since the driver is installed on the motor unit via bus bars that are electrically welded, the joints of the driver and the bus bar become susceptible to vibration.
2017-03-28
Technical Paper
2017-01-1235
Baoming Ge, Lihua Chen, Shuitao Yang
Electrified vehicles (xEV) require high torque/acceleration ability and wide speed range. To meet both of them, the traction machines have to be oversized, which results in large volume and weight, high cost, and low efficiency. In practical applications, high speed motors combining with gear box achieve tradeoff between torque and speed capacity, because the increased motor speed can reduce the motor volume at the same power rating and the gear box is employed to increase torque. In fact, electric machine can achieve “electrical gear” rather than using “mechanical gear”, so electric machines integrate “gear” and “motor” together, as a result that “mechanical gear” can be minimized. “Electrical gear” of electric machine is performed by pole-changing. In the past, pole-changing employs mechanical contactor, the windings are de-energized prior to pole changing and the stator winding needs to be reconfigurable using contactors, which will produce discontinuous torques.
Viewing 1 to 30 of 2110

Filter

  • Range:
    to:
  • Year: