Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2100
Event
2014-11-25
Event
2014-11-19
Event
2014-11-19
For a widespread adoption of Electric and Hybrid vehicles, a robust and convenient charging method is necessary. Economic cars in the near future will have limited electric driving range, and therefore will need frequent charging. Therefore, wireless automated charging will be most suitable for the widespread acceptance of electric and plug-in hybrid cars.
Event
2014-11-19
Technical Paper
2014-11-11
Stefano Frigo, Gianluca Pasini, Silvia Marelli, Giovanni Lutzemberger, Massimo Capobianco, Paolo bolognesi, Roberto Gentili, Massimo Ceraolo
As a result of growing environmental concerns, in the last years more stringent regulations for vehicle fuel consumption and exhaust emissions have been developed. Car manufacturers have focused their attention on developments of hybrid configurations of their conventional vehicles. To this aim, advanced powertrains for efficient utilization of energy are adopted in order to recover energy release during braking and, as well, to enable the ICE to operate within its highest efficiency region. Additionally, depending on the hybrid powertrain architecture (i.e., series hybrid, parallel hybrid, range extended, etc.), the ICE can also be significantly downsized thus reducing fuel consumption. The application of a turbocharging system allows to further downsize the ICE, still keeping a reasonable power level. Besides, the possibility to couple an electric drive to the turbocharger (electric turbo compound) to recover the residual energy of the exhaust gases is becoming more and more attractive, as demonstrated by several studies in the open literature and by the current application in the F1 Championship.
Technical Paper
2014-11-11
Hans-Juergen Schacht, Manuel Leibetseder, Niko Bretterklieber, Stephan Schmidt, Roland Kirchberger
Title: Control of a Low Cost Range Extender for L1e class PHEV two-wheelers Authors: Schacht, Bretterklieber, Schmidt, Kirchberger Affiliation: Institute for Internal Combustion Engines and Thermodynamics, Graz University of Technology Due to the small number of two wheelers in Europe and their seasonal use, their contribution to the total emissions has been underestimated for a long time. With the implementation of the new emission regulation 168/2013 coming into force 2016 for type approval, the two wheeler sector is facing major changes. The need to fulfil more stringent emission limits and the high demand on the durability of after treatment systems result in an engine control system that is getting more complex and thus costlier. Especially the low cost two wheelers with small engine capacities will be affected by increasing costs which cannot be covered be the actual competitive product price. Therefore, new vehicle concepts are likely to appear on the market. A vehicle concept of a plug in hybrid electric city scooter with range extender as well as the range extender itself have already been published in SAE Papers 2011-11-08 and 2012-10-23.
Technical Paper
2014-11-11
Yoshimoto Matsuda
As for the electric automobile, the mass production period has begun by the rapid progress of the battery performance. But for the electric motor cycle(MC), it is limited for the venture companies’ releases. To study the feasibility of the electric MC, we developed the prototypes in the present technical and suppliers’ environments and evaluated them by the practical view points. The developed electric MC has the equivalent driving performance of the 250cc inner combustion engine(ICE) MC and a cruising range of 100km in normal use. In the prototype development, the reliability and the ability of protection design of the battery in the whole vehicle against the environmental loads are mainly studied, especially, fever, water, shock, and the accident impact. In addition, it is carried out the performance improvement by the heat management design of the motor to meet the practical use condition. From the usage points as MC, we developed the function of the 4-speeds dog gear MT and its electric control, reward ride function, the regenerative brake control, and the quick charge.
Event
2014-10-28
Event
2014-10-22
This session covers powertrain control processes related to achieving stringent market fuel economy, emissions, performance, reliability, and quality demands of hybrid and electric powertrains. Topics include the control, calibration, and diagnostics of the engine, powertrain, and supporting electromechanical subsystems related to energy management.
Event
2014-10-22
This session covers new production and near-production hybrid powertrains, hybrid architecture, and testing.
Event
2014-10-22
This session covers new production and near-production hybrid powertrains, hybrid architecture, and testing.
Event
2014-10-22
Power electronics and electric motors are essential for improving vehicle efficiency through drivetrain electrification. Technologies that support high efficiency, high power density, and low cost motors and power modules are required for the success of vehicle electrification
Technical Paper
2014-10-13
Raja Mazuir Bin Raja Ahsan Shah, Andrew McGordon, Mark Amor-Segan, Paul Jennings
Several studies have shown that a Micro Gas Turbine (MGT) can potentially be used as a range extender for an electric vehicle or a series hybrid electric vehicle. The continuous process of combustion provides advantages in terms of noise, vibration and gaseous emission such as hydro carbon (HC), carbon monoxide (CO) and nitrogen oxides (NOx). Most MGTs have the capability to run on multi fuel without the need to change hardware configuration. The power density of the MGT is much higher than an internal combustion engine due to its less complex design, e.g. no cooling and lubrication systems are required within its architecture. However, not much research has been done to investigate in detail the technical requirements of the MGT from an automotive perspective, particularly the effect of intake temperature (engine bay temperature) on the performance and the tailpipe emissions. Previous work has shown that the engine bay temperature can be significantly higher than the ambient temperature during vehicle hot soak.
Technical Paper
2014-10-13
Gerhard Kokalj, Patrick Schatz, Christoph Zach
The automotive industry is racing to introduce some degree of hybridization into their product ranges. Since the term “hybrid vehicle” can cover a wide range of differing technologies and drivetrain topologies, this has led to a plethora of vehicles that call themselves “hybrid”. This poses an interesting challenge for marketers to differentiate these vehicles from the incumbents. However, it is not just the marketers who are faced with challenges, the developers of such hybrid drivetrains are faced with a rise in technical complexity due to the wide range of operating modes hybridization introduces. As propulsive torque is being generated in more than one place in a hybrid vehicle, the transitions from conventional drive to electrically supported drive bring with them complex aspects of multi-dimensional system control. The challenge is to be able to implement hybrid technology in an existing drivetrain, while adapting the existing components as required. The functional variability of hybrid technology, however, permits a range of possible implementations and the control calibration tasks themselves need to be well structured concerning hand-over, traceability and robustness.
Technical Paper
2014-10-13
Jonathan Hall, Hannes Marlok, Michael Bassett, Marco Warth
In 2012 MAHLE Powertrain unveiled a range-extended electric vehicle (REEV) demonstrator, which is based on a series hybrid configuration, and uses a battery to store electrical energy from the grid. Once the battery state of charge (SOC) is depleted a gasoline engine (range extender) is activated to provide the energy required to propel the vehicle. As part of the continuing development of this vehicle, MAHLE Powertrain has logged vehicle data in real world driving situations with the aim of understanding the actual usage a REEV under non-laboratory test conditions. The vehicle is instrumented with a data acquisition system to measure physical parameters, for example coolant temperatures, as well as CAN-based data from the engine and vehicle management systems. The logged data has been analysed, using in-house tools, to establish the effect of environmental factors such as ambient temperature, human behavioural characteristics and variation in usage patterns on the efficiency and operational behaviour of the REEV system as a whole.
Technical Paper
2014-10-13
Boru Jia, Zhengxing Zuo, Huihua Feng, Guohong Tian, A. P. Roskilly
Free-piston engine generator (FPEG) is a novel type of energy conversion device, which integrates a linear combustion engine and a linear electrical machine into a single unit. As an alternative to conventional engines, FPEG is a promising power generation system due to its simplicity and high thermal efficiency and has attracted considerable research interests recently. This paper presents the development for a spark-ignited free-piston engine generator prototype which was rated to 3kW power output, and the designation of major sub-systems is introduced. The electrical linear machine is operated as a linear motor to start the engine and switched to a generator after successful ignition. Closed-loop control strategy was investigated and implemented for the starting process with a constant force provide by the linear machine. Ignition is one of the most crucial problems for the generating process, thus a unique control sub-system to generate ignition signals at the correct ignition timing based on the piston position was completed.
Viewing 1 to 30 of 2100

Filter

  • Range:
    to:
  • Year: