Criteria

Text:
Display:

Results

Viewing 1 to 30 of 2102
2018-01-30
Event
2017-12-07
WIP Standard
J1711
This Society of Automotive Engineers (SAE) Recommended Practice establishes uniform chassis dynamometer test procedures for hybrid-electric vehicles (HEVs) that are designed to be driven on public roads. The procedure provides instructions for measuring and calculating the exhaust emissions and fuel economy of HEVs driven on the Urban Dynamometer Driving Schedule (UDDS) and the Highway Fuel Economy Driving Schedule (HFEDS), as well as the exhaust emissions of HEVs driven on the US06 Driving Schedule (US06) and the SC03 Driving Schedule (SC03). However, the procedures are structured so that other driving schedules may be substituted, provided that the corresponding preparatory procedures, test lengths, and weighting factors are modified accordingly. Furthermore, this document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, CO2); instead, that decision will depend on the objectives of the tester.
2017-12-01
Book
Ravi Rajamani
The environmental impact of hydrocarbon-burning aircraft is one of the main motivations for the move to electric propulsion in aerospace. Also, cars, buses, and trucks are incorporating electric or hybrid-electric propulsion systems, reducing the pressure on hydrocarbons and lowering the costs of electrical components. The economies of scale necessitated by the automotive industry will help contain costs in the aviation sector as well. The use of electric propulsion in airplanes is not a new phenomenon. However, it is only recently that it has taken off in a concrete manner with a viable commercial future. The Electric Flight Technology: Unfolding of a New Future reviews the history of this field, discusses the key underlying technologies, and describes how the future for these technologies will likely unfold, distinguishing between all-electric (AE) and hybrid-electric (HE) architectures. Written by Dr.
CURRENT
2017-11-30
Standard
AIR34B
The scope of this SAE Aerospace Information Report (AIR) is to present a guide for the determination of probable power output and the effect on the aircraft system that will be experienced when operating three-phase motors with one phase open. Unfortunately, the above subject cannot be resolved by specific rules. Modern aircraft or missile electrical systems are composed of a wide variety of electrical and electronic components. These components react differently under identical impetus due to the latitude of their design. This latitude of design must be allowed wherever possible to the accessory designer due to the various specification requirements. Therefore, it cannot be over-emphasized that the effect on the airplane or missile system, as well as motor operation, of three-phase motors on two-phase power must be thoroughly investigated.
CURRENT
2017-11-30
Standard
ARP497B
This recommendation establishes objectives for high performance control motors to be used with aeronautical and associated equipment in protective enclosures or completely within the shell of the aircraft so that they are subjected only to the internal climatic conditions of heat, cold, shock, vibration, altitude, and humidity. Control motors larger than size #23 are not covered in this document.
2017-11-28
Event
CURRENT
2017-11-07
Standard
J551/5_201711
This SAE Recommended Practice specifies measurement procedures and performance levels for magnetic and electric field emissions and conducted power mains emissions over the frequency range 150 kHz to 30 MHz, for vehicles incorporating electric propulsion systems, e.g., battery, hybrid, or plug-in hybrid electric vehicles. Conducted emission measurements in this document are applicable only to battery-charging systems which utilize a switching frequency above 9 kHz, are mounted on the vehicle, and whose power is transferred by metallic conductors. Conducted emission requirements apply only during charging of the batteries from AC power lines. Conducted and radiated emissions measurements of battery-charging systems that use an induction power coupling device are not covered by this document. The measurement of electromagnetic disturbances for frequencies from 30 MHz to 1000 MHz is covered in CISPR 12.
2017-11-07
Technical Paper
2017-36-0285
Gabriel Dalmolin, Euler Cássio Tavares de Macedo, Marcelo Geisler de Brito Lira, Nady Rocha
This paper presents the simulation of an electrical traction system using an Axial Flux Permanent Magnet (AFPM) motor using the MATLAB® computational environment. It was developed the analytical model of the entire traction system which consists of a voltage inverter, a AFPM motor, a Field Oriented Control (FOC) control system with a torque reference and the dynamic system of the vehicle. For the simulation, it was considered two distinct scenarios,i.e. a horizontal plane with no inclination and an inclined plane in a way to allow the complete system dynamic comparison. The variables of interest are the electromagnetic torque, the currents in the machine’s terminals and the final vehicle speed, which proved the estimated dynamics.
2017-11-07
Technical Paper
2017-36-0155
Luiz Carlos Daemme, Renato Penteado, Paulo Smith Schneider, Bárbara Pacheco da Rocha, Bernardo dos Santos Piccoli, Marcelo Risso Errera, Sérgio M. Corrêa
Abstract This paper reports and compares the performance of five motorcycles, four of them powered by Internal Combustion Engine (ICE) and one by an Electric Engine (EE). The power grade of those vehicles represents more than 80% of Brazilian motorcycle fleet. Motorcycles are submitted to standard routines, in accordance with regulations established by PROMOT (Control of Air Pollution for Motorcycles and Similar Vehicles). Main output parameters allowed for the assessment of their energy performance in respect to the energy source, followed by their greenhouse gases emission potential due to CO2, CH4 and N2O. The paper presents regulated emissions results for CO, THC and NOx, provided by EE and ICE engines. Different ICE motorcycles are tested, and fueled by a range of ethanol/gasoline contents from 22 to 100%, allowing to analyze the influence of the renewable biofuel on the motorcycle energetic efficiency and emissions.
2017-10-25
White Paper
WP-0002
The environmental impact of hydrocarbon-burning aircraft, both from the perspective of gas emissions and that of noise, is one of the main motivations for the move to electric propulsion. The added benefit from this shift to electric propulsion is that it has resulted in lowering the costs of electrical components such as motors, power electronic (PE) circuits, and batteries that are essential to this technology. This white paper seeks to explore the history, architecture, electrical components, and future trends of electric flight technology.
2017-10-05
Event
2017-09-01
Magazine
Knowledge wins at 2017 Formula SAE Lincoln The University of Pennsylvania and Texas A&M win the Electric and Internal Combustion Classes, respectively. Flying high at SAE Aero Design New for the twin 2017 competitions in Texas and Florida was a requirement for planes registered in the Regular Class to carry "passengers." Pedal to the metal at Formula SAE Michigan More than 100 university teams compete in this premier student racecar design competition combining static and dynamic events. Removing bumps on the path to fully automated driving Inaugural workshop for new AutoDrive Challenge student competition held at SAE World Headquarters.
2017-08-23
Event
2017-08-22
Event
2017-08-22
Event
2017-08-08
Event
2017-07-25
Event
2017-07-13
Event
Viewing 1 to 30 of 2102

Filter

  • Range:
    to:
  • Year: