Criteria

Text:
Display:

Results

Viewing 1 to 30 of 4307
2017-09-07 ...
  • September 7-19, 2017 (4 Sessions) - Live Online
Training / Education Online Web Seminars
Any product is a collection of materials that have been manipulated into various shapes to form the components and joints used within the product. In fact, up to 70% of the cost to make a product is due to its materials. Therefore, getting the materials right will have a big impact on the success of a product.
2017-08-16 ...
  • August 16-18, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 13-15, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
RMS (Reliability-Maintainability-Safety-Supportability) engineering is emerging as the newest discipline in product development due to new credible, accurate, quantitative methods. Weibull Analysis is foremost among these new tools. New and advanced Weibull techniques are a significant improvement over the original Weibull approach. This workshop, originally developed by Dr. Bob Abernethy, presents special methods developed for these data problems, such as Weibayes, with actual case studies in addition to the latest techniques in SuperSMITH® Weibull for risk forecasts with renewal and optimal component replacement.
2017-06-21 ...
  • June 21-23, 2017 (2 Sessions) - Live Online
  • September 19-21, 2017 (2 Sessions) - Live Online
  • December 6, 2017 (2 Sessions) - Live Online
Training / Education Online Web Seminars
In a global economy, aviation, space and defense organizations are presented the challenge of producing and delivering safe and reliable products across a wide range of customer requirements and expectations. In an effort to address diverse quality requirements and expectations while also reducing costs throughout the supply chain, the SAE AS9100 family of standards was developed by international aerospace industry representatives to standardize international aerospace quality management system requirements.
2017-04-18 ...
  • April 18-27, 2017 (4 Sessions) - Live Online
  • October 17-26, 2017 (4 Sessions) - Live Online
Training / Education Online Web Seminars
Tough times require searching for things that we can change and making them better. But so often problems are solved with 'band-aids' and not root cause solutions. This approach is getting too expensive and at best only helps companies tread water. To combat these issues and adopt a fresh approach, teams can use the methods and tools of Root Cause Problem Solving to first view problems as opportunities for improvement, identify root causes and implement solutions to prevent recurrence. Benefits include improved quality and customer satisfaction, reduced operation costs, and greater employee knowledge of work processes.
2017-04-04
Event
This session presents the theory, practices and technology used in development of trends in reliability and durability testing (ART/ADT) technology and accurate physical simulation for successful performance predicting. The purpose is covering a new ideas and unique approaches to simulation interaction of full field inputs, safety, and human factors, improvement the ART/ADT steps-components, implementation that leads to development dependability, reduce recalls, life cycle cost, time, etc.
2017-04-04
Event
This technical session deals with research and development efforts addressing the advancement and applications of Lean methodologies and Quality improvement in the mobility industry. Presentations in this session will portray the latest developments in the principles, practices, tools, processes, and applications of Lean and Quality improvement methodologies.
2017-04-03 ...
  • April 3-4, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • August 14-15, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
  • December 7-8, 2017 (8:30 a.m. - 4:30 p.m.) - Troy, Michigan
Training / Education Classroom Seminars
Design of Experiments (DOE) is a methodology that can be effective for general problem-solving, as well as for improving or optimizing product design and manufacturing processes. Specific applications of DOE include identifying proper design dimensions and tolerances, achieving robust designs, generating predictive math models that describe physical system behavior, and determining ideal manufacturing settings. This seminar utilizes hands-on activities to help you learn the criteria for running a DOE, the requirements and pre-work necessary prior to DOE execution, and how to select the appropriate designed experiment type to run.
2017-03-28
Technical Paper
2017-01-0480
Mingde Ding
For structural application, composite parts structure is much more affected by load cases than steel part structure. Engine room bracket of EV, which is structural part and is used to bear Motor Controller, Charger and so on, has different load cases for different EV. Three commonest load cases that are Case 1: bearing 65kg (without suspension part), Case 2: bearing 68kg(including 3.5kg suspension part) and Case 3: bearing 70.1kg (including 5.6kg suspension part). According to topology optimization, structurel 1 was obtained, and then CAE analysis including (strength, stiffness and model) was carried out for abovement three load cases. For Case 1 and Case 2, the analysis result can meet the requirement. However, for Case 3, the stiffness and model analysis result can not satisfy the requirement. To meet the analysis result of Case 3, Structure 1 was optimized and structure 2 was obtained. The CAE analysis was conducted and the results can satisfy the requirements.
2017-03-28
Technical Paper
2017-01-0397
Salah H. R. Ali
Abstract There is an eternal extended cooperation between the CMM-coordinate metrology and automotive industry which affecting positively the world economy. Coordinate measuring machine (CMM) is considered as one of the very important techniques to increase the manufacturing quality. Hence, giving more attention to the CMM metrology can play a good role in that area to increase the outcome of the auto industry with high quality. Thus, developing CMM-coordinate metrology techniques constitutes allows important issue and needs more and more scientific research work to enhance the automotive industry. This paper aims to give an overview on the new research works performed in this area during the last few years. The article discusses the latest technology and being updates, such as micro-CMM and hybrid-multi-probe-CMM. On the other hand some new applications of CMM-coordinate metrology techniques in automotive industry have been presented.
2017-03-28
Technical Paper
2017-01-0455
Harshad Hatekar, Baskar Anthonysamy, V. Saishanker, Lakshmi Pavuluri, Gurdeep Singh Pahwa
Abstract Structural elastomer components like bushes, engine mounts are required to meet stringent and contrasting requirements of being soft for better NVH and also be durable at different loading conditions and different road conditions. Silent block bushes are such components where the loading in radial direction of bushes are high to ensure the durability of bushes at high loads, but has to be soft on torsion to ensure good NVH. These requirements present with unique challenge to optimize the leaf spring bush design, stiffness and material characteristics of the rubber. Traditionally, bushes with varying degree of stiffness are selected, manufactured and tested on vehicle and the best one is chosen depending on the requirements. However, this approach is costly, time consuming and iterative. In this study, the stiffness targets required for the bush were analysed using static and dynamic load cases using virtual simulation (MSC.ADAMS).
2017-03-28
Technical Paper
2017-01-0473
Satoshi Nakada, Toru Furusawa, Eiichiro Yokoi, R Carbas, M Costa, E Marques, G Viana, LFM da Silva
Abstract In recent years, adhesive bonding is increasingly being applied in the construction of vehicle frames in order to improve body stiffness and crash performance. Regarding crash performance, the behavior of impacted components is affected by the fracture energy value of the adhesive. However, the relationship between the ductility and fracture energy values under mixed-mode loadings has not been sufficiently evaluated. In this paper, the fracture energy of three structural adhesives in a static mixed-mode loading using Double Cantilever Beam (DCB) specimens is presented. To derive the fracture energy values, the Compliance Based Beam Method (CBBM) was used, which allowed for precise determination of fracture energy values. Static mixed-mode loading tests were performed in six configurations of mixed-mode loading, ranging from pure peel mode state to almost pure shear mode state.
2017-03-28
Technical Paper
2017-01-1131
Keith Gilbert, Srini Mandadapu, Christopher Cindric
Abstract The implementation of electronic shifters (e-shifter) for automatic transmissions in vehicles has created many new opportunities for the customer facing transmission interface and in-vehicle packaging. E-shifters have become popular in recent years as their smaller physical size leads to packaging advantages, they reduce the mass of the automatic transmission shift system, they are easier to install during vehicle assembly, and act as an enabler for autonomous driving. A button-style e-shifter has the ability to create a unique customer interface to the automatic transmission, as it is very different from the conventional column lever or linear console shifter. In addition to this, a button-style e-shifter can free the center console of valuable package space for other customer-facing functions, such as storage bins and Human-Machine Interface controllers.
2017-03-28
Technical Paper
2017-01-0016
Don Zaremba, Emily Linehan, Carlos Ramirez Ramos
Abstract For over thirty years, the silicon power MOSFET’s role has expanded from a few key components in electronic engine control to a key component in nearly every automotive electronics system. New and emerging automotive applications such as 48 V micro hybrids and autonomous vehicle operation require improved power MOSFET performance. This paper reviews mature and state of the art power MOSFET technologies, from planar to shield gate trench, with emphasis on applicability to automotive electronic systems. The automotive application environment presents unique challenges for electronic systems and associated components such as potential for direct short to high capacity battery, high voltage battery transients, high ambient temperature, electromagnetic interference (EMI) limitations, and large delta temperature power cycling. Moreover, high reliability performance of semiconductor components is mandatory; sub 1 ppm overall failure rate is now a fundamental requirement.
2017-03-28
Technical Paper
2017-01-1676
Hartmut Lackner
Abstract Software systems, and automotive software in particular, are becoming increasingly configurable to fulfill customer needs. New methods such as product line engineering facilitate the development and enhance the efficiency of such systems. In modern, versatile systems, the number of theoretically possible variants easily exceeds the number of actually built products. This produces two challenges for quality assurance and especially testing. First, the costs of conventional test methods increase substantially with every tested variant. And secondly, it is no longer feasible to build every possible variant for the purpose of testing. Hence, efficient criteria for selecting variants for testing are necessary. In this contribution, we propose a new test design method that enables systematic sampling of variants from test cases. We present six optimization criteria to enable control of test effort and test quality by sampling variants with different characteristics.
2017-03-28
Technical Paper
2017-01-1331
Marko Basic, Thomas Resch
Abstract This paper describes a numerical study of the effect of hollow crankshafts on crankshaft local strength and durability as well as slider bearing contact behavior. Crankshaft dynamic simulation for durability is still a challenging task, although numerical methods are already worldwide established and integrated part of nearly every standard engine development process. Such standard methods are based on flexible multi-body dynamic simulation, combined with Finite Element analysis and multi-axial fatigue evaluation. They use different levels of simplification and consider the most influencing phenomena relevant for durability. Lightweight design and downsizing require more and more detailed methods due to higher deformation of the crankshaft. This is especially true for hollow shafts, as present in motorsport design or aerospace applications, but also for standard engine having high potential for significant weight savings.
2017-03-28
Technical Paper
2017-01-1488
Srinivas Kurna, Ruchik Tank, Riddhish Pathak
Abstract The job of a suspension system is to maximize the friction between the tires and the road surface, to provide steering stability with good handling and to act as a cushioning device ensuring the comfort of the driver & passengers. The suspension also protects the vehicle itself and any cargo or luggage from damage and wear. Almost all heavy duty vehicles use inverted type suspension system which is also called as bogie type suspension system. The design of this type of suspension is a complex and difficult science which has evolved over many years. It was recognized very early in the development of suspensions that the interface between vehicle body and wheel needed some sort of cushioning system to reduce the vibration felt as the vehicle moved along. This was already part of road coach design and took the form of leaf (laminated) steel springs mounted on the axles, upon which the vehicle body rested.
2017-03-28
Technical Paper
2017-01-1491
Manish Kumar Seth, Jens Glorer, Ralf Schellhaas
Abstract For long automakers around the globe are trying to reduce weight and cost of the components in order to make vehicles more cost and fuel efficient. This paper deals with same problem for rear twist beam for an upcoming vehicle, the task was to reduce the weight and cost of the twist beam structure without compromising on attributes as compared to the surrogate part. This problem was solved by inventing a new torsion profile and gusset combination which uses shape instead of thickness to use material more efficiently thereby reducing weight and cost. This invention has been successfully patented as well.
2017-03-28
Journal Article
2017-01-0052
Andre Kohn, Rolf Schneider, Antonio Vilela, Udo Dannebaum, Andreas Herkersdorf
Abstract A main challenge when developing next generation architectures for automated driving ECUs is to guarantee reliable functionality. Today’s fail safe systems will not be able to handle electronic failures due to the missing “mechanical” fallback or the intervening driver. This means, fail operational based on redundancy is an essential part for improving the functional safety, especially in safety-related braking and steering systems. The 2-out-of-2 Diagnostic Fail Safe (2oo2DFS) system is a promising approach to realize redundancy with manageable costs. In this contribution, we evaluate the reliability of this concept for a symmetric and an asymmetric Electronic Power Steering (EPS) ECU. For this, we use a Markov chain model as a typical method for analyzing the reliability and Mean Time To Failure (MTTF) in majority redundancy approaches. As a basis, the failure rates of the used components and the microcontroller are considered.
2017-03-28
Technical Paper
2017-01-0907
Timothy Johnson, Ameya Joshi
This review paper summarizes major and representative developments in vehicular emissions regulations and technologies from 2016. The paper starts with the key regulatory advancements in the field, including newly proposed Euro 6 type regulations for Beijing, China, and India in the 2017-20 timeframe. Europe finalized real driving emissions (RDE) standards with the conformity factors for light-duty diesel NOx and GDI PN ramping down to 1.5X by 2021. The California heavy duty (HD) low-NOx regulation is advancing and may be proposed in 2017/18 for implementation in 2023+. LD (light duty) and HD engine technology continues showing marked improvements in engine efficiency. Key developments are summarized for gasoline and diesel engines to meet both the emerging criteria and greenhouse gas regulations. LD gasoline concepts are achieving 45% BTE (brake thermal efficiency or net amount of fuel energy gong to the crankshaft) and closing the gap with diesel.
2017-03-28
Technical Paper
2017-01-0337
Kalyan S. Nadella, Yi Zhang
Ensuring durability is one of the key requirements while developing cooling modules for vehicles. Cooling modules typically include radiator, charge air cooler, transmission oil cooler, low-temp radiator and condenser. Typical loading on cooling modules comes from body, in the form of road loads. The road load accelerations are commonly utilized to predict the high-stress regions and predict the fatigue life of the components. In certain cases where components are attached to both body and engine, the cooling module components can experience additional loads which might require additional analysis to determine the fatigue life. In the proposed paper we look at the effect of engine roll on the fatigue life of transmission oil cooler which is mounted on the body through radiator and is simultaneously connected to the engine using a steel pipe. Bench tests were used to prove out the mode of failure observed in the simulations.
2017-03-28
Technical Paper
2017-01-0341
Seyyedvahid Mortazavian, Javid Moraveji, Reda Adimi, Xingfu Chen
Engine camshaft cap components experience high number of fluctuating loads during engine operation. The problem is complicated in engines with variable cam timing, because the loading for these components are sensitive to engine valve timing (combustion phasing) which can lead to catastrophic overload or fatigue failures. Improving the design of these components using computer-aided tools can drastically reduce the cost and time to the market of the final acceptable design, by eliminating the number of physical prototypes. Hence, a decent and robust finite element analysis with representative load and boundary conditions can significantly reduce the premature failures in engine development. In this study, first a finite element analysis method is developed for simulating a cap punching bench test. Effect of punch radius and shape on the component stiffness is investigated and correlated with test data.
2017-03-28
Technical Paper
2017-01-0347
Yat Sheng Kong, Dieter Schramm, M. Zaidi Omar, Sallehuddin Mohd. Haris, Shahrum Abdullah
This paper presents the development of a relationship between objective vehicle ride level and coil spring durability life using road data to shorten suspension design process. Current development processes of vehicle suspension systems which include vehicle ride and suspension spring durability are categorized into different stages of analysis and therefore, consumes lots of time. Through the developed predictive model, the ISO weighted accelerations were used to describe durability of spring components or vice versa. This model has led to immediate solution of suspension design with reduced number of testing. In order to construct the model, strain and acceleration data from various roads were measured using data acquisition which was involving car movements. Prior to the strain measurement, a finite element model of the spring was measured to identify the critical region of the spring and strain gauges were applied on the particular spot.
2017-03-28
Technical Paper
2017-01-0348
Mani Shankar, I V N Sri Harsha, K V Sunil, Ramsai Ramachandran
In an automobile, road loads due to tire-road interaction are transferred to vehicle body through suspension. This makes suspension a critical component from the body durability perspective. During vehicle design and development, optimization of suspension parameters to suit ride and handling performance is a continuous and iterative process. These changes on suspension can affect vehicle body durability performance. This paper tries to establish a process to evaluate the effect of changes in suspension parameters on body durability, thus helping in understanding the impact of these changes. The process starts with virtual model building in Multi Body Dynamics software. The base line model is co-related with testing using responses like spring displacement at suspension, acceleration and strain data at the vehicle body.
Viewing 1 to 30 of 4307

Filter

  • Range:
    to:
  • Year: